Crops ›› 2024, Vol. 40 ›› Issue (2): 89-96.doi: 10.16035/j.issn.1001-7283.2024.02.011

Previous Articles     Next Articles

Effects of the Different Nitrogen Levels on Yield, Nitrogen Utilization Efficiency and the Nitrogen Balance of Double-Cropping Rice in Paddy Field

Qin Birong1,2(), You Saiya2, Chen Shurong2, Zhu Lianfeng2, Kong Yali2, Zhu Chunquan2, Tian Wenhao2, Zhang Junhua2, Jin Qianyu2, Cao Xiaochuang2(), Liu Li1()   

  1. 1College of Agriculture, Guizhou University, Guiyang 550025, Guizhou, China
    2State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
  • Received:2023-07-21 Revised:2023-11-08 Online:2024-04-15 Published:2024-04-15

Abstract:

A field experiment was conducted to study the effects of different nitrogen application levels on yield formation, nitrogen utilization efficiency and rice-soil nitrogen balance, using “Zhongzao 39” and “Tianyouhuazhan” as test materials. The results showed that nitrogen application significantly increased the residual inorganic nitrogen in the 0-40 cm soil layer, and the nitrogen form was mainly NH4+-N, when the amount of nitrogen application was higher than 180 kg/ha (early rice) and 200 kg/ha (late rice), respectively. Rice-soil nitrogen balance showed that, except for nitrogen fertilizer, other nitrogen input accounts for 48.7%-78.4% of total input of nitrogen, nitrogen output is mainly affected by nitrogen uptake of rice, the soil nitrogen residue and nitrogen loss. In a certain range of nitrogen application, it increased significantly with the increase of nitrogen application rate. With the increase of nitrogen application rate, the yields of early and late rice increased first and then decreased, it mainly increased rice yield by increasing the number of effective panicles and spikelets per panicle. Utilization rate of nitrogen partial productivity, nitrogen utilization rate of agronomy and nitrogen interdependent rate significantly reduced with the increase of N application, but nitrogen absorption utilization rate, apparent retention rate of nitrogen and nitrogen contribution rate showed on opposite trend. Rice yield and N application quadratic regression model showed that the best early rice and late rice N application were 163.4 kg/ha and 209.2 kg/ha. Therefore, the recommended N application rate of early rice and late rice were 163.4 kg/ha and 209.2 kg/ha in Hangzhou, Zhejiang province, respectively, which can achieve high yield and efficient nitrogen fertilizer.

Key words: Nitrogen application rate, Yield, Nitrogen utilization efficeincy, Nitrogen balance, Double- cropping rice

Table 1

Yield and its components in early rice and late rice"

处理
Treatment
产量
Yield (kg/hm2)
有效穗数
Effective panicles (×104/hm2)
穗粒数
Spikelets per panicle
千粒重
1000-grain weight (g)
结实率
Seed-setting rate (%)
2020 早稻 N0 6256.5±198.0c 9.2±0.7c 142.1±6.7b 27.3±0.1a 84.5±2.5a
N90 7461.0±178.5b 11.2±0.9b 152.5±16.4b 28.4±0.8a 84.5±2.1a
N120 7510.5±177.0b 11.0±0.3b 144.3±10.0b 28.5±0.2a 88.9±1.8a
N150 7518.0±19.5b 11.3±0.7b 180.5±16.0a 27.6±0.3a 87.3±2.8a
N180 7753.5±91.5a 11.4±0.6b 177.5±17.6a 27.3±0.6a 85.6±5.4a
N210 7726.5±231.0a 13.2±1.2a 177.9±10.7a 27.3±1.1a 84.3±4.6a
晚稻 N0 6001.5±258.0c 9.8±0.4c 198.6±10.1c 23.0±0.5a 83.1±3.7a
N120 6901.5±300.0b 11.4±0.2b 194.2±4.9c 22.2±0.7bc 82.6±1.9a
N160 7122.0±174.0b 11.7±0.2b 214.5±6.2a 22.2±0.7bc 83.1±2.7a
N200 7456.5±63.0a 12.0±0.4ab 212.8±1.9a 22.6±0.3b 82.9±2.4a
N240 7477.5±127.5a 12.7±0.4a 208.3±11.0ab 21.8±0.4c 78.5±2.1b
N280 7551.0±87.0a 12.1±0.2ab 206.2±3.7b 22.7±0.1ab 78.6±2.6b
2021 早稻 N0 6523.5±169.5c 10.4±0.6c 150.9±5.8b 28.0±0.1ab 85.8±2.1a
N90 7761.0±157.5b 12.6±0.8ab 161.9±14.2b 29.1±0.7a 85.7±1.7a
N120 7797.0±147.0b 12.4±0.3b 153.3±8.6b 29.0±0.1ab 90.2±1.4a
N150 7794.0±166.5b 12.7±0.7ab 191.7±13.8a 28.2±0.2ab 86.8±4.5a
N180 8044.5±76.5a 12.8±0.6a 188.5±15.2a 27.9±0.5b 88.6±2.3a
N210 8031.0±195.0a 13.1±1.0a 188.9±9.2a 27.9±0.9b 85.6±3.8a
晚稻 N0 6723.0±294.0c 10.9±0.4c 210.8±11.2b 22.8±0.4a 81.5±7.6a
N120 7522.5±177.0b 13.0±0.2b 205.4±5.5b 22.3±0.5a 79.3±3.7ab
N160 8049.0±198.0b 12.8±0.3b 227.2±6.9a 22.4±0.3a 75.1±4.0b
N200 8277.0±70.5a 13.5±0.5ab 226.7±4.3a 22.6±0.4a 79.9±5.3ab
N240 8149.5±138.0ab 14.3±0.5a 221.1±12.2a 22.2±0.2a 75.8±5.1b
N280 8382.0±96.0a 13.6±0.2ab 218.5±8.2ab 22.6±0.1a 80.5±4.6a
ANOVA N * ** * ns ns
Y ns ns * ns ns
N×Y ns * * ns ns

Table 2

Contents of soil N input and output of the double-cropping rice"

处理
Treatment
N输入N input (kg/hm2) N输出N output (kg/hm2)
Ndep Nirr Nin Nm Nf Ninp Nup Nres Nloss
早稻
Early rice
2020 N0 9.3 6.4 107.4 97.2 0 220.3 136.8±5.0c 67.8±3.3e 15.7±1.1d
N90 9.3 6.4 107.4 97.2 90 310.3 179.1±3.8b 81.6±3.4d 49.6±3.6c
N120 9.3 6.4 107.4 97.2 120 340.3 184.9±4.5b 92.8±2.2c 62.5±9.3bc
N150 9.3 6.4 107.4 97.2 150 370.3 186.3±2.5b 107.7±6.3b 76.3±9.8b
N180 9.3 6.4 107.4 97.2 180 400.3 200.9±5.7a 116.4±4.2b 82.9±15.6ab
N210 9.3 6.4 107.4 97.2 210 430.3 203.4±4.4a 127.6±5.7a 99.2±9.1a
2021 N0 9.5 6.0 75.9±3.7e 124.8 0 292.1±1.7f 134.2±3.6d 66.5±3.2f 15.5±1.4d
N90 9.5 6.0 96.3±2.2d 124.8 90 402.5±1.1e 175.1±4.8c 80.0±3.3e 71.4±6.3c
N120 9.5 6.0 100.2±2.3d 124.8 120 436.4±1.2d 182.3±5.7bc 91.0±2.1d 87.1±3.3c
N150 9.5 6.0 117.5±2.7c 124.8 150 483.7±0.6c 192.8±5.4ab 106.0±4.8c 108.6±9.4bc
N180 9.5 6.0 128.4±2.7b 124.8 180 524.6±0.6b 193.6±6.9ab 115.5±2.5b 113.4±12.4b
N210 9.5 6.0 139.7±3.6a 124.8 210 565.9±1.6a 209.5±198.7a 126.0±6.4a 141.6±14.9a
晚稻
Late rice
2020 N0 9.9 6.8 67.8±3.3e 140.9 0 301.3±1.3f 132.8±5.4c 75.9±3.7e 16.7±1.5f
N120 9.9 6.8 81.6±3.4d 140.9 120 435.1±1.4e 186.4±6.7b 96.3±2.2d 76.5±15.4e
N160 9.9 6.8 92.8±2.2c 140.9 160 486.3±1.1d 192.4±2.8ab 100.2±2.3d 117.8±4.0d
N200 9.9 6.8 107.7±6.3b 140.9 200 541.2±2.3c 202.2±9.4ab 117.5±2.7c 145.6±8.2c
N240 9.9 6.8 116.4±4.2b 140.9 240 589.9±0.1b 204.0±6.0a 128.4±2.7b 181.7±7.8b
N280 9.9 6.8 127.6±5.7a 140.9 280 641.1±2.6a 202.7±10.2a 139.7±3.6a 222.8±3.1a
2021 N0 9.6 7.4 66.5±3.2f 127.1 0 286.5±1.1f 125.5±4.4b 68.1±3.8d 17.0±1.2f
N120 9.6 7.4 80.0±3.3e 127.1 120 420.0±1.3e 197.9±7.8a 98.4±2.9c 42.1±5.6e
N160 9.6 7.4 91.0±2.1d 127.1 160 471.0±1.1d 205.3±4.1a 102.8±2.3c 87.0±1.9d
N200 9.6 7.4 106.0±4.8c 127.1 200 526.3±2.3c 209.5±7.6a 118.5±4.8b 122.1±5.6c
N240 9.6 7.4 115.5±2.5b 127.1 240 575.5±1.5b 206.1±9.8a 128.1±5.8ab 165.4±9.4b
N280 9.6 7.4 126.0±6.4a 127.1 280 626.0±0.3a 207.3±8.7a 136.0±6.0a 206.8±4.9a

Fig.1

Contents of NH4+-N and NO3--N in 0-100 cm soil profile of the double-cropping rice (a) early rice; (b) late rice; The datas in the figure are average value of 2020-2021."

Table 3

Nitrogen use efficiency and nitrogen apparent residue rate of the double-cropping rice"

处理Treatment NRE (%) NAE (kg/kg) NPFP (kg/kg) NPE (kg/kg) 氮表观残留率N residue rate (%)
早稻
Early rice
N0
N90 23.5±1.8c 13.6±0.2a 84.9±2.0a 29.3±0.8a 17.0±3.7d
N120 26.2±1.4bc 10.7±0.2b 64.8±2.2b 26.2±0.2b 27.0±1.8c
N150 28.3±1.0b 9.3±0.9c 52.6±2.5c 23.5±1.9bc 37.2±3.6ab
N180 31.3±0.8ab 8.1±0.1d 42.3±3.7d 24.4±1.1c 42.2±1.8a
N210 34.4±1.4a 7.4±0.4d 38.3±1.5e 21.0±1.0d 47.1±2.1a
晚稻
Late rice
N0
N120 32.8±1.9b 10.0±0.8a 60.0±2.5a 13.9±2.8c 26.0±2.1c
N160 35.1±1.1ab 8.1±0.1b 43.7±6.5b 17.7±1.0b 29.1±1.4c
N200 37.3±1.0a 7.5±0.2b 39.3±2.0b 19.7±1.2ab 39.0±1.9b
N240 37.1±2.5a 6.0±0.1c 32.5±1.4c 19.2±1.5ab 43.8±1.6ab
N280 37.1±2.3a 5.7±0.1c 28.4±1.4c 21.2±0.9a 47.8±1.3a

Fig.2

Nitrogen contribution rate and soil nitrogen dependence rate of the double-cropping rice"

Fig.3

One-dimensional quadratic regression analysis between rice yield and N application level of early rice and late rice"

[1] 李贵勇, 张朝钟, 何清兰, 等. 不同生态稻作区氮肥增产效应及其利用率. 中国土壤与肥料, 2016(2):85-89,113.
[2] Zhao X, Zhou Y, Min J, et al. Nitrogen runoff dominates water nitrogen pollution from rice-wheat rotation in the Taihu Lake region of China. Agriculture,Ecosystems and Environment, 2012, 156:1-11.
doi: 10.1016/j.agee.2012.04.024
[3] 李诚, 严小兵, 王安乐, 等. 施氮量与氮肥运筹模式对和两优55产量及稻米品质的影响. 杂交水稻, 2023, 38(4):128-133.
[4] 王静. 土壤肥力和施氮量对双季稻氮素利用效率和氮循环相关土壤微生物的影响. 南昌: 江西农业大学, 2022.
[5] Fan M S, Shen J B, Yuan L X, et al. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. Journal of Experimental Botany, 2012, 63(1):13-24.
doi: 10.1093/jxb/err248 pmid: 21963614
[6] Pan J F, Liu Y Z, Zhong X H, et al. Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China. Agricultural Water Management, 2017, 184:191-200.
doi: 10.1016/j.agwat.2017.01.013
[7] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5):915-924.
[8] Peng S B, Buresh R J, Huang J L, et al. Improving nitrogen fertilization in rice by site-specific N management. A review. Agronomy for Sustainable Development, 2010, 30(3):649-656.
doi: 10.1051/agro/2010002
[9] 易秉怀, 袁帅, 苏雨婷, 等. 氮肥运筹对湘南双季稻氮素吸收转运与利用及产量的影响. 杂交水稻, 2023, 38(1):112-121.
[10] Awan T H, Cruz P C S, Chauhan B S. Growth analysis and biomass partitioning of Cyperus iria in response to rice planting density and nitrogen rate. Crop Protection, 2015, 74:92-102.
doi: 10.1016/j.cropro.2015.04.010
[11] Zhou W T, Long W F, Wang H R, et al. Matter production characteristics and nitrogen use efficiency under different nitrogen application patterns in Chinese double-cropping rice systems. Agronomy, 2022, 12(5):1165.
doi: 10.3390/agronomy12051165
[12] 赵营, 刘晓彤, 罗健航, 等. 缓/控释肥条施对春玉米产量、吸氮量与氮平衡的影响. 中国土壤与肥料, 2020(5):34-39.
[13] 苏雨婷, 袁帅, 李永松, 等. 氮肥运筹对湘南双季杂交稻产量与抗倒伏特性的影响. 作物杂志, 2022(3):225-232.
[14] 朱启东, 鲁艳红, 廖育林, 等. 施氮量对双季稻产量及氮磷钾吸收利用的影响. 水土保持学报, 2019, 33(2):183-188.
[15] 赵宪伟, 李橙, 杨晶, 等. 岗南水库上游流域大气氮干湿沉降研究. 南水北调与水利科技, 2018, 16(5):115-121.
[16] 金树权, 陈若霞, 汪峰, 等. 不同氮肥运筹模式对稻田田面水氮浓度和水稻产量的影响. 水土保持学报, 2020, 34(1):242-248.
[17] Ju X T, Kou C L, Zhang F S, et al. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environmental Pollution, 2006, 143(1):117-125.
pmid: 16364521
[18] 成臣, 曾勇军, 王祺, 等. 施氮量对晚粳稻甬优1538产量、品质及氮素吸收利用的影响. 水土保持学报, 2018, 32(5):222-228.
[19] 刘梦红, 杜春颖, 杨锡铜, 等. 土壤肥力和氮肥运筹对寒地水稻产量、品质及氮肥利用的影响. 河南农业科学, 2019, 48(2):25-34.
[20] 周婵婵, 陈海强, 王术, 等. 氮肥运筹和移栽密度对水稻产量和品质形成的影响. 中国稻米, 2019, 25(5):42-46.
doi: 10.3969/j.issn.1006-8082.2019.05.009
[21] 赵琦. 水稻氮肥利用效率的研究进展. 中国稻米, 2016, 22(6):15-19.
doi: 10.3969/j.issn.1006-8082.2016.06.004
[22] 方军, 归连发, 朱元宏, 等. 氮肥运筹方式对杂交粳稻申优17生长和产量的影响. 作物研究, 2020, 34(3):201-206.
[23] 黎星, 汪勇, 成臣, 等. 氮肥运筹对南方优质常规晚粳产量和品质的影响. 中国稻米, 2019, 25(1):29-33.
doi: 10.3969/j.issn.1006-8082.2019.01.008
[24] 方林发, 张宇亭, 谢军, 等. 氮肥用量和运筹对冷浸田水稻产量和氮素利用率的影响. 西南大学学报(自然科学版), 2020, 42(3):53-60.
[25] 张桂莲, 赵瑞, 刘逸童, 等. 施氮量对优质稻产量和稻米品质及氮素利用效率的影响. 湖南农业大学学报(自然科学版), 2019, 45(3):231-236.
[26] 侯云鹏, 杨建, 李前, 等. 施氮对水稻产量、氮素利用及土壤无机氮积累的影响. 土壤通报, 2016, 47(1):118-124.
[27] 郭浪, 肖敏, 崔璨, 等. 施氮量对小粒型杂交稻产量与氮素利用效率的影响. 杂交水稻, 2023, 38(5):108-114.
[28] 张彬, 魏文武. 不同供氮量对水稻土壤无机氮残留、氮平衡及产量的影响. 山东农业大学学报(自然科学版), 2019, 50(4):566-570.
[29] 梁修仁. 秸秆还田与减氮对麦―稻与油―稻模式土壤氮库与氮气态损失的影响. 武汉: 华中农业大学, 2022.
[30] 潘圣刚, 黄胜奇, 翟晶, 等. 氮肥用量与运筹对水稻氮素吸收转运及产量的影响. 土壤, 2012, 44(1):23-29.
[1] Wang Han, Zheng Dechao, Tian Qinqin, Wu Xiaojing, Zhou Wenxin, Yi Zhenxie. Effects of Harvest Time on Yield and Cadmium Accumulation and Distribution Characteristics of Early Rice [J]. Crops, 2024, 40(2): 105-112.
[2] Sun Tong, Yang Yushuang, Ma Ruiqi, Zhu Yingjie, Chang Xuhong, Dong Zhiqiang, Zhao Guangcai. Effects of PASP-KT-NAA and Ethylene-Chlormequat-Potassium on the Lodging Resistance, Yield, and Quality of Wheat [J]. Crops, 2024, 40(2): 113-121.
[3] Sun Yueying, Liu Jinghui, Mi Junzhen, Zhao Baoping, Li Yinghao, Zhu Shanshan. Study on the Growth-Promoting Effect of Lactic Acid Bacteria Compound Preparation on Oat [J]. Crops, 2024, 40(2): 122-128.
[4] Xu Zheli, Zhu Weiqi, Wang Litao, Shi Feng, Wei Zhiying, Wang Lina, Qiu Hongwei, Zhang Xiaoying, Li Huili. Effects of Irrigation and Foliar Nitrogen Application on Yield, Quality and Photosynthetic Characteristics of Late Sowing Wheat [J]. Crops, 2024, 40(2): 139-147.
[5] Xiao Min, Guo Lang, Cui Can, Cheng Zhouqi, Liu Yuwu, Zhuo Le, Wu Si, Yi Zhenxie. Effects of Phosphate Fertilizer Management on Yield Components and Nutrient Uptake and Utilization in Mechanical Transplanting Double-Cropping Rice [J]. Crops, 2024, 40(2): 178-188.
[6] Xie Mengfan, Jia Haijiang, Qu Yuankai, Nong Shiying, Li Junlin, Wang Jie, Liu Liwei, Yan Huifeng. Effects of Planting Density and Nitrogen Fertilizer Application Rate on Leaf Development and Yield of Flue-Cured Tobacco in Baise Tobacco Region [J]. Crops, 2024, 40(2): 189-197.
[7] Wang Huaiping, Yang Mingda, Zhang Suyu, Li Shuai, Guan Xiaokang, Wang Tongchao. Effects of Different Water-Saving Irrigation Modes on Growth, Yield, and Water Utilization of Summer Maize [J]. Crops, 2024, 40(2): 206-212.
[8] Zhang Lei, Dong Kongjun, He Jihong, Ren Ruiyu, Liu Tianpeng, Yang Tianyu. Study on the Difference of Nitrogen and Phosphorus Uptake of Different Genotypes of Proso Millet (Panicum miliaceum L.) Varieties [J]. Crops, 2024, 40(2): 228-233.
[9] Hu Haochi, Wang Fugui, Zhu Kongyan, Hu Shuping, Wang Meng, Wang Zhigang, Sun Jiying, Yu Xiaofang, Bao Haizhu, Gao Julin. Effects of Straw Returning Years and Phosphorus Application on Root Growth and Yield of Maize [J]. Crops, 2024, 40(2): 80-88.
[10] Luo Xiaoying, Fang Yanfei, Hu Dongping, Tang Jianghua, Xu Wenxiu, Wang Huaigang. Effects of Sowing Methods and Sowing Rates on Soil Water Use and Yield of Dryland Wheat in Arid Region [J]. Crops, 2024, 40(2): 97-104.
[11] Ji Ping, Liu Jinlong, Liu Hao, Kuang Jiali, Ye Shihe, Long Sha, Yang Hongtao, Peng Bo, Xu Chen, Liu Xiaolong. Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage [J]. Crops, 2024, 40(1): 117-125.
[12] Zhou Zhenlei, Liu Jianming, Cao Dong, Liu Baolong, Wang Dongxia, Zhang Huaigang. Comparison of Grass Yield, Agronomic Traits and Forage Quality of Different Oat Varieties [J]. Crops, 2024, 40(1): 132-140.
[13] Xiong Xin, Deng Jun, Shang Liyan, Sheng Tian, Ye Jiayu, Liu Zichen, Huang Liying, Zhang Yunbo. Effects of Nitrogen and Potassium Fertilizer Interaction on Yield and Radiation Use Efficiency of Hybrid Rice [J]. Crops, 2024, 40(1): 166-173.
[14] Hao Xiaocong, Li Xinyu, Hou Qiling, Yang Jifang, An Chunhui, Wang Changhua, Ye Zhijie, Zhang Fengting. Effects of Nitrogen Application Rate on the Quality of Two-Line Hybrid Wheat [J]. Crops, 2024, 40(1): 187-192.
[15] Shao Meihong, Zhu Defeng, Cheng Siming, Cheng Chu, Xu Qunying, Hu Chaoshui. Study on Seedling Quality and Yield of Machine Transplanting Early Rice with the Seedling Raising of Overlayed-Tray Emergence [J]. Crops, 2024, 40(1): 229-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!