Crops ›› 2024, Vol. 40 ›› Issue (5): 175-180.doi: 10.16035/j.issn.1001-7283.2024.05.025

Previous Articles     Next Articles

Effects of L-Tryptophan on Growth and Development of Sorghum under Low Nitrogen Condition

Li Junzhi1(), Wang Xiaodong1, Dou Shuang1, Xin Zongxu1, Wu Hongsheng1, Zhou Yufei2, Xiao Jibing1()   

  1. 1Liaoning Institute of Agriculture and Forestry in Arid, Chaoyang 122000, Liaoning, China
    2Agronomy College of Shenyang Agricultural University, Shenyang 110866, Liaoning, China
  • Received:2023-05-06 Revised:2023-06-29 Online:2024-10-15 Published:2024-10-16

Abstract:

In order to promote environmentally friendly and productive sorghum farming methods in the western Liaoning region, it is important to investigate the effects of exogenous tryptophan on the photosynthetic properties and yield of sorghum in low nitrogen environments. A split plot design was employed in field experiments, with premium glutinous sorghum variety Jiniang 3 serving as the experimental material. Two nitrogen application levels were set, with one-third of the conventional nitrogen fertilizer amount (N1) and conventional nitrogen fertilizer amount (N2) applied. Clear water (Y1) and 50 mg/L tryptophan (Y2) were sprayed on the leaves during the sorghum jointing stage to study the photosynthetic characteristics, agronomic traits, and yield. The results showed that under N1 and N2 levels, spraying tryptophan (Y2) could increase the net photosynthetic rate (Pn) and chlorophyll relative content (SPAD value) of sorghum leaves, significantly increasing yield, 1000-grain weight, and panicle weight. Compared to Y1 treatment, the yield were increased by 1.91% and 6.70%, respectively. In different treatment combinations, spraying exogenous tryptophan could reduce plant height, increase stem diameter, panicle length, and leaf area. Therefore, under low nitrogen conditions, spraying tryptophan during the jointing stage of sorghum was beneficial for increasing grain yield, 1000-grain weight, stem diameter, and panicle length, reducing plant height and lodging risk, increasing SPAD value and Pn, increasing grain weight, and promoting yield and income increase.

Key words: Nitrogen application rate, Tryptophan, Sorghum, Photosynthetic characteristics, Agronomic traits, Yield

Fig.1

Meteorological data from May to September in 2022"

Fig.2

Effects of L-tryptophan on Pn of two leaves of sorghum under low nitrogen condition"

Fig.3

Effects of L-tryptophan on SPAD value of two leaves of sorghum under low nitrogen condition"

Table 1

Effects of nitrogen application rate and exogenous tryptophan on the growth of sorghum"

处理
Treatment
株高
Plant height (cm)
茎粗
Stem diameter (mm)
茎粗系数
Stem diameter coefficient (%)
穗长
Panicle length (cm)
叶面积
Leaf area (cm2)
施氮量N amount N1 156.26a 22.15a 1.43a 32.11a 372.27b
N2 165.92a 20.29a 1.23a 32.50a 396.66a
色氨酸Tryptophan Y1 166.07a 20.51a 1.25b 32.03a 383.27a
Y2 156.11b 21.93a 1.41a 32.58a 385.67a

Table 2

Effects of L-tryptophan on sorghum growth under low nitrogen condition"

处理
Treatment
株高
Plant height (cm)
茎粗
Stem diameter (mm)
茎粗系数
Stem diameter coefficient (%)
穗长
Panicle length (cm)
叶面积
Leaf area (cm2)
N1 Y1 158.90a 21.74a 1.38a 31.61a 361.52a
Y2 153.62a 22.56a 1.47a 32.55a 383.02a
N2 Y1 173.23a 19.27a 1.11a 32.45a 388.31a
Y2 158.60a 21.30a 1.35a 32.61a 405.01a

Table 3

Effects of nitrogen application rate and exogenous tryptophan on yield and its components of sorghum"

处理
Treatment
产量
Yield (kg/hm2)
千粒重
1000-grain weight (g)
穗粒数
Kernels per panicle
干物质积累量
Dry matter accumulation (kg/hm2)
收获指数
Harvest index (%)
施氮量N amount N1 9758.36b 22.38a 3.81a 21 439.19a 0.46a
N2 10 510.21a 23.47a 4.08a 23 556.75a 0.45a
色氨酸Tryptophan Y1 9666.00b 21.87a 3.75b 21 758.74a 0.46a
Y2 9850.71a 22.89a 3.89a 23 237.20a 0.45a

Table 4

Effects of L-tryptophan on sorghum yield and its components under low nitrogen condition"

处理
Treatment
产量
Yield (kg/hm2)
千粒重
1000-grain weight (g)
穗粒数
Kernels per panicle
干物质积累量
Dry matter accumulation (kg/hm2)
收获指数
HI (%)
N1 Y1 9666.00b 21.87b 3.75a 20 612.55a 0.47a
Y2 9850.71b 22.89ab 3.89a 22 265.83a 0.44a
N2 Y1 10 169.37b 23.39a 3.96a 22 904.93a 0.44a
Y2 10 851.05a 23.55a 4.19a 24 208.57a 0.45a

Table 5

Correlation analysis of main growth and physiological characteristics of Jiniang 3"

性状
Trait
产量
Yield
千粒重
1000-grain weight
穗粒数
Kernels per panicle
干物质积累量
Dry matter accumulation
株高
Plant height
茎粗
Stem diameter
穗长
Panicle length
产量Yield 1.000 0.818 0.985* 0.937 0.135 -0.29 0.656
千粒重1000-grain weight 1.000 0.881 0.959* 0.347 -0.457 0.924
穗粒数Kernels per panicle 1.000 0.978* 0.088 -0.239 0.771
干物质积累量
Dry matter accumulation
1.000
0.173
-0.311
0.874
株高Plant height 1.000 -0.987* 0.058
茎粗Stem diameter 1.000 -0.148
穗长Panicle length 1.000
[1] 国家统计局. 中国统计年鉴(2021). 北京: 中国统计出版社, 2022.
[2] 贾微, 孙占祥, 白伟, 等. 科尔沁沙地南缘旱作农田不同作物配置土壤水分效应及作物响应研究. 干旱地区农业研究, 2014, 32(2):91-98.
[3] 卢庆善, 邹剑秋, 朱凯, 等. 试论我国高粱产业发展——一论全国高粱生产优势区. 杂粮作物, 2009, 29(2):78-80.
[4] 栾艳波. 辽西北半干旱地区生态环境存在的问题及对策. 现代化农业, 2019(5):38-39.
[5] 刘洋, 孙占祥, 郑家明, 等. 辽西风沙半干旱区坡耕地耕层存在的问题及对策. 辽宁农业科学, 2016(6):48-52.
[6] 张彦, 王劲松, 董二伟, 等. 中晚熟区主要高粱品种耐瘠性综合评价. 中国农业科学, 2021, 54(23):4954-4968.
doi: 10.3864/j.issn.0578-1752.2021.23.003
[7] 李邦. 低氮胁迫下外源色氨酸调控高粱幼苗根系伸长的机制研究. 沈阳: 沈阳农业大学 2022.
[8] Pollmann S, Düchting P, Weiler E W. Tryptophan-dependent indole-3-acetic acid biosynthesis by ‘IAA-synthase’ proceeds via indole-3-acetamide. Phytochemistry, 2009,70:523-531.
[9] El-Bassiouny H M S. Physiological responses of wheat to salinity alleviation by nicotinamide and tryptophan. International Journal of Agriculture Biology, 2005, 7(4):653-659.
[10] Akhtar M J, Asghar H N, Asif M, et al. Growth and yield of wheat as affected by compost enriched with chemical fertilizer, L-tryptophan and rhizobacteria. Pakistan Journal of Agricultural Sciences, 2007, 44(1):136-140.
[11] Zahir Z A, Asghar H N, Akhta M J. Precursor (L- tryptophan)- inoculum (Azotobacter) interaction for improving yields and nitrogen uptake of maize. Journal of Plant Nutrition, 2005, 28 (5):805-817.
[12] Abbas S H, Sohail M, Saleem M. Effect of L-tryptophan on plant weight and pod weight in chickpea under rainfed conditions. Science Technology and Development, 2013, 32(4):277-280.
[13] Mohite B. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition, 2013, 13(3):638-649.
[14] 李邦, 刘春娟, 郭俊杰, 等. 低氮胁迫下外源色氨酸对高粱幼苗根系伸长的调控作用. 作物学报, 2023, 49(5):1372-1385.
doi: 10.3724/SP.J.1006.2023.24133
[15] Bakry B A, Ibrahim F M, Maha M S. Effect of banana peel extract or tryptophan on growth, yield and some biochemical aspects of quinoa plants under water deficit. International Journal of Pharmtech Research, 2016,9:276-287.
[16] 周宇飞, 闫彤, 张姣, 等. 外源IAA对高粱幼苗内源激素含量及分蘖发生的影响. 生态学杂志, 2017, 36(8):2191-2197.
[17] 钟晓红, 石雪晖, 马定渭, 等. IAA色氨酸处理对索非亚草莓营养生长和果实品质的调控. 果树学报, 2004, 21(6):565-568.
[18] 赵海亮, 左璐, 侯雷平, 等. 叶面施用色氨酸对番茄果实品质的改良效应. 山西农业大学学报(自然科学版), 2021, 41(4):68-75.
[19] 肖继兵, 刘志, 孔凡信, 等. 种植方式和密度对高粱群体结构和产量的影响. 中国农业科学, 2018, 51(22):4264-4276.
doi: 10.3864/j.issn.0578-1752.2018.22.005
[20] 王梦, 周光远, 高聚林, 等. 玉米耐高密品种冠层光氮分布及匹配特征研究. 作物学报, 2022, 48(12):3179-3191.
doi: 10.3724/SP.J.1006.2022.13073
[21] 李丹, 朱振兴, 马殿荣. 高粱苗期氮高效种质资源的筛选. 辽宁农业科学, 2022(1):84-86.
[22] 王劲松, 董二伟, 武爱莲, 等. 不同肥力条件下施肥对粒用高粱产量、品质及养分吸收利用的影响. 中国农业科学, 2019, 52(22):4166-4176.
doi: 10.3864/j.issn.0578-1752.2019.22.020
[23] 曾辉, 李超, 刘晓, 等. 外源激素IAA和6-BA对“薄丰”核桃光合特性的影响. 北方园艺, 2015(13):31-34.
[24] 曹翠玲, 李生秀. 供氮水平对小麦生殖生长时期叶片光合速率、NR活性和核酸含量及产量的影响. 植物学通报, 2003, 20(3):319-324.
[25] 宁倩, 吴金水, 李宝珍, 等. 水稻苗期生长特性对不同浓度IAA的响应. 农业现代化研究, 2013, 34(2):235-238.
[26] Hassan T U, Bano A. The stimulatory effects of L-tryptophan and plant growth promoting rhizobacteria (PGPR) on soil health and physiology of wheat. Journal of Soil Science and Plant Nutrition, 2015, 15(1):190-201.
[27] 王劲松, 焦晓燕, 丁玉川, 等. 粒用高粱养分吸收、产量及品质对氮磷钾营养的响应. 作物学报, 2015, 41(8):1269-1278.
[28] 周棱波, 汪灿, 陆秀娟, 等. 施肥量和种植密度对糯高粱黔高7号光合特性、农艺性状及产量的影响. 南方农业学报, 2016, 47(5):644-648.
[29] 曹晓燕, 武爱莲, 王劲松, 等. 施氮量对高粱产量、品质及氮利用效率的影响. 作物杂志, 2021(2):108-115.
[30] Mirhadi M J, 小林喜男,赵金林. 粒用高粱生产性能的研究Ⅲ.萎蔫处理和叶面喷洒萘乙酸(NAA)、吲哚乙酸(IAA)和色氨酸(TTP)对粒用高粱籽粒和饲料产量影响的比较研究. 国外农学―杂粮作物, 1982(3):1-7.
[31] 高杰, 封广才, 李晓荣, 等. 施氮量对酒用糯高粱品种红缨子产量及氮素吸收利用的影响. 作物杂志, 2021(4):118-122.
[32] 高杰, 李青风, 汪灿, 等. 不同氮素水平对糯高粱物质生产及氮素利用特性的影响. 作物杂志, 2017(6):126-130.
[33] 钟晓红, 石雪晖, 肖浪涛. 色氨酸提高草莓果实品质和产量试验. 中国果树, 2001(2):7-10.
[34] 陈振德, 黄俊杰, 何金明, 等. 土施L-色氨酸对甘蓝产量和养分吸收的影响. 土壤学报, 1997, 34(2):200-205.
[35] 李方豪, 聂堂哲. 施氮水平对黑龙江省高粱产量及主要农艺性状的影响. 农业与技术, 2022, 42(24):20-23.
[36] 陈明昌, 程滨, 张强, 等. 土施L-蛋氨酸、L-苯基丙氨酸、L-色氨酸对玉米生长和养分吸收的影响. 应用生态学报, 2005, 16(6):1033-1037.
[37] 蒋佳, 朱星宇, 李晶. 外源色氨酸对油菜幼苗色氨酸下游代谢网络及生长发育的影响. 西北植物学报, 2020, 40(9):1549-1557.
[1] Hao Qingting, Gao Wei, Zhang Zeyan, Yan Hubin, Zhu Huijun, Zhang Yaowen. The Effects of Iron Fertilizer Application on Yield and Fe Concent of Grains in Mung Bean [J]. Crops, 2024, 40(5): 105-109.
[2] Sun Guangxu, Liu Ying, Wang Xinyi, Kong Deyong, Wei Na, Xing Liwen, Guo Wei. Effects of Population Density and Fulvic Acid on Yield and Nutritional Quality of Kidney Bean [J]. Crops, 2024, 40(5): 110-118.
[3] Wang Shanshan, Yang Yulei, Liu Feihu, Yang Yang, Tang Kailei, Li Tao, Niu Longjiang, Du Guanghui. Effects of Concentrations and Treatment Periods of Polyazole on Inflorescence and Leaves Yield and Cannabidiol Content of Industrial Hemp [J]. Crops, 2024, 40(5): 119-124.
[4] Huang Yulan, Liu Wenjun, Li Yanying, Zhou Jia, Zhou Lingzhi, Lao Chengying, Li Suping, Shen Zhangyou, Wei Benhui. Effects of Intercropping Cassava with Pumkin of Different Densities in Cassava Fields on Crop Yield, Economic Efficiency and Land Productivity [J]. Crops, 2024, 40(5): 125-130.
[5] Tian Qinqin, Zhuo Le, Chen Nana, Zheng Dechao, Wu Xiaojing, Yu Peng, Chen Pingping, Yi Zhenxie. Effects of Calcium-Magnesium Hydrotalcite on Cadmium Content in Brown Rice of Double-Cropping Rice and Soil Characteristics [J]. Crops, 2024, 40(5): 131-139.
[6] Mu Jianguo, Wang Peng, Liu Yantao, Cui Jiawei, Chen Yanfang, Wan Sumei, Chen Guihong. Effects of Different Harvesting Periods on the Commerciality and Yield of Edible Sunflower [J]. Crops, 2024, 40(5): 146-151.
[7] Li Hongliang, Sun Yuyou, Wei Caiqiang, Liu Dan, Xie Zhong, Cheng Dujuan, Qu Jinling, Song Ze, Meng Xianghai, Zhao Yuntong, Shi Xinrui. Effects of Controlled Irrigation and Fertilization on Growth, Yield and Quality of Japonica Rice in Cold Region [J]. Crops, 2024, 40(5): 152-158.
[8] Cao Shaona, Wu Lixiao, Guan Yaobing, Wang Kexiong. Effects of Different Types and Dosage of Bacterial Fertilizer on Yield and Quality of Broccoli [J]. Crops, 2024, 40(5): 159-166.
[9] Liu Zichen, Shang Liyan, Ye Jiayu, Sheng Tian, Li Ruijie, Deng Jun, Tian Xiaohai, Zhang Yunbo, Huang Liying. Effects of Dense Planting with Reduced Nitrogen Input Cultivation on the Grain Quality of Hybrid Indica Rice [J]. Crops, 2024, 40(5): 194-203.
[10] Zhou Qi, Wu Fang, Wang Zhenlong, Xu Zhipeng, Deng Chaochao, Shi Zhiguo, Zhang Jing, Su Cuicui, Yu Yalin, Zhou Yanfang. Effects of Nitrogen Fertilizer and Biochar Application Rate Interaction on Growth and Root-Knot Nematode Disease of Greenhouse Tomatoes [J]. Crops, 2024, 40(5): 212-219.
[11] Zhou Xue, Han Fang, Su Leping, Li Xingxing, Niu Hongwei, Guo Wei, Yuan Hongʼan. Effects of Planting Density on Agronomic Traits and Yield of Spring Foxtail Millet [J]. Crops, 2024, 40(5): 241-246.
[12] Dong Mingyu, Zheng Hongfeng, Zhu Zhe. Effects of Different Endosperm Phenotypes on Agronomic Traits and Yield in Sorghum [J]. Crops, 2024, 40(5): 29-34.
[13] He Jiahui, Li Yanfeng, Yan Tianze, Zhang Xuanwen, Qin Peng, Guo Jinyou, Wang Kai, Liu Xionglun, Yang Yuanzhu. The Effects of Reducing Nitrogen Fertilizer Application on the Yield and Quality of Super Rice Weiliangyou 8612 [J]. Crops, 2024, 40(5): 73-79.
[14] Wang Yifan, Lin Tao, Wang Dong, Wang Xincui, Zhang Hao, Liu Haijun, Chen Maoguang, Tang Qiuxiang. Effects of Biodegradable Film and Irrigation Quota on Soil Hydrothermal Characteristics in Cotton Field [J]. Crops, 2024, 40(5): 86-95.
[15] Zhang Wei, Wang Qi, Yan Peng, Xu Yanli, Yan Hongdong, Li Guiying, Chen Disu, Jiao Xiaoyan, Lu Lin, Dong Zhiqiang. Effects of PASP-KT-NAA on Leaf Senescence and Yield of Sorghum Populations with Different Densities in Northeast China [J]. Crops, 2024, 40(5): 96-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!