作物杂志, 2021, 37(3): 1-7 doi: 10.16035/j.issn.1001-7283.2021.03.001

专题综述

燕麦产量形成生理机制研究进展

赵宝平,1, 刘景辉1, 任长忠2

1内蒙古农业大学农学院,010019,内蒙古呼和浩特

2吉林省白城市农业科学院,137000,吉林白城

Research Progress of Physiological Mechanism of Yield Formation in Oats

Zhao Baoping,1, Liu Jinghui1, Ren Changzhong2

1College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China

2Baicheng Academy of Agricultural Sciences of Jilin Province, Baicheng 137000, Jilin, China

收稿日期: 2020-07-8   修回日期: 2020-09-10   网络出版日期: 2021-05-14

基金资助: 国家自然科学基金(31960378)
国家自然科学基金(31560373)
现代农业产业技术体系建设专项资金(CARS-07)

Received: 2020-07-8   Revised: 2020-09-10   Online: 2021-05-14

作者简介 About authors

赵宝平,主要从事作物生态生理研究,E-mail: zhaobaoping82@163.com

摘要

燕麦是我国北方重要的粮饲兼用作物。低产是制约燕麦产业健康稳定发展的主要问题。本文从燕麦小穗多花多粒特性、小穗不孕性和抗倒伏性能等角度分析了燕麦产量形成的主要特征;并从产量构成因素、光合生产性能和源库关系等方面系统梳理和总结了燕麦产量形成的生理机制研究进展,比较了皮燕麦和裸燕麦产量形成的生理学差异,提出了提高燕麦产量的技术途径。

关键词: 燕麦 ; 籽粒产量形成 ; 产量构成因素 ; 光合作用 ; 倒伏 ; 源库关系

Abstract

Oat is an important grain and forage crop in Northern China. Lower grain yield is a main problem restricting the healthy and stable development of the oat industry. We analyzed the yield formation characteristics from the aspects of spikelet fertility, multiflorous characteristics, panicle infertility and lodging. We also summarized the physiological mechanism of oats yield formation from the yield components and photosynthetic production performance and source-sink relationship, and emphatically compared the differences of yield formation between the hulled and the naked oats. We proposed forward future research directions and emphases on oat yield improvement.

Keywords: Oat ; Grain yield formation ; Yield components ; Photosynthesis ; Lodging ; Source-sink relationship

PDF (400KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

赵宝平, 刘景辉, 任长忠. 燕麦产量形成生理机制研究进展[J]. 作物杂志, 2021, 37(3): 1-7 doi:10.16035/j.issn.1001-7283.2021.03.001

Zhao Baoping, Liu Jinghui, Ren Changzhong. Research Progress of Physiological Mechanism of Yield Formation in Oats[J]. Crops, 2021, 37(3): 1-7 doi:10.16035/j.issn.1001-7283.2021.03.001

燕麦(Avena sativa L.)是世界公认的营养保健谷物,具有降脂控糖和降低心血管疾病风险的功能[1,2,3]。燕麦具有抗旱、耐瘠薄和适应性强等特性,是我国北方和西北干旱冷凉等生态脆弱区主要的粮饲兼用作物及优势特色作物。近年来,我国燕麦种植面积约为70万hm2,产量约85万t,居世界第8位[4]。随着人们对食品营养和饮食健康的越来越重视,市场对优质燕麦原料的需求量呈不断增加的趋势[3,4]。因此,发展燕麦产业不仅有利于农业产业发展和农民增收,而且对于解决我国居民膳食营养结构不合理等问题具有重要意义。

我国是裸燕麦(莜麦)起源地,具有悠久的种植历史和饮食文化传统,裸燕麦也是我国主要的燕麦栽培品种类型[1, 4]。然而,由于长期以来对燕麦的研究和重视程度不够,当前世界及我国燕麦籽粒产量平均水平远远低于小麦和大麦等麦类作物[5]。而裸燕麦的平均单产水平又低于国外主要种植的皮燕麦产量[6,7]。此外,国外燕麦主要种植在土壤肥沃和水分条件好的地区,栽培管理水平和机械化程度相对较高;而我国燕麦主要在偏远、干旱及贫瘠等土壤地区种植[8],水分、土壤养分及管理技术较为落后,干旱、土壤瘠薄等非生物胁迫及不合理的栽培管理措施严重影响了燕麦单产水平,低产低效问题也严重影响燕麦种植效益和产业健康发展。因此,本研究通过分析燕麦籽粒产量形成过程的主要特征,从产量构成因素、光合生产性能和源库关系等方面系统地梳理和总结国内外燕麦产量形成的生理机制研究进展,比较分析皮燕麦和裸燕麦产量形成的生理学差异,提出未来燕麦产量潜力提升的主要研究方向和重点,以期为我国燕麦高产栽培和品种改良提供参考。

1 燕麦籽粒产量形成的主要特征

1.1 燕麦穗及花序形态学特征与产量形成

燕麦的穗属圆锥花序,沿着主穗轴着生4~7个轮层(分枝),最下端的分枝最长,而最上端的分枝最短,其小穗和小花可在不同的穗轴分枝同时着生,使得其籽粒产量潜力受环境影响变异更大[9]。燕麦小穗多花多粒和小穗小花不孕是其穗部的典型特征。在高产环境下燕麦穗的小花数是小麦的3倍,即使在低氮条件下其小花数也比小麦高70%,然而,有79%~88%的小花败育[10]

1.1.1 燕麦小穗多花多粒特性 燕麦小穗第3位粒结实和籽粒败育机制是燕麦区别于其他麦类作物的2个独特的特征[11]。通常,皮燕麦的小穗中通常有2个小花(也有3或4个)。与皮燕麦相比,裸燕麦每个小穗的小花数和结实粒数有3~8个,甚至12个,呈现出更加明显的多花多粒特性[5, 12-13],并且具有更长的小穗轴[14]。多花多粒特性是裸燕麦区别于皮燕麦的最大特点,一些学者推测裸燕麦多花的特性会增加小穗粒数使得其籽粒产量潜力高于皮燕麦[5]。然而,很多研究发现,裸燕麦的产量潜力低于皮燕麦[7, 15]。王茜等[16]通过比较13个皮燕麦和7个裸燕麦品种的籽粒产量发现,皮燕麦产量(带壳)接近裸燕麦的2倍,具有明显的产量优势。Peltonen-Sainio[6]认为裸燕麦籽粒低产主要是由于其单穗小穗数少而小穗粒数多造成的。尤其是裸燕麦小穗中的第3位粒及之后的小花常常会退化或结实率降低,灌浆速率下降,有超过70%的小花败育,远大于小麦的50%[10],并且导致粒重(弱势粒)显著下降,经济产量降低以及籽粒大小不均匀[17,18],影响燕麦加工利用[18]

在近年的研究中发现有裸燕麦品种籽粒产量高于皮燕麦的情况[5,6]。Doehlert等[19]研究发现裸燕麦籽粒产量均高于去壳后皮燕麦籽粒产量。为此Burrows等[12]提出裸燕麦小穗多花的形态学特征可能与其产量潜力无关,生产中裸燕麦籽粒产量低于皮燕麦的原因一方面可能与环境因素有关,另一方面是由于国外开展多以皮燕麦为主的研究与种植,皮燕麦的产量遗传潜力得以挖掘和提升,提升了其产量潜力[20]。而裸燕麦在国外种植较少,在国内一直以来重视程度也较低,在遗传资源挖掘和育种等方面投入相对较少,一定程度上限制了其产量潜力的提升[5]

1.1.2 燕麦小穗不孕特性 燕麦不孕小穗俗称“花稍”。在我国燕麦生产中,特别是在燕麦孕穗期和抽穗期,受环境胁迫因素影响,导致小穗发育不完全而有穗无实。Chinnici等[21]通过研究发现,在幼穗整个分化期间干旱或在雄蕊和雌蕊分化期间高温对燕麦小穗不孕的影响最大,而低温对小穗不孕影响较小。我国北方燕麦主产区,单株不孕小穗可占总小穗数的10%~40%[13, 22],严重影响燕麦单穗粒数,一直是裸燕麦生产中限制高产的主要因素。

燕麦小穗不孕特性存在基因型差异。不同地区的燕麦种质资源的小穗不孕率存在很大差异,其中山西省的品种资源不孕率为4%,而内蒙古的种质资源不孕率达到14%;皮燕麦与裸燕麦之间的小穗不孕率差异不显著[23]。此外,抗旱、耐高温程度不同的品种其小穗不孕率也存在差异,抗性强的品种小穗不孕率低[21]。裸燕麦小穗不孕主要发生在穗的下部,中部次之,上部极少,这主要与其幼穗分化顺序和花序分枝特点有关[13, 24],即每小穗平均维管束数量由上部一次枝梗的8个下降到底端分枝的2个,使得不孕小穗主要发生在穗的下部,说明小穗不孕与维管束系统的同化物运输能力关系密切[25]。在田间试验中也发现燕麦小穗数与其维管束数量和面积关系密切,并且不同环境条件对维管束形态学特征的影响存在基因型差异[26]

1.2 燕麦抗倒伏性能

倒伏是限制燕麦获得高产的主要因素[3, 27]。长期以来,我国燕麦种植以旱作为主,品种选育也以适合旱地种植的抗旱、高秆品种为主。然而,我国北方近年来燕麦在水浇地种植或将燕麦与高水肥条件下的马铃薯等作物轮作倒茬应用面积不断扩大,使得由燕麦倒伏导致的产量和品质下降等问题越来越严重。大风、降雨、地形、土壤类型、前茬作物和病虫害等因素都可能是引起燕麦倒伏的外在原因[28,29]。在我国北方燕麦产区,倒伏主要受大风天气和生长中后期集中降水的影响。

倒伏的原因主要与燕麦株高有关[30,31]。裸燕麦与皮燕麦的株高一般均在100cm以上,是燕麦更易倒伏的主要原因[3]。Ma等[15]和Zhou等[32]通过对裸燕麦、皮燕麦与小麦比较发现,增施氮肥使裸燕麦和皮燕麦均出现比小麦更严重的倒伏现象,并限制了灌浆期光合产物和干物质积累,导致籽粒产量更低。此外,燕麦的易倒伏性也限制了氮肥投入的增加以获得更高籽粒产量。燕麦倒伏性还与株型、茎粗、茎秆强度和弹性等特性有关[30]。拥有直立叶片的株型和坚实根系的燕麦品种具有较强的抗倒性[27]。Wu等[33]研究发现,叶鞘持绿性好的燕麦品种可提高茎秆强度和硬度,对茎杆抗折倒的贡献率更高。Ma等[34]研究得出燕麦茎秆中全磷含量低于13.6kg/hm2时,倒伏很少发生,推测茎秆中氮和磷含量增加可能降低了茎秆强度而导致倒伏。关于皮、裸燕麦抗倒伏性差异,研究发现控制裸粒性的N1基因位点通过调控木质素向小穗或茎中沉积,使茎中木质素含量发生变化,进而影响倒伏[31]

2 燕麦产量形成的生理机制研究

2.1 籽粒产量与产量构成因素

燕麦产量与其构成因素的关系研究方面,Finnan等[35]通过系统分析比较发现,皮燕麦的籽粒产量与单位面积粒数(单位面积穗数×穗粒数)呈线性正相关关系,并且对籽粒产量形成起决定作用[36]。其中,单位面积穗数与播种密度和分蘖成穗率等有关。在低密度条件下,燕麦的单株分蘖数增加,但在中高密度条件下,由于第2分蘖成穗率低使得分蘖增加并没有获得较高籽粒产量,即使施入足量氮肥,第2分蘖的穗籽粒产量仍较低[24]。然而对于高产品种来说,尽管会产生很多无效分蘖,但增加分蘖数仍有利于减缓不利环境条件对产量形成的影响[37]

Mahadevan等[38]发现在环境胁迫下,燕麦单穗粒数比单位面积穗数对产量的决定性更大。此外,Finnan等[39]通过研究不同播种密度对秋播燕麦产量的影响也发现,在低密度下是由于单穗粒数增加,而不是单株穗数(分蘖成穗)增加对产量的补偿效应更大。说明燕麦在低密度下的产量补偿效应主要体现在单穗粒数的增加,这点与小麦和大麦等作物主要依靠单株分蘖成穗率增加的特性不同。与皮燕麦相比,裸燕麦籽粒产量较低的另一个原因是裸燕麦的出苗率低和主茎成穗率低导致单位面积穗数下降[7],可通过增加10%的播种量来提高燕麦的单位面积穗数。

对于穗粒数与粒重之间的关系,Sadras等[40]通过对不同燕麦品种干旱适应性和产量潜力的评价发现,穗粒数对燕麦籽粒产量的影响大于粒重,特别是在干旱胁迫下,产量下降主要是由于穗粒数下降导致的,而粒重保持相对稳定。Finnan等[41]通过不同播种量试验考察不同分蘖次序的穗粒数和粒重后发现,燕麦的圆锥花序具有很强可塑性,能减轻环境和栽培条件对穗粒数的影响,实现稳产。

粒重对籽粒产量的影响比较复杂,在多数情况下粒重与籽粒产量之间没有相关性,并且粒重是产量构成因素中最稳定的指标[41]。而Peltonen-Sainio等[42]在北欧生育期较短的条件下研究发现,粒重与籽粒产量之间存在正相关关系。并且在单位面积粒数较多情况下,粒重随着穗粒数的增加而下降,说明存在同化物的竞争,而对于裸燕麦来说,在环境胁迫条件下,籽粒产量与粒重没有统计学上的关联性[35]

由以上分析可知,穗粒数是决定燕麦产量的主要因素,说明小穗和小花的发育状况对燕麦产量潜力具有决定性作用[35,36]。在生产实践和研究中发现,影响燕麦穗粒数的原因主要包括2个方面:一是品种差异。燕麦每穗小穗数与穗长、轮层数和每轮层第1分枝数密切相关,因此选择穗轴节点数较多的品种可增加其小穗数[24]。Wang等[8]发现,近年育成的裸燕麦品种相对于早期地方品种而言,在干旱下拥有更高的光合产物向穗部分配能力和灌浆速率,能够更快转化为籽粒产量,其穗粒数和粒重高于早期地方品种。Peltonen-Sainio等[10]研究发现,开花前生育日数短的品种的小花数会减少,但籽粒产量未下降。二是同化物的竞争。果穗在有限资源的情况下对同化物的竞争能力影响了小花的成粒数[9]。在研究中发现穗粒数与茎秆中可溶性碳水化合物含量呈显著负相关[40],从而减少穗发育早期籽粒的败育[43]。研究[44]发现小花发育速度与植株体内碳素水平的高低密切相关,在保持一定氮素水平供应条件下,植株体内碳水化合物含量越高,越有利于可孕小花的发育。外源激素也会影响燕麦小穗小花发育。随着喷施外源细胞分裂素苄氨基嘌呤(6-BA)浓度增加,燕麦不孕小穗数也相应增加,只有在1×10-8和1×10-3g/L处理下可育小穗和小花数增加,但不孕小穗和小花的比例没有减少[9]。以上研究说明不同基因型品种穗粒数形成与光合产物向穗部的分配能力以及生理变化等密切相关,但不同穗型、株型燕麦穗粒数的变化、小穗数或小穗粒数之间的关系以及其形成过程与生理学途径尚不明确。

通过栽培管理调节穗内部结构可改善运输系统输送光合产物的能力[45]。研究[46]发现施用氮肥可有效增加有效分蘖数和穗粒数,因此单位面积粒数增加。在开花前增施氮肥显著增加皮燕麦的小穗数和结实率,从而增加了穗粒数,对小穗粒数影响不大[10];在孕穗前减少氮素供应其小穗数显著减少[47]。Peltonen-Sainio[6]研究发现,增加播种量和施氮量对小穗粒数没有显著影响,却显著减少了燕麦小穗数和穗粒数。此外,燕麦的穗粒数与光合有效辐射(特别是开花前及开花期)的截获密切相关,通过合理氮肥管理可以实现光合有效辐射利用最大化,从而提高燕麦穗粒数[48]。说明氮素对燕麦小穗小花发育及穗粒数形成影响显著,但不同养分管理调控措施对燕麦小穗和小花败育的生理机制影响尚不明确。

2.2 燕麦光合性能

绿色革命以来主要作物增产原因分析表明,作物总光合能力的增加主要体现在光合面积和光合持续时间的增加上,而单位叶面积光合速率并没有增加,甚至出现下降[49]。在燕麦的早期研究中发现,燕麦籽粒产量与植株干物质积累量呈正相关关系[50,51]。然而,Ma等[15]研究发现在高氮处理下,虽然皮燕麦或裸燕麦的生物量与小麦相似,但其籽粒产量显著低于小麦,主要原因是皮燕麦或裸燕麦的收获指数较低且开花后更易倒伏。此外,研究[7, 52]发现裸燕麦的生物产量高于皮燕麦,然而其籽粒产量却低于皮燕麦,可能是裸燕麦在开花期叶面积指数(LAI)较高而收获指数较低导致的[15]。Ma等[15]还进一步探讨了LAI和干物质积累量的关系,随着施氮量增加,LAI和干物质积累量呈显著正相关关系,但在高氮处理下燕麦的干物质积累量并没有增加,可能是由于LAI与光合辐射截获量之间并不是线性关系,即当LAI大于3时,光合有效辐射截获率达到90%以上,LAI进一步增加时光截获量不再增加,并且易引起倒伏。

在单叶光合能力和叶面积持续期研究方面,Hisir等[53]研究得出,燕麦籽粒产量与叶片叶绿素含量和叶面积持续期呈显著正相关关系。研究还发现新育成的燕麦品种开花后叶面积衰老速度低于老品种,有利于籽粒灌浆[54,55]。而Peltonen-Sainio[56]在生长期较短的芬兰高纬度地区研究发现,籽粒产量与叶面积持续期并不存在相关关系。此外,增加追氮用量可延缓开花后叶片衰老,提高光合能力[57]。Sadras等[40]通过对29个燕麦品种的研究得出,燕麦籽粒产量与灌浆期叶片叶绿素相对值呈显著正相关。Sadras等[58]进一步比较了16个燕麦品种后发现,可溶性糖含量低的燕麦品种可增加叶面积持续期和单位面积粒数进而提高产量,并提出水溶性碳水化合物含量低的性状可作为高产燕麦品种选择的重要标准。说明开花后叶片持绿性好和较长的叶面积持续期是燕麦获得高产的保证。

收获指数高被认为是高产品种的重要特性。Sánchez-Martín等[59]在相对干旱的地中海气候条件下对32个燕麦品种进行多年多点试验研究发现,籽粒产量与收获指数呈显著正相关关系。De Rocquigny等[60]通过对半矮秆和高秆燕麦品种的比较发现,虽然高秆品种具有更高的干物质积累量,但半矮秆品种由于具有较高的收获指数和较强的抗倒伏性,其籽粒产量高于高秆品种。说明通过降低植株高度等途径提高收获指数和抗倒性等性状是燕麦高产育种的主要策略和方向。

2.3 燕麦产量源库关系

作物产量可能会受到源活性、库活性或者源库关系2个方面的限制[43]。与小麦、大麦等其他麦类作物的穗状花序不同,燕麦的圆锥状花序绿色面积大且分散,有利于截获太阳辐射,提高开花后花序光合作用对产量的贡献,因此在源库关系方面与其他麦类作物存在许多差异[11, 17]。在源库限制方面,在开花盛期由于光合产物供需不平衡导致完全发育小花之间竞争加剧出现籽粒败育,导致库容改变,并且单位面积籽粒数多的群体中籽粒败育率高[11]。不同时期外部环境胁迫会导致籽粒败育情况发生。Doehlert等[61]发现春季干旱导致光合产物供应减少,小穗籽粒败育率上升,超过30%小穗出现籽粒败育,并提出利用第3位粒结实可提高燕麦库容大小。第3位粒灌浆结实能力可塑性取决于灌浆期光合产物的供给状况。Doehlert等[61]研究发现9.5%的小穗有第3位粒结实,而Browne等[11]认为只有不超过5%的第3位粒结实。这意味着在关键生育阶段,由于外界环境胁迫导致光合能力下降(源限制),进而影响小穗籽粒败育或第3位粒结实(库容变化)以及维管束系统发育(流限制),最终影响燕麦籽粒结实和灌浆。

对于裸燕麦来说,其多花多粒特性会表现出更明显的籽粒结实粒数可塑性[5]。然而,由于裸燕麦的小穗轴比皮燕麦更长以及特殊的小花形态[62],导致进入穗部的光合产物减缓,灌浆速率受到影响。因此,裸燕麦的多花多粒性没有使燕麦库容量增大,反而导致库活性(灌浆速率)下降,未能成为增加产量潜力的优势,而成为产量形成的劣势。Finnan等[35]通过系统总结发现,在单位面积粒数达到某一值(25 000粒/m2)之后,裸燕麦的籽粒产量会达到最高值(拐点),之后不再增长,在籽粒产量达到拐点之前表现出明显的库限制,达到拐点之后即表现为源限制,并且拐点位置还与品种和环境因素密切相关。为此进一步提出,在产量没有达到最高值之前应考虑增加投入来增加粒数,在产量达到最高之后可通过提高光合同化能力,促进籽粒灌浆,提高库强度。Zhao等[63]通过比较不同水分条件下皮燕麦、裸燕麦源库关系发现,裸燕麦在充分供水条件下的籽粒产量高于皮燕麦(脱壳后)的主要原因是裸燕麦具有更高的源活性和单穗小穗数。因此通过育种或栽培等调控途径增加每穗小穗数,而不是小穗粒数,可能是提高裸燕麦穗粒数(库容)的重要策略。

3 展望

从以上对燕麦产量形成生理机制的研究分析发现,燕麦产量潜力较低,既有品种本身遗传和生理特性的原因,又有环境胁迫和栽培条件不适宜的因素,还有对燕麦研究不重视和投入不够等问题。因此,为了提升我国燕麦籽粒产量潜力,需重点从以下4个方面加强研究或投入。

3.1 燕麦种质资源创新与新品种选育

燕麦产量是多基因控制的数量性状,随着二代测序技术的快速发展,利用全基因组关联分析(genome-wide association study)定位与产量性状相关的QTL,结合转录组测序,SNP-index分析鉴定候选基因,验证基因功能,挖掘优异基因资源,创制收获指数高、产量潜力大、抗倒性强以及抗旱、耐瘠薄、耐盐碱等抗性强的燕麦种质资源;利用现代分子设计育种与传统育种技术相结合等方法,通过降低株高、改变株型和提高收获指数等途径选育矮秆抗倒燕麦品种,解决倒伏问题并提高光合产物的同化利用效率;通过表型鉴定和分子标记辅助选择等手段选育抗旱、耐瘠薄和耐盐碱的燕麦品种,解决燕麦产量低且不稳的问题。

3.2 燕麦抗逆及高产生理机制研究

针对我国燕麦主产区干旱和土壤瘠薄等环境特点,开展燕麦对非生物胁迫适应机制、抗逆生理基础及调控机制,从转录组、蛋白组和代谢组等组学层面研究不同逆境胁迫下燕麦产量的形成规律及其与环境的关系。在产量生理方面,重点从皮燕麦和裸燕麦产量形成生理学差异角度,研究燕麦穗粒数的形成规律,并从基因表达、激素平衡和碳氮代谢等角度系统地开展燕麦小穗不孕与花粒败育的生理机制研究。此外,随着燕麦部分染色体基因组序列拼接的完成和部分转录组测序数据的释放,可通过高通量测序数据结合产量形成生理性状定位控制燕麦产量主要性状基因并解析调控产量形成分子机制,揭示提高燕麦产量的关键生理学途径。

3.3 燕麦高产、抗逆栽培技术研发

通过种植密度、水分和养分管理等栽培耕作调控措施来协调株型发育与籽粒形成、源库关系、地上部与地下部生长关系,提高燕麦抗逆性和籽粒产量。通过外源激素和水肥耦合等栽培调控手段协调植株衰老、光合作用与同化物向籽粒转运关系,促进同化物向籽粒转运和灌浆,挖掘裸燕麦多花多粒特性、增加穗粒数的潜力,克服粒重下降的弱势,提升燕麦产量潜力。

3.4 加大对燕麦产业的扶持力度

1960-2005年,全世界燕麦单产只增加了39%,而同期小麦和玉米单产分别增加了147%和143%[64]。其主要原因是在燕麦育种和农学等方面研究的投入较少。因此,要进一步加大对燕麦种质资源创新、品种选育和高产栽培生理等方面的研究力度,提升科技创新对燕麦产业发展的驱动和推动能力,鼓励和引导高校及科研院所建立协同创新平台和联合研发基地或实验室,以提高燕麦产量。

参考文献

任长忠, 胡跃高 . 中国燕麦学. 北京: 中国农业出版社, 2013.

[本文引用: 2]

Webster F H, Wood P J .

Oats:chemistry and technology

Journal of Cereal Science, 2011,53:269.

DOI:10.1016/j.jcs.2011.01.007      URL     [本文引用: 1]

Marshall A, Cowan S, Edwards S , et al.

Crops that feed the world 9. Oats- a cereal crop for human and livestock feed with industrial applications

Food Security, 2013,5(1):13-33.

DOI:10.1007/s12571-012-0232-x      URL     [本文引用: 4]

任长忠, 崔林, 何峰 , .

我国燕麦荞麦产业技术体系建设与发展

吉林农业大学学报, 2018,40(4):524-532.

[本文引用: 3]

Gorash A, Armoniene R, Mitchell Fetch J , et al.

Aspects in oat breeding:nutrition quality,nakedness and disease resistance,challenges and perspectives

Annals of Applied Biology, 2017,171(3):281-302.

DOI:10.1111/aab.2017.171.issue-3      URL     [本文引用: 6]

Peltonen-Sainio P .

Groat yield and plant stand structure of naked and hulled oat under different nitrogen fertilizer and seeding rates

Agronomy Journal, 1997,89(1):140-147.

DOI:10.2134/agronj1997.00021962008900010021x      URL     [本文引用: 4]

Peltonen-Sainio P .

Yield component differences between naked and conventional oat

Agronomy Journal, 1994,86(3):510-513.

DOI:10.2134/agronj1994.00021962008600030010x      URL     [本文引用: 4]

Wang T, Du Y L, He J , et al.

Recently-released genotypes of naked oat (Avena nuda L.) out-yield early releases under water-limited conditions by greater reproductive allocation and desiccation tolerance

Field Crops Research, 2017,204(1):169-179.

DOI:10.1016/j.fcr.2017.01.017      URL     [本文引用: 2]

Peltonen-Sainio P .

Nitrogen fertilizer and foliar application of cytokinin affect spikelet and floret set and survival in oat

Field Crops Research, 1997,49(2):169-176.

DOI:10.1016/S0378-4290(96)01010-6      URL     [本文引用: 3]

Peltonen-Sainio P, Peltonen J .

Floret set and abortion in oat and wheat under high and low nitrogen regimes

European Journal of Agronomy, 1995,4(2):253-262.

DOI:10.1016/S1161-0301(14)80052-X      URL     [本文引用: 4]

Browne R A, White E M, Burke J I .

Responses of developmental yield formation processes in oats to variety,nitrogen,seed rate and plant growth regulator and their relationship to quality

The Journal of Agricultural Science, 2006,144(6):533-545.

DOI:10.1017/S0021859606006538      URL     [本文引用: 4]

Burrows V D, Molnar S J, Tinker N A , et al.

Groat yield of naked and covered oat

Canadian Journal of Plant Science, 2001,81(4):727-729.

DOI:10.4141/P00-181      URL     [本文引用: 2]

杨海鹏, 孙泽民 , . 中国燕麦. 北京: 农业出版社, 1989.

[本文引用: 3]

Zimmer C M, Ubert I P, Pacheco M T , et al.

Variable expressivity and heritability of multiflorous spikelets in oat panicles

Experimental Agriculture, 2019,55(6):829-842.

DOI:10.1017/S0014479718000418      URL     [本文引用: 1]

Ma B L, Biswas D K, Zhou Q P , et al.

Comparisons among cultivars of wheat,hulled and hulless oats:effects of N fertilization on growth and yield

Canadian Journal of Plant Science, 2012,92(6):1213-1222.

DOI:10.4141/cjps2011-167      URL     [本文引用: 5]

王茜, 李志坚, 李晶 , .

不同类型燕麦农艺和饲草品质性状分析

草业学报, 2019,28(12):149-158.

[本文引用: 1]

Peltonen-Sainio P . Growth and development of oat with special reference to source-sink interaction and productivity. Crop Yield:Physiology and Processes. Berlin,Heidelberg: Springer Berlin Heidelberg, 1999: 39-66.

[本文引用: 2]

Doehlert D C, Jannink J L, Mcmullen M S .

Kernel size variation in naked oat

Crop Science, 2006,46(3):1117-1123.

DOI:10.2135/cropsci2005.06-0171      URL     [本文引用: 2]

Doehlert D C, McMullen M S, Hammond J J .

Genotypic and environmental effects on grain yield and quality of oat grown in North Dakota

Crop Science, 2001,41(4):1066-1072.

DOI:10.2135/cropsci2001.4141066x      URL     [本文引用: 1]

De Koeyer D L, Tinker N A, Wight C P , et al.

A molecular linkage map with associated QTLs from a hulless × covered spring oat population

Theoretical and Applied Genetics, 2004,108(7):1285-1298.

PMID:14767596      [本文引用: 1]

In spring-type oat ( Avena sativa L.), quantitative trait loci (QTLs) detected in adapted populations may have the greatest potential for improving germplasm via marker-assisted selection. An F(6) recombinant inbred (RI) population was developed from a cross between two Canadian spring oat varieties: 'Terra', a hulless line, and 'Marion', an elite covered-seeded line. A molecular linkage map was generated using 430 AFLP, RFLP, RAPD, SCAR, and phenotypic markers scored on 101 RI lines. This map was refined by selecting a robust set of 124 framework markers that mapped to 35 linkage groups and contained 35 unlinked loci. One hundred one lines grown in up to 13 field environments in Canada and the United States between 1992 and 1997 were evaluated for 16 agronomic, kernel, and chemical composition traits. QTLs were localized using three detection methods with an experiment-wide error rate of approximately 0.05 for each trait. In total, 34 main-effect QTLs affecting the following traits were identified: heading date, plant height, lodging, visual score, grain yield, kernel weight, milling yield, test weight, thin and plump kernels, groat beta-glucan concentration, oil concentration, and protein. Several of these correspond to QTLs in homologous or homoeologous regions reported in other oat QTL studies. Twenty-four QTL-by-environment interactions and three epistatic interactions were also detected. The locus controlling the covered/hulless character ( N1) affected most of the traits measured in this study. Additive QTL models with N1 as a covariate were superior to models based on separate covered and hulless sub-populations. This approach is recommended for other populations segregating for major genes. Marker-trait associations identified in this study have considerable potential for use in marker-assisted selection strategies to improve traits within spring oat breeding programs.

Chinnici M F, Peterson D M .

Temperaturea and drought effects on blast and other characteristics in developing oats

Crop Science, 1979,19(6):893-897.

DOI:10.2135/cropsci1979.0011183X001900060035x      URL     [本文引用: 2]

李刚, 李成雄 .

莜麦花稍发生率及对产量的影响

内蒙古农业科技, 2011(1):51-52.

[本文引用: 1]

叶福钧 .

皮、裸燕麦的花稍及其抗性的研究

华北农学报, 1985,10(2):17-24.

[本文引用: 1]

Brouwer J, Flood R G . Aspects of oat physiology. The Oat Crop:Production and Utilization. Dordrecht: Springer Netherlands, 1995: 177-222.

[本文引用: 3]

Housley T L, Peterson D M .

Oat stem vascular size in relation to kernel number and weight. I. Controlled environment

Crop Science, 1982,22(2):259-263.

DOI:10.2135/cropsci1982.0011183X002200020014x      URL     [本文引用: 1]

Peterson D M, Housley T L, Luk T M .

Oat stem vascular size in relation to kernel number and weight. II. Field environment

Crop Science, 1982,22(2):274-278.

DOI:10.2135/cropsci1982.0011183X002200020018x      URL     [本文引用: 1]

Wu W, Ma B L .

Erect-leaf posture promotes lodging resistance in oat plants under high plant population

European Journal of Agronomy, 2019,103:175-187.

DOI:10.1016/j.eja.2018.12.010      URL     [本文引用: 2]

Berry P M, Sterling M, Spink J H , et al.

Understanding and reducing lodging in cereals//Advances in Agronomy

Academic Press, 2004: 217-271.

[本文引用: 1]

Mohammadi M, Finnan J, Baker C , et al.

The potential impact of climate change on oat lodging in the UK and Republic of Ireland

Advances in Meteorology, 2020: 1-16.

[本文引用: 1]

Buerstmayr H, Krenn N, Stephan U , et al.

Agronomic performance and quality of oat (Avena sativa L.) genotypes of worldwide origin produced under Central European growing conditions

Field Crops Research, 2007,101(3):343-351.

DOI:10.1016/j.fcr.2006.12.011      URL     [本文引用: 2]

Tumino G, Voorrips R E, Morcia C , et al.

Genome-wide association analysis for lodging tolerance and plant height in a diverse European hexaploid oat collection

Euphytica, 2017,213(8):163.

DOI:10.1007/s10681-017-1939-8      URL     [本文引用: 2]

Zhou Q P, Kumar B D, Ma B L .

Comparisons among cultivars of wheat,hulless and hulled oats:dry matter,N and P accumulation and partitioning as affected by N supply

Journal of Plant Nutrition and Soil Science, 2013,176(6):929-941.

DOI:10.1002/jpln.201200265      URL     [本文引用: 1]

Wu W, Ma B L .

The mechanical roles of the clasping leaf sheath in cereals:two case studies from oat and wheat plants

Journal of Agronomy and Crop Science, 2020,206:118-129.

DOI:10.1111/jac.v206.1      URL     [本文引用: 1]

Ma B L, Zheng Z, Pageau D , et al.

Nitrogen and phosphorus uptake,yield and agronomic traits of oat cultivars as affected by fertilizer N rates under diverse environments

Nutrient Cycling in Agroecosystems, 2017,108(3):245-265.

DOI:10.1007/s10705-017-9848-8      URL     [本文引用: 1]

Finnan J M, Spink J .

Identification of yield limiting phenological phases of oats to improve crop management

The Journal of Agricultural Science, 2017,155(1):1-17.

DOI:10.1017/S0021859616000071      URL     [本文引用: 4]

Peltonen-Sainio P, Rajala A .

Duration of vegetative and generative development phases in oat cultivars released since 1921

Field Crops Research, 2007,101(1):72-79.

DOI:10.1016/j.fcr.2006.09.011      URL     [本文引用: 2]

Lawes D .

Yield improvement in spring oats

The Journal of Agricultural Science, 1977,89(3):751-757

DOI:10.1017/S0021859600061554      URL     [本文引用: 1]

Mahadevan M, Calderini D F, Zwer P K , et al.

The critical period for yield determination in oat (Avena sativa L.)

Field Crops Research, 2016,199:109-116.

DOI:10.1016/j.fcr.2016.09.021      URL     [本文引用: 1]

Finnan J M, Hyland L, Burke B .

The effect of seeding rate on radiation interception,grain yield and grain quality of autumn sown oats

European Journal of Agronomy, 2018,101:239-247.

DOI:10.1016/j.eja.2018.09.008      URL     [本文引用: 1]

Sadras V O, Mahadevan M, Zwer P K .

Oat phenotypes for drought adaptation and yield potential

Field Crops Research, 2017,212:135-144.

DOI:10.1016/j.fcr.2017.07.014      URL     [本文引用: 3]

Finnan J, Burke B, Spink J .

The plasticity of the oat panicle and associated changes in leaf area and grain weight

Field Crops Research, 2019,242:107592.

DOI:10.1016/j.fcr.2019.107592      URL     [本文引用: 2]

Peltonen-Sainio P, Kangas A, Salo Y , et al.

Grain number dominates grain weight in temperate cereal yield determination:evidence based on 30 years of multi-location trials

Field Crops Research, 2007,100(2):179-188.

DOI:10.1016/j.fcr.2006.07.002      URL     [本文引用: 1]

Miralles D J, Slafer G A .

Sink limitations to yield in wheat :how could it be reduced?

Journal of Agricultural Science, 2007,145(2):139-149.

[本文引用: 2]

Fischer R A .

Number of kernels in wheat crops and the influence of solar radiation and temperature

The Journal of Agricultural Science, 1985,105(2):447-461.

DOI:10.1017/S0021859600056495      URL     [本文引用: 1]

Peltonen-Sainio P, Forsman K, Poutala T .

Crop management effects on pre-and post-anthesis changes in leaf area index and leaf area duration and their contribution to grain yield and yield components in spring cereals

Journal of Agronomy and Crop Science, 1997,179(1):47-61.

DOI:10.1111/j.1439-037X.1997.tb01146.x      URL     [本文引用: 1]

Weightman R M, Heywood C, Wade A , et al.

Relationship between grain (1→3,1→4)-β-d-glucan concentration and the response of winter-sown oats to contrasting forms of applied nitrogen

Journal of Cereal Science, 2004,40(1):81-86.

DOI:10.1016/j.jcs.2004.04.006      URL     [本文引用: 1]

Zhao G Q, Ma B L, Ren C Z .

Response of nitrogen uptake and partitioning to critical nitrogen supply in oat cultivars

Crop Science, 2009,49(3):1040-1048.

DOI:10.2135/cropsci2008.05.0292      URL     [本文引用: 1]

Finnan J, Burke B, Spink J .

The effect of nitrogen timing and rate on radiation interception,grain yield and grain quality in autumn sown oats

Field Crops Research, 2019,231:130-140.

DOI:10.1016/j.fcr.2018.12.001      [本文引用: 1]

There is a growing appreciation of the nutritional and health benefits of oats but little recent research has been conducted on the agronomy of oats. Experiments were conducted in Ireland over a two year period (2016-2017) to study the effect of nitrogen (N) timing and rate on radiation interception, yield and quality of autumn sown oats. Two experiments were conducted in each year. In the first experiment, a nitrogen response curve (0, 30, 60, 90, 120, 150 kg N/ha; split-plot factor) was applied at either GS21, GS30, GS32 or GS39 (main-plot factor). In the second experiment, N was applied at GS30 at rates of 0, 30, 60, 90 kg/ha (main-plot factor) and then at GS32 at rates of 0, 30, 60, 90, 120 and 150 kg/ha (split-plot factor). Measurements of radiation interception were made throughout the growing season in addition to flag leaf chlorophyll content and plant height. Grain yield and quality was quantified at harvest. The effect of N timing on radiation interception diminished as N application was delayed but the timing of N supply had no effect on the grain yield in autumn sown oats as long as the crop had received N by GS32. Grain numbers were strongly related to intercepted radiation, particularly in the period immediately before and during anthesis. Radiation interception increased as the overall rate of N application increased but grain yield reached a plateau at 150 kg N/ha. Increases in grain yield after N application were primarily the result of increases in the number of grains per panicle. Splitting N in different ways between GS30 and GS32 had no significant effect on grain yield and grain weight but, for overall N rates of 120 and 150 kg/ha, hectolitre weight increased as the proportion of N applied at GS30 was increased. Grain numbers in oat crops can be optimised by applying N to ensure that radiation interception is maximised in the period prior to and during anthesis.

Richards R A .

Selectable traits to increase crop photosynthesis and yield of grain crops

Journal of Experimental Botany, 2000,51(S1):447-458.

DOI:10.1093/jexbot/51.suppl_1.447      URL     [本文引用: 1]

McMullan P M, McVetty P B, Urquhart A A .

Dry matter and nitrogen accumulation and redistribution and their relationship to grain yield and grain protein in oats

Canadian Journal of Plant Science, 1988,68(4):983-993.

DOI:10.4141/cjps88-119      URL     [本文引用: 1]

Peltonen-Sainio P .

Morphological and physiological characters behind high-yielding ability of oats (Avena sativa),and their implications for breeding

Field Crops Research, 1990,25(3):247-252.

DOI:10.1016/0378-4290(90)90007-X      URL     [本文引用: 1]

Zhao B P, Ma B L, Hu Y G , et al.

Leaf photosynthesis,biomass production and water and nitrogen use efficiencies of two contrasting naked vs. hulled oat genotypes subjected to water and nitrogen stresses

Journal of Plant Nutrition, 2011,34:2139-2157.

DOI:10.1080/01904167.2011.618574      URL     [本文引用: 1]

Hisir Y, Kara R, Dokuyucu T .

Evaluation of oat (Avena sativa L.) genotypes for grain yield and physiological traits

Zemdirbyste (Agriculture), 2012,99:55-60.

[本文引用: 1]

Frey K .

Genetic responses of oat genotypes to environmental factors

Field Crops Research, 1998,56(1):183-185.

DOI:10.1016/S0378-4290(97)00128-7      URL     [本文引用: 1]

Frey P J, Lynch K J .

Genetic improvement in agronomic and physiological traits of oat since 1914

Crop Science, 1993,33:984-988.

DOI:10.2135/cropsci1993.0011183X003300050022x      URL     [本文引用: 1]

Peltonen-Sainio P .

Leaf area duration of oat at high latitudes

Journal of Agronomy and Crop Science, 1997,178(3):149-155.

DOI:10.1111/j.1439-037X.1997.tb00483.x      URL     [本文引用: 1]

张玉霞朱爱民, 郭园 , .

追施氮肥对灌浆期沙地饲用燕麦叶片衰老特性的影响

华北农学报, 2019,34(1):124-130.

[本文引用: 1]

Sadras V O, Mahadevan M, Zwer P K .

Stay-green associates with low water soluble carbohydrates at flowering in oat

Field Crops Research, 2019,230:132-138.

DOI:10.1016/j.fcr.2018.10.007      URL     [本文引用: 1]

Sánchez-Martín N J, Rubiales D, Flores F , et al.

Adaptation of oat (Avena sativa) cultivars to autumn sowings in Mediterranean environments

Field Crops Research, 2014,156:111-122.

DOI:10.1016/j.fcr.2013.10.018      URL     [本文引用: 1]

De Rocquigny P J, Entz M H, Gentile R M , et al.

Yield physiology of a semidwarf and tall oat cultivar

Crop Science, 2004,44(6):2116-2122.

DOI:10.2135/cropsci2004.2116      URL     [本文引用: 1]

Doehlert D C, McMullen M S, Riveland N R .

Sources of variation in oat kernel size

Cereal Chemistry, 2002,79(4):528-534.

DOI:10.1094/CCHEM.2002.79.4.528      URL     [本文引用: 2]

Valentine J . Naked oats. The Oat Crop:Production and Utilization. Dordrecht: Springer Netherlands, 1995: 504-532.

[本文引用: 1]

Zhao B, Ma B L, Hu Y , et al.

Source-sink adjustment:a mechanistic understanding of the timing and severity of drought stress on photosynthesis and grain yields of two contrasting oat (Avena sativa L.) genotypes

Journal of Plant Growth Regulation, 2020,40:263-276.

DOI:10.1007/s00344-020-10093-5      URL     [本文引用: 1]

Menon R, Gonzalez T, Ferruzzi M , et al.

Oats-From Farm to Fork-Science Direct

Advances in Food and Nutrition Research, 2016,77:1-55.

DOI:10.1016/bs.afnr.2015.12.001      PMID:26944101      [本文引用: 1]

Oats have a long history of use as human food and animal feed. From its origins in the Fertile Crescent, the oat has adapted to a wide range of climatic conditions and geographic regions. Its unique macro-, micro-, and phytonutrient composition, high nutritional value, and relatively low agricultural input requirements makes oats unique among cereal crops. The health benefits of the oats are becoming well established. While the connection between oat β-glucan fiber in reducing the risk of cardiovascular disease and controlling glycemia have been unequivocally established, other potential benefits including modulation of intestinal microbiota and inflammation continue to be explored. Advances in food technology are continuing to expand the diversity of oat-based foods, creating opportunities to deliver the health benefits of oats to a larger segment of the population. © 2016 Elsevier Inc. All rights reserved.

/