作物杂志, 2019, 35(2): 110-114 doi: 10.16035/j.issn.1001-7283.2019.02.017

生理生化·植物营养·栽培耕作

冬小麦不同茎蘖生产力对立体匀播技术的响应

陶志强1, 王艳杰1, 王德梅1, 杨玉双1, 徐哲莉2, 赵广才1, 常旭虹1

1 中国农业科学院作物科学研究所/农业农村部作物生理生态重点实验室,100081,北京

2 石家庄市农林科学研究院赵县实验基地,051530,河北石家庄

Response of Productive Capacity among Tillers in Winter Wheat to Tridimensional Uniform Sowing

Tao Zhiqiang1, Wang Yanjie1, Wang Demei1, Yang Yushuang1, Xu Zheli2, Zhao Guangcai1, Chang Xuhong1

1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology & Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;

2 Shijiazhuang Academy of Agricultural and Forestry Sciences, Zhaoxian 051530, Hebei, China

通讯作者: 赵广才,研究员,主要从事小麦栽培研究 常旭虹为共同通信作者,副研究员,主要从事小麦栽培研究

第一联系人:

陶志强,副研究员,主要从事小麦栽培研究

收稿日期: 2019-02-25   修回日期: 2019-03-7   网络出版日期: 2019-04-15

基金资助: 国家重点研发计划项目.  2016YFD0300407
国家小麦产业技术体系.  CARS-03

Received: 2019-02-25   Revised: 2019-03-7   Online: 2019-04-15

摘要

为了明确小麦立体匀播技术对茎蘖生产力的影响,完善小麦立体匀播技术提高小麦生产力的理论,以多穗型品种藁优2018为试验材料,采用立体匀播和常规条播2种播种方式,探讨了立体匀播对茎蘖叶片光合速率、子粒灌浆特性、生物产量、子粒产量和收获指数的影响。结果表明,与常规条播相比,立体匀播处理的主茎千粒重与之相等;第一子蘖(1蘖)旗叶灌浆期的净光合速率(Pn)提高了0.3%,达到最大灌浆速率的时间、缓慢增长期、指数增长期、增长滞缓期分别延长了0.12、0.12、0.11、0.12d,千粒重和单穗粒重分别增加了0.5和0.03g;第二子蘖(2蘖)Pn提高了8.0%,并且随着灌浆期推进其下降幅度减缓,最大灌浆速率、平均灌浆速率、千粒重分别提高了2.0%、1.8%、2.3g,成熟期单株生物产量、单穗粒重和收获指数分别增加了0.3g、0.11g和0.02。综合以上结果得出,立体匀播处理在保持主茎粒重不降低的同时,提高了1蘖Pn,延长了灌浆持续期,进而提高了粒重;提高了2蘖的Pn和子粒灌浆速率,进而提高了粒重;并且缩小了1蘖、2蘖与主茎粒重之间的差异,提高了茎蘖群体的整齐度,进而提高了单株和群体生产力。

关键词: 立体匀播 ; 小麦 ; 灌浆速率 ; 光合速率 ; 粒重

Abstract

In order to clarify the effect of tridimensional uniform sowing (TUS) on productive capacity of wheat tillers, improve the high yield potentiality of TUS technology theory,we conducted a test with the variety of Gaoyou 2018 (much tillers), two sowing patterns including TUS and conventional drilling (CD), and discussed the effect of TUS on net photosynthetic rate (Pn), grain filling characteristics, biomass, grain yield and harvest index among different tillers. The results showed that compared with CD, 1000-kernel weight of the main stem (Z) in TUS unchanged. In the first tiller (1N), Pn of flag leaf increased by 0.3% at grain filling stage; the duration, slow increase period, exponential increase period, stopping growth period of grain weight reaching the maximum grain filling rate extended 0.12, 0.12, 0.11, 0.12d; respectively. 1000-kernel weight and kernels weight per spike increased 0.5 and 0.03g, respectively. In the second tiller (2N), Pn increased by 8.0%, and decreased slowly with the development of grain filling process. The maximum grain filling rate, mean grain filling rate, 1000-kernel weight increased by 2.0%, 1.8%, 2.3g, respectively; The biomass, kernels weight per spike, harvest index increased 0.3g, 0.11g, 0.02. respectively. In conclusion, TUS remained 1000-kernel weight of the main stem to be not reduced, and improved Pn, grain filling duration as well as kernel weight in 1N simultaneously. Moreover, TUS also improved Pn, grain filling rate and kernel weight in 2N. The difference of kernel weight among 1N, 2N and Z was reduced, the uniformity of tillers was improved, and the productive capacity per plant and population were increased under TUS.

Keywords: Tridimensional uniform sowing ; Wheat ; Grain filling rate ; Photosynthetic rate ; Kernel weight

PDF (541KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陶志强, 王艳杰, 王德梅, 杨玉双, 徐哲莉, 赵广才, 常旭虹. 冬小麦不同茎蘖生产力对立体匀播技术的响应[J]. 作物杂志, 2019, 35(2): 110-114 doi:10.16035/j.issn.1001-7283.2019.02.017

Tao Zhiqiang, Wang Yanjie, Wang Demei, Yang Yushuang, Xu Zheli, Zhao Guangcai, Chang Xuhong. Response of Productive Capacity among Tillers in Winter Wheat to Tridimensional Uniform Sowing[J]. Crops, 2019, 35(2): 110-114 doi:10.16035/j.issn.1001-7283.2019.02.017

小麦作为世界第一大口粮作物,是全球约35%~40%人口的主粮[1]。目前,提高单产是小麦增产的主要途径[2]。小麦单株茎蘖生长发育及其生产力直接关系到群体的质量或结构,而构建合理的群体结构是提高单产的基础[3]。小麦的茎由主茎和分蘖组成,由于分蘖发生的时间不同,生长发育的规律也不同[4]。小麦产量形成过程中,茎蘖间子粒产量及其构成因素差异较大,低位蘖比高位蘖的单穗产量高[5]

小麦立体匀播技术是使小麦种子均匀、等深地分布在土壤中的立体空间中,出苗后无行无垄。基于小麦生长发育特性,充分发挥小麦个体均匀健壮和群体充足合理的协调机制,关键技术是使小麦植株相对均匀分布,使小麦在合理群体范围内,单株独立占有地下和地上相对均匀的营养空间,均衡占有农田土地资源和自然光热资源,促使麦苗单株充分健壮发育,建立高质量的群体结构,促使形成产量因素的穗、粒、重协调发展,实现高产高效[6]

叶片光合能力和子粒灌浆特性是冬小麦子粒产量形成的主要决定因素[7]。光合作用是作物干物质生产和子粒产量的主要来源,旗叶光合同化物是子粒灌浆期干重积累的主要来源[8]。因此,保持旗叶的光合能力是产量形成的重要基础。子粒灌浆是与产量表现相关的直接过程,是谷类作物子粒产量的关键决定因素。粒重取决于灌浆持续时间和灌浆速率,而这两者与栽培技术密切相关。叶片衰老与子粒灌浆同步发生,衰老加剧对叶片光合能力和灌浆特性有显著负效应,进而制约了子粒产量[9]

当前,关于小麦立体匀播技术对冬小麦品种茎蘖生产力影响的研究未见报道。因此,本研究旨在探讨立体匀播条件下,小麦品种茎蘖的旗叶光合能力、灌浆特性及产量差异,阐明立体匀播技术促使麦苗单株充分健壮发育,建立高质量群体结构的生理基础,为集成以立体匀播技术为核心的技术体系,进而提高冬小麦的生产力提供理论依据。

1 材料与方法

1.1 试验设计

试验于2016-2017年度在中国农业科学院作物科学研究所赵县试验基地(37°45′N,114°47′E)精准水肥控制池进行,长×宽×深为3m×3m×1m。0~20cm耕层土壤养分含量为:有机质24.85g/kg,全氮1.43g/kg,碱解氮127.8mg/kg,速效磷15.85mg/kg,速效钾141.6mg/kg。

试验品种选用多穗型品种藁优2018。播种方式采用立体匀播和常规条播,立体匀播播种深度3cm,株距和行距均为6.1±0.5cm;常规条播播种深度2~6cm,行距15cm;种植密度均为270万/hm2。2016年10月15日播种,2017年6月15日收获。试验采用随机区组设计,3次重复。采用模拟机具完成立体匀播。常规条播通过等行距人工开沟播种。灌溉采用淋浴喷头接水管通过水表计量于拔节期和开花期分别灌溉75mm。底施磷酸二铵(含P2O5 46%和N 18%)390kg/hm2、氯化钾(含K2O 60%)195kg/hm2、尿素(含N 46%)105kg/hm2,拔节期追施尿素255kg/hm2

1.2 测定项目与方法

出苗后第20天,在每个小区中选择长势一致的80个植株进行标记与分蘖观察。每隔5d对每株的新分蘖进行检查和标记。从开花到成熟期,选择标记的植株,开花后测量主茎(记为Z)、第一子蘖(记为1蘖,1N)、第二子蘖(记为2蘖,2N)[10]的旗叶净光合速率(Pn)、子粒灌浆特性、子粒产量及其构成因素、单茎生物产量和收获指数。

旗叶光合速率:于小麦开花后5、15、25d在各小区选择无病虫害、长势一致的植株,分别测试不同茎蘖旗叶5片,于上午9∶00-11∶00用美国LI-COR公司生产的LI-6400XT便携式光合仪测定旗叶的Pn,取平均值。

子粒灌浆特性:不同茎蘖各选10个穗,于开花后7~35d每隔7d按蘖位取穗部中部小穗第一、二花位的子粒10粒,共100粒,于105℃杀青30min,80℃烘干至恒重,根据Richards的生长方程拟合子粒灌浆过程[9]

子粒产量及其构成因素:在成熟时,选择标记的10株,根据主茎、1蘖、2蘖分成不同的样品记录每穗粒数、粒重、小穗数和不孕小穗数,取穗部所有子粒于105℃杀青30min,80℃烘干至恒重,换算为千粒重,再计算理论产量。

单茎生物产量与收获指数:在成熟时,选择标记的10株根据蘖位按主茎、1蘖、2蘖的样品风干称重。计算平均单茎生物产量和粒重,再计算收获指数。

1.3 统计分析

用Excel 2016进行数据整理与作图;用SPSS 21.0进行方差分析。

2 结果与分析

2.1 子粒产量及其构成因素

立体匀播小麦平均单株成穗3.2个,常规条播小麦平均单株成穗3.0个,主要为主茎、1蘖、2蘖,部分3蘖和二级分蘖(1N-1)。与常规条播相比,立体匀播增加了1蘖的穗粒数0.3、小穗数0.7、千粒重0.5g、单穗粒重0.03g,增加了2蘖的穗粒数0.7、小穗数0.3、千粒重2.3g、单穗粒重0.11g;增加了理论单产9.7%(表1)。这表明,立体匀播有利于增加1蘖和2蘖的穗粒数、小穗数、千粒重和单穗粒重,并且缩小了主茎与1蘖、2蘖子粒产量及其构成因素之间的差异,提高了整齐度,进而提高了整株和群体的生产力。

表1   播种方式对小麦不同茎蘖单穗子粒产量及其构成因素的影响

Table 1  The effects of sowing patterns on grain yield and component traits per spike at different tiller positions

项目Item立体匀播Tridimensional uniform sowing常规条播Conventional drilling
主茎Z1蘖1N2蘖2N主茎Z1蘖1N2蘖2N
穗粒数Kernels per spike34.8a34.3a34.0a35.0a34.0a33.3a
小穗数Spikelets per spike19.0ab18.7ab18.0c19.7a18.0ab17.7c
不孕小穗数Sterile spikelets per spike1.0a1.0a1.3a1.0a1.2a1.3a
千粒重1000-kernel weight (g)45.3a44.7ab43.8b45.3a44.2b41.5c
单穗粒重Kernels weight per spike (g)1.58a1.53ab1.49b1.59a1.50ab1.38c
理论单产Theoretical yield (kg/hm2)11 257.510 260.0

Note: Values followed by different letters within a column are significantly difference at the 0.05 probability level. The same below

注:同一列的不同字母表示差异显著(P<0.05)。下同

新窗口打开| 下载CSV


2.2 旗叶净光合速率

与常规条播相比,立体匀播处理的1蘖和2蘖旗叶的Pn在开花后5d(DPA5,子粒灌浆早期)分别提高0.6%和9.7%,开花后15d(DPA15,子粒灌浆中期)分别提高0.4%和6.0%,开花后25d(DPA25,子粒灌浆后期)分别提高-0.2%和7.7%,尤其是2蘖的Pn提高显著(P<0.05),且随灌浆期推进Pn下降较缓和;同时缩小了1蘖、2蘖与主茎之间的差异(图1)。这表明,立体匀播有利于提高1蘖和2蘖子粒灌浆期旗叶的Pn,尤其是对2蘖Pn的提高起显著作用,便于他们生产较多的光合产物供应穗。

图1

图1   不同播种方式条件下小麦开花后不同茎蘖旗叶的净光合速率

U表示立体匀播,D表示常规条播;DAP5、DAP15、DAP25分别表示开花后5、15、25d;字母不同表示差异显著(P<0.05),误差线表示标准偏差,下同

Fig.1   Net photosynthetic rate of flag leaf at different tillers positions in both sowing patterns

U and D indicate tridimensional uniform sowing and conventional drilling. DAP5, DAP15, and DAP25 indicate 5, 15, 25 days post-anthesis. Different small letters indicate significant difference (P<0.05), error bars represent standard deviations. The same below


2.3 子粒灌浆特性

表2结果表明,随蘖位升高,两种播种方式处理的子粒最大单粒重随蘖位升高而降低,粒重增长滞缓期随蘖位升高而缩短;立体匀播处理的粒重达到最大灌浆速率的时间、粒重指数增长期均随蘖位升高逐渐缩短;常规条播处理子粒的最大灌浆速率随蘖位升高逐渐降低、灌浆活跃期随蘖位升高逐渐缩短(表2)。与常规条播相比,立体匀播处理延长了1蘖达到最大灌浆速率的时间0.12d、粒重缓慢增长期0.12d、粒重指数增长期0.11d、粒重增长滞缓期0.12d,提高了2蘖的最大单粒重0.76g、最大灌浆速率0.05mg/(粒d)、平均灌浆速率0.03mg/(粒d);同时保持了主茎、1蘖、2蘖的灌浆活跃期不降低(表2)。表明,立体匀播延长了1蘖的灌浆持续期进而提高其粒重,提高了2蘖的灌浆速率进而提高了其粒重。

表2   不同播种方式条件下主茎、1蘖、2蘖的子粒灌浆特性

Table 2  Grain filling characteristics of tillers at different positions in both sowing patterns

项目Item立体匀播
Tridimensional uniform sowing
常规条播
Conventional drilling
主茎Z1蘖1N2蘖2N主茎Z1蘖1N2蘖2N
最大千粒重The final 1000-kernel weight (g)47.83ab47.08abc46.12bcd48.67a47.17ab45.36cd
达到最大灌浆速率的时间Time to reach the maximum grain filling rate (d)14.41a14.40a14.30a14.35a14.28a14.38a
最大灌浆速率The maximum grain filling rate [mg/(粒·d)]2.55ab2.51abc2.54abc2.60a2.52abc2.49abc
平均灌浆速率Mean grain filling rate [mg/(粒·d)]1.70ab1.67abc1.69abc1.73a1.68abc1.66abc
灌浆活跃期The active grain filling period (d)28.14a28.14a27.27a28.14a28.14a27.30a
粒重缓慢增长期Slow increase period of kernel weight (d)4.99b4.97b5.16b4.92b4.85b5.24ab
粒重指数增长期Exponential increase period of kernel weight (d)17.34a17.32ab17.13abc17.27abc17.21abc17.22abc
粒重增长滞缓期Stopping growth period of kernel weight (d)35.96a35.95a35.18ab35.90a35.83ab35.27ab

新窗口打开| 下载CSV


2.4 不同茎蘖生物产量与收获指数

与常规条播相比,立体匀播显著(P<0.05)提高了2蘖生物产量9.8%(达2.9g)、收获指数4.7%(达0.52),同时保持主茎和1蘖的生物产量和收获指数不降低(图2)。这表明,立体匀播有利于提高2蘖的生物产量和收获指数进而提高单株整体成穗蘖的生物产量和收获指数。

图2

图2   不同播种方式处理的主茎、1蘖、2蘖生物产量与收获指数

Fig.2   Single-stem biological yield and single-stem harvest index at different tiller positions under different sowing patterns


3 讨论

小麦单株成穗率和单位面积成穗数是群体协调发展的结果,是反映群体结构质量高低的指标,是高产的基础,而分蘖成穗率因品种自身的遗传特性和栽培技术的差异而不同,并且缩小主茎与分蘖之间的差距,提高分蘖成穗率是获取高产的重要保证[6,11]。本研究结果表明,与常规条播相比,立体匀播处理的多穗型冬小麦品种单株成穗3.2个(较常规条播处理多0.2个),并且缩小了2蘖、1蘖与主茎子粒产量、穗粒数、小穗数之间的差异,同时保持主茎的千粒重不降低。综合以上结果表明,立体匀播技术有利于提高分蘖成穗率,缩小主茎与分蘖之间的差距,提高了群体整齐度,结果表现为单株子粒产量较常规条播高2.0%(达4.55g)。

子粒产量与开花后干物质积累量、收获指数密切相关[12]。本研究与前人研究结果[4,9]相似之处是,不同蘖位的收获指数均随蘖位升高而降低;不同之处是,立体匀播处理缩小了茎蘖间生物产量和收获指数之间的差异,这是因为保持主茎和1蘖的生物产量和收获指数不降低,提高了2蘖的生物产量和收获指数所致。这表明,立体匀播处理提高了单株干物质积累量,并且有利于干物质向子粒转运,进而形成了较高的子粒产量。

作物产量形成的物质基础是光合作用,Pn是表征其强弱的重要指标之一。旗叶作为光合作用的主要器官,对C3作物的生物产量和子粒产量有显著影响,并且旗叶同化物是小麦子粒灌浆干物质积累的重要因素[1]。本研究结果表明,随着蘖位的升高,Pn逐渐下降,光合产物生产能力降低,进而导致产量下降,这与前人研究结果一致[4,9]。本研究结果还表明,与常规条播相比,立体匀播处理提高了1蘖、2蘖旗叶Pn,尤其是2蘖旗叶的Pn,缩小了不同蘖位旗叶Pn之间的差异,这是导致立体匀播处理不同蘖位产量结果的原因,也是增强整株光合产物积累提高分蘖成穗的原因。

粒重由子粒灌浆持续时间和灌浆速率决定,因此子粒灌浆进程也是决定作物子粒产量的关键环节[13]。本研究结果表明,随蘖位升高,子粒最大单粒重和粒重增长滞缓期逐渐降低,这与前人研究结果一致[4,9];与常规条播相比,立体匀播增加了主茎和1蘖达到最大灌浆速率的时间、粒重缓慢增长期、指数增长期、增长滞缓期,以及2蘖的最大千粒重、最大灌浆速率、平均灌浆速率。这表明,立体匀播处理保持主茎、1蘖粒重的优势取决于保持子粒灌浆持续时间和灌浆速率不降低;通过提高2蘖的最大灌浆速率和平均灌浆速率进而增加粒重,缩小与其低位蘖的粒重差异,进一步提高了粒重的整齐度。立体匀播处理延长了1蘖的灌浆持续期,并提高了2蘖的灌浆速率,与其旗叶Pn提高密切相关。

4 结论

小麦立体匀播技术提高了多穗型品种藁优2018的2蘖旗叶Pn,有利于生产更多的同化物供应子粒灌浆,提高了子粒最大灌浆速率和平均灌浆速率,进而增加了粒重,提高了收获指数;同时较多的同化物有利于增加小穗数,提高穗粒数。另外,提高了1蘖旗叶的Pn,生产了较多的同化物供应子粒灌浆,延长了1蘖达到最大灌浆速率的时间、粒重缓慢增长期、指数增长期、增长滞缓期,进而增加了粒重。并且在不降低主茎相关性状的同时,缩小了1蘖、2蘖与主茎相关性状之间的差异,也保证了单株成穗的物质需求,进而提高了整株生产力。然而,由于小麦分蘖成穗受品种遗传特性和环境、栽培措施等综合影响,是一个极其复杂的生物学过程,本研究只是1个品种在1个生态地区的结果,关于多生态地区不同遗传特性品种的分蘖成穗性状对立体匀播技术的响应,有待进一步研究。

The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。

参考文献

赵广才, 常旭虹, 王德梅 , .

小麦生产概况及其发展

作物杂志, 2017(4):1-7.

URL     [本文引用: 2]

小麦是世界第一大口粮作物,是人类生活所依赖的重要食物来源,全球约35%~40%的人口以小麦为主要粮食。2016年世界小麦种植面积约22 010.76万hm2,约占全球谷物种植面积的30.7%,远超过玉米、水稻、大豆,居世界谷物种植面积之首。本文论述了世界小麦生产概况,包括小麦的种类、分布及主要生产国的基本情况,重点论述了中国小麦的生产和发展情况。随着社会的发展和科学技术的进步,中国的小麦生产能力逐步发展,主要体现在3个方面:一是种植面积起伏变化大,二是单产稳步提升,三是总产持续增长。无论是冬小麦还是春小麦,高产高效栽培技术和优良品种对产量的提升都起到了重要作用,我国小麦生产水平有了很大提高。

Tao Z Q, Wang D M, Chang X H , et al.

Effects of zinc fertilizer and short-term high temperature stress on wheat grain production and wheat flour proteins

Journal of Integrative Agriculture, 2018,17(9):1979-1990.

DOI:10.1016/S2095-3119(18)61911-2      URL     [本文引用: 1]

Content of wheat flour proteins affects the quality of wheat flour. Zinc nutrition in wheat can change the protein content of the flour. The inconsistency and instability of wheat grain quality during grain filling while under high temperature stress (HTS) are major problems in the production of high quality wheat. At present, there is a lack of studies on zinc fertilizer and HTS effects on wheat flour protein and the content of its components. For this study, treatment combinations of four levels of zinc fertilizers and exposure to a short-term HTS, at 20 d after flowering (D20), were tested on two wheat cultivars with different gluten levels. Individuals of a strong gluten wheat, Gaoyou 2018 (GY2018), and a medium gluten wheat, Zhongmai 8 (ZM8), were grown in pots at the Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing in 2015 2017. We measured grain yield and weight and the activities of two enzymes (nitrate reductase and glutamine synthetase) from the flag leaves, collected at D10 and D20. Total protein content, protein yield, and content of four protein components (albumin, gliadin, glutenin, and globulin) were measured from flour produced from the pot-grown plants. HTS significantly increased the contents of total protein, albumin, gliadin, and glutenin in wheat grains, and reduced the grain yield, grain weight, protein yield, globulin content, and flag leaf nitrate reductase (NR) and glutamine synthetase (GS) activities. The results showed that HTS and zinc fertilizer had greater impacts on the strong gluten cultivar compared to the medium gluten cultivar. Under HTS, grain yield decreased by 13 and 8% in GY2018 and ZM8, respectively; protein yield decreased by 7 and 8% in GY2018 and ZM8, respectively. Zinc fertilizer increased: grain and protein yields; grain weight; total protein, albumin, gliadin, and glutenin contents; protein yield; and NR and GS activities. In contrast, zinc fertilizer reduced the content of globulin. The addition of 15 mg Zn kg 1 soil had the strongest effect on grain yield and quality as compared to the other three treatments (additions of 0, 30, and 45 mg Zn kg 1 soil). Zinc fertilizer also reduced the negative effects of HTS on protein yield, content, and components' content. Therefore, wheat grown with additional zinc in the soil can improve the quality of the flour.

Tao Z Q, Wang D M, Ma S K , et al.

Light interception and radiation use efficiency response to tridimensional uniform sowing in winter wheat

Journal of Integrative Agriculture, 2018,17(3):566-578.

DOI:10.1016/S2095-3119(17)61715-5      URL     [本文引用: 1]

Improving radiation use efficiency (RUE) of the canopy is necessary to increase wheat (Triticum aesfivum) production. Tridimensional uniform sowing (U) technology has previously been used to construct a uniformly distributed population structure that increases RUE. In this study, we used tridimensional uniform sowing to create a wheat canopy within which light was spread evenly to increase RUE. This study was done during 2014-2016 in the Shunyi District, Beijing, China. The soil type was sandy loam. Wheat was grown in two sowing patterns: (1) tridimensional uniform sowing (U); (2) conventional drilling (D). Four planting densities were used: 1.8, 2.7, 3.6, and 4.5 million plants ha-1. Several indices were measured to compare the wheat canopies: photosynthetic active radiation intercepted by the canopy (IPAR), leaf area index (LAI), leaf mass per unit area (LMA), canopy extinction coefficient (K), and RUE. In two sowing patterns, the K values decreased with increasing planting density, but the K values of U were lower than that of D. LMA and IPAR were higher for U than for D, whereas LAI was nearly the same for both sowing patterns. IPAR and LAI increased with increasing density under the same sowing pattern. However, the difference in IPAR and LAI between the 3.6 and 4.5 million plants ha-1 treatments was not significant for both sowing patterns. Therefore, LAI within the same planting density was not affected by sowing pattern. RUE was the largest for the U mode with a planting density of 3.6 million plants ha-1 treatment. For the D sowing pattern, the lowest planting density (1.8 million plants ha-1) resulted in the highest yield. Light radiation interception was minimal for the D mode with a planting density of 1.8 million plants ha-1 treatment, but the highest RUE and highest yield were observed under this condition. For the U sowing pattern, IPAR increased with increasing planting density, but yield and RUE were the highest with a planting density of 3.6

赵广才 .

冬小麦主茎和分蘖的植株性状及分蘖合理利用的研究

莱阳农学院学报, 1993,10(1):5-11.

URL     [本文引用: 4]

研究了冬小麦主茎及分蘖的植株性状,分析了单茎主要性状的相关关系,并结合不同群体的产量分析,探讨高产小麦分蘖的合理利用范围。研究结果表明,冬小麦主茎及分蘖的单茎性状均优于高位蘖。因此认为主茎、1N、2N和3N为优势蘖组,1N-1及其以后出生的分蘖为劣势蘖组。在高产栽培中,以每亩12~15万基本苗为宜,即利用优势蘖组成穗以获得高产。

赵广才 . 小麦优质高产栽培理论与技术. 北京: 中国农业科学技术出版社, 2018: 248-254.

[本文引用: 1]

赵广才 .

小麦立体匀播技术绿色节本高产高效

农民科技培训, 2017(1):42-44.

DOI:10.3969/j.issn.1671-3346.2016.01.021      URL     [本文引用: 2]

小麦立体匀播就是使小麦种子均匀合理地分布在土壤中的立体空间内,出苗后无行无垄,均匀分布.立体匀播是基于小麦生长发育特性,充分发挥小麦个体均匀健壮和群体充足合理的协调机制,关键技术是使小麦株距均匀,改常规条播小麦田间分布的"一维行距"为立体匀播的"二维株距".使小麦在合理群体范围内,单株独立占有地下和地上相对均匀的营养空间,均衡占有农田土地资源和自然光热资源,使常规条播麦苗集中的一条"线",变为麦苗相对分布均匀的一个"面",促使麦苗单株充分健壮发育,地下形成相对强大的根系,地上形成相对健壮的优势蘖,根多苗壮,从而建立高质量的群体结构,促使形成产量因素的穗、粒、重协调发展,实现高产高效.

常旭虹, 赵广才, 杨玉双 , .

我国农牧交错区耕作方式与施氮量对小麦氮素利用的影响

应用生态学报, 2013,24(4):995-1000.

URL     Magsci     [本文引用: 1]

<p>在我国内蒙古自治区赤峰市农牧交错区研究了不同耕作方式及不同施氮量对小麦氮肥吸收利用和产量的影响.结果表明:长期实施保护性耕作使小麦对氮素的利用率提高3%~4%,减轻氮肥对农田环境的污染;保护性耕作有利于促进小麦对氮素的吸收,提高小麦产量.当施氮量由120 kg&middot;hm<sup>-2</sup>增加到360 kg&middot;hm<sup>-2</sup>时,小麦对氮素的吸收利用由36.5%降低为26%;氮素损失增加约5%,对应的氮素损失量则从60 kg&middot;hm<sup>-2</sup>增加到约200 kg&middot;hm<sup>-2</sup>,对环境的污染明显增加.小麦对上季残留氮素的利用受耕作方式影响较小,受上季施氮量影响较大,总体趋势为施氮量越高,小麦利用率越低,损失越多.经过两季小麦种植后,小麦-土壤系统回收的总氮素比例约为44%~50%,其中土壤残留氮素约占施氮量的13%~18%.</p>

周羊梅, 郭文善, 封超年 , .

不同生育时期小麦茎蘖光合产物的分配

麦类作物学报, 2004,24(3):60-63.

DOI:10.7606/j.issn.1009-1041.2004.03.118      URL     Magsci     [本文引用: 1]

为探明小麦分蘖的发生、成穗与先合产物分配及部分品质指标的关系,以三个不同类型小麦品种为试验材料,通过^14C示踪研究了三个分蘖力与成穗率不同的小麦品种在分蘖期、拔节期与抽穗期三个主要生育期的^14C光合产物分配特点。结果表明,在整个生育期中,分蘖力较低的9559的^14C光合产物分配均保持显著的主茎优势,而分蘖力中等的扬麦12和分蘖力较高的徐州26的主茎与单个分蘖之间^14C光合产物分配比例差异较小,但徐州26的分蘖^14C光合产物占整株的比例极显著高于9559,显著高于扬麦12。分蘖^14C光合产物分配比例高的品种,分蘖成穗率及淀粉含量亦高。

Xu H C, Cai T, Wang Z L , et al.

Physiological basis for the differences of productive capacity among tillers in winter wheat

Journal of Integrative Agriculture, 2015,14(10):1958-1970.

DOI:10.1016/S2095-3119(15)61094-2      URL     [本文引用: 5]

The quality or structure of a wheat population is significantly affected by the compositions of tillers. Little has been known about the physiological basis for the differences of productive capacity among tillers. Two winter wheat cultivars, Shannong 15 (SN15) and Shannong 8355 (SN8355), were used to investigate the differences of productive capacity among tillers and analyze the physiological mechanisms that determine the superior tiller group. Low-position tillers (early initiated tillers) had a higher yield per spike than high-position tillers (late initiated tillers) in both cultivars, which was due to their more grain number per spike, more fertile spikelet per spike, less sterile spikelet per spike and higher grain weight. According to cluster analysis, tillers of SN15 were classified into 2 groups: superior tiller group including main stem (0), the first primary tiller (I) and the second primary tiller (II); and inferior tiller group including the third primary tiller (III) and the first secondary tiller (I-p). Tillers of SN8355 were classified into 3 groups: superior tiller group (0 and I), intermediate tiller group (II and III) and inferior tiller group (I-p). In comparison with other tiller groups, the superior tiller group had higher photosynthetic rate of flag leaves, higher antioxidant enzyme (SOD, POD and CAT) activities and lower levels of lipid peroxidation in leaves, higher grain filling rate in both superior and inferior grains during grain filling, higher single-stem biological yield and larger single-stem economic coefficient. Correlation analysis showed that yield per spike was positively and significantly correlated with the flag leaf photosynthetic rate, grain filling rate, the antioxidant enzyme activities and soluble protein content (except for SN15 at 5 days post-anthesis (DPA)) of flag leaf, the single-stem biological yield, and the single-stem economic coefficient. Remarkable negative correlation was also found between yield per spike and MDA content of flag leaf. These results suggested that superior tiller group had stronger leaf photosynthetic capacity, more predominance in terms of grain filling, slower senescence rate, higher biological yield and larger economic coefficient, and therefore, showed greater productive capacity than other tiller groups.

中国农业科学院. 小麦栽培理论与技术. 北京: 农业出版社, 1979: 65.

[本文引用: 1]

郭天财, 盛坤, 冯伟 , .

种植密度对两种穗型小麦品种分蘖期茎蘖生理特性的影响

西北植物学报, 2009,29(2):350-355.

DOI:10.3321/j.issn:1000-4025.2009.02.023      URL     [本文引用: 1]

选用分蘖成穗率不同的2种穗型 冬小麦品种,通过3个密度水平大田试验研究了分蘖期主茎和不同蘖位分蘖间的干物质积累与光合特性的差异,以探讨2种穗型品种分蘖成穗的生理机制.结果显 示:(1)在冬小麦分蘖期间,分蘖成穗率低的大穗型品种兰考矮早八高位分蘖干物质积累速率较慢,分蘖与主茎的差距较大;而分蘖成穗率高的多穗型品种豫麦 49-198分蘖与主茎的干物质积累速率差距较小.(2)2品种分蘖与主茎干物重比值(蘖/茎)均随着种植密度增加而降低,成穗分蘖的蘖/茎值拔节期均大 于0.5,而同期未成穗分蘖均低于0.5.(3)在分蘖期间,兰考矮早八分蘖的净光合速率随生育进程增长比主茎缓慢,且随密度增加分蘖与主茎的差距进一步 加大;豫麦49-198分蘖与主茎的光合速率差异较小,且种植密度对其影响也较小.(4)拔节中前期种植密度对2品种的荧光参数影响较小,拔节后期2品种 分蘖的初始荧光(F0)均显著大于主茎,而PSⅡ最大光化学效率(Fv/Fm)却显著低于主茎;随种植密度增加,2品种主茎与分蘖的F0和Fv/Fm差异 增大,且这种趋势随蘖位上升表现得更加明显.研究表明,大穗型品种兰考矮早八拔节期主茎与分蘖间干物质积累和光合性能的差异过大是其分蘖成穗率低的主要原 因.

White E M, Wilson F E A .

Responses of grain yield,biomass and harvest index and their rates of genetic progress to nitrogen availability in ten winter wheat varieties

Irish Journal of Agricultural and Food Research, 2006,45(1):85-101.

DOI:10.1111/j.1365-2621.2005.01046.x      URL     [本文引用: 1]

Increased yields in winter wheat cultivars have been found to be largely attributable to improved partitioning of biomass to the grain, i.e., higher harvest index. However, there is a biological upper limit to harvest index and therefore breeders need to exploit increased biomass production as the mechanism by which yields are increased. Evidence for improved biomass was sought in experiments conducted over three years (1994 to 1996), at the Plant Testing Station, Crossnacreevy, near Belfast, with 10 varieties of winter wheat introduced over the period 1977 to 1991. Variation in grain yield was more strongly associated with variation in biomass (an increase of 0.78 t/ha in grain yield at 85% dry matter (DM) per 1 t/ha increase in biomass at 100% DM; R05 = 0.71) than in harvest index (an increase of 0.1 t/ha at 85% DM per percentage point increase in harvest index; R05 = 0.36). When age (= year of first harvest in UK National List trials) of the varieties was taken into account, yield (0.037 tha6301y6301; R05 = 0.42) and biomass (0.034 tha6301y6301; R05 = 0.31), but not harvest index (0.34%/year; R05 = 0.001), increased as year increased. Genetic gain in yield was smaller without fertiliser N (0.021 tha6301y6301; R05 = 0.21) and at 40 kg ha N (0.025 tha6301y6301; R05 = 0.25) than at 215-250 kg/ha N (0.065 tha6301y6301; R05 = 0.39). Theoretically, if the maximum biomass (18.60 t/ha for Rialto), could have been combined with the maximum harvest index (55.3%) in Riband, yield would potentially have been increased by 2.5 t/ha compared with yields for either variety.

Wiegand C L, Cuellar J A .

Duration of grain filling and kernel weight of wheat affected by temperature

Crop Science, 1981,21(1):95-101.

DOI:10.2135/cropsci1981.0011183X001100010027x      URL     [本文引用: 1]

/