作物杂志,2021, 第3期: 1–7 doi: 10.16035/j.issn.1001-7283.2021.03.001

• 专题综述 •    下一篇

燕麦产量形成生理机制研究进展

赵宝平1(), 刘景辉1, 任长忠2   

  1. 1内蒙古农业大学农学院,010019,内蒙古呼和浩特
    2吉林省白城市农业科学院,137000,吉林白城
  • 收稿日期:2020-07-08 修回日期:2020-09-10 出版日期:2021-06-15 发布日期:2021-06-22
  • 作者简介:赵宝平,主要从事作物生态生理研究,E-mail: zhaobaoping82@163.com
  • 基金资助:
    国家自然科学基金(31960378);国家自然科学基金(31560373);现代农业产业技术体系建设专项资金(CARS-07)

Research Progress of Physiological Mechanism of Yield Formation in Oats

Zhao Baoping1(), Liu Jinghui1, Ren Changzhong2   

  1. 1College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
    2Baicheng Academy of Agricultural Sciences of Jilin Province, Baicheng 137000, Jilin, China
  • Received:2020-07-08 Revised:2020-09-10 Online:2021-06-15 Published:2021-06-22

摘要:

燕麦是我国北方重要的粮饲兼用作物。低产是制约燕麦产业健康稳定发展的主要问题。本文从燕麦小穗多花多粒特性、小穗不孕性和抗倒伏性能等角度分析了燕麦产量形成的主要特征;并从产量构成因素、光合生产性能和源库关系等方面系统梳理和总结了燕麦产量形成的生理机制研究进展,比较了皮燕麦和裸燕麦产量形成的生理学差异,提出了提高燕麦产量的技术途径。

关键词: 燕麦, 籽粒产量形成, 产量构成因素, 光合作用, 倒伏, 源库关系

Abstract:

Oat is an important grain and forage crop in Northern China. Lower grain yield is a main problem restricting the healthy and stable development of the oat industry. We analyzed the yield formation characteristics from the aspects of spikelet fertility, multiflorous characteristics, panicle infertility and lodging. We also summarized the physiological mechanism of oats yield formation from the yield components and photosynthetic production performance and source-sink relationship, and emphatically compared the differences of yield formation between the hulled and the naked oats. We proposed forward future research directions and emphases on oat yield improvement.

Key words: Oat, Grain yield formation, Yield components, Photosynthesis, Lodging, Source-sink relationship

[1] 任长忠, 胡跃高 . 中国燕麦学. 北京: 中国农业出版社, 2013.
[2] Webster F H, Wood P J . Oats:chemistry and technology. Journal of Cereal Science, 2011,53:269.
doi: 10.1016/j.jcs.2011.01.007
[3] Marshall A, Cowan S, Edwards S , et al. Crops that feed the world 9. Oats- a cereal crop for human and livestock feed with industrial applications. Food Security, 2013,5(1):13-33.
doi: 10.1007/s12571-012-0232-x
[4] 任长忠, 崔林, 何峰 , 等. 我国燕麦荞麦产业技术体系建设与发展. 吉林农业大学学报, 2018,40(4):524-532.
[5] Gorash A, Armoniene R, Mitchell Fetch J , et al. Aspects in oat breeding:nutrition quality,nakedness and disease resistance,challenges and perspectives. Annals of Applied Biology, 2017,171(3):281-302.
doi: 10.1111/aab.2017.171.issue-3
[6] Peltonen-Sainio P . Groat yield and plant stand structure of naked and hulled oat under different nitrogen fertilizer and seeding rates. Agronomy Journal, 1997,89(1):140-147.
doi: 10.2134/agronj1997.00021962008900010021x
[7] Peltonen-Sainio P . Yield component differences between naked and conventional oat. Agronomy Journal, 1994,86(3):510-513.
doi: 10.2134/agronj1994.00021962008600030010x
[8] Wang T, Du Y L, He J , et al. Recently-released genotypes of naked oat (Avena nuda L.) out-yield early releases under water-limited conditions by greater reproductive allocation and desiccation tolerance. Field Crops Research, 2017,204(1):169-179.
doi: 10.1016/j.fcr.2017.01.017
[9] Peltonen-Sainio P . Nitrogen fertilizer and foliar application of cytokinin affect spikelet and floret set and survival in oat. Field Crops Research, 1997,49(2):169-176.
doi: 10.1016/S0378-4290(96)01010-6
[10] Peltonen-Sainio P, Peltonen J . Floret set and abortion in oat and wheat under high and low nitrogen regimes. European Journal of Agronomy, 1995,4(2):253-262.
doi: 10.1016/S1161-0301(14)80052-X
[11] Browne R A, White E M, Burke J I . Responses of developmental yield formation processes in oats to variety,nitrogen,seed rate and plant growth regulator and their relationship to quality. The Journal of Agricultural Science, 2006,144(6):533-545.
doi: 10.1017/S0021859606006538
[12] Burrows V D, Molnar S J, Tinker N A , et al. Groat yield of naked and covered oat. Canadian Journal of Plant Science, 2001,81(4):727-729.
doi: 10.4141/P00-181
[13] 杨海鹏, 孙泽民 , 等. 中国燕麦. 北京: 农业出版社, 1989.
[14] Zimmer C M, Ubert I P, Pacheco M T , et al. Variable expressivity and heritability of multiflorous spikelets in oat panicles. Experimental Agriculture, 2019,55(6):829-842.
doi: 10.1017/S0014479718000418
[15] Ma B L, Biswas D K, Zhou Q P , et al. Comparisons among cultivars of wheat,hulled and hulless oats:effects of N fertilization on growth and yield. Canadian Journal of Plant Science, 2012,92(6):1213-1222.
doi: 10.4141/cjps2011-167
[16] 王茜, 李志坚, 李晶 , 等. 不同类型燕麦农艺和饲草品质性状分析. 草业学报, 2019,28(12):149-158.
[17] Peltonen-Sainio P . Growth and development of oat with special reference to source-sink interaction and productivity. Crop Yield:Physiology and Processes. Berlin,Heidelberg: Springer Berlin Heidelberg, 1999: 39-66.
[18] Doehlert D C, Jannink J L, Mcmullen M S . Kernel size variation in naked oat. Crop Science, 2006,46(3):1117-1123.
doi: 10.2135/cropsci2005.06-0171
[19] Doehlert D C, McMullen M S, Hammond J J . Genotypic and environmental effects on grain yield and quality of oat grown in North Dakota. Crop Science, 2001,41(4):1066-1072.
doi: 10.2135/cropsci2001.4141066x
[20] De Koeyer D L, Tinker N A, Wight C P , et al. A molecular linkage map with associated QTLs from a hulless × covered spring oat population. Theoretical and Applied Genetics, 2004,108(7):1285-1298.
pmid: 14767596
[21] Chinnici M F, Peterson D M . Temperaturea and drought effects on blast and other characteristics in developing oats. Crop Science, 1979,19(6):893-897.
doi: 10.2135/cropsci1979.0011183X001900060035x
[22] 李刚, 李成雄 . 莜麦花稍发生率及对产量的影响. 内蒙古农业科技, 2011(1):51-52.
[23] 叶福钧 . 皮、裸燕麦的花稍及其抗性的研究. 华北农学报, 1985,10(2):17-24.
[24] Brouwer J, Flood R G . Aspects of oat physiology. The Oat Crop:Production and Utilization. Dordrecht: Springer Netherlands, 1995: 177-222.
[25] Housley T L, Peterson D M . Oat stem vascular size in relation to kernel number and weight. I. Controlled environment. Crop Science, 1982,22(2):259-263.
doi: 10.2135/cropsci1982.0011183X002200020014x
[26] Peterson D M, Housley T L, Luk T M . Oat stem vascular size in relation to kernel number and weight. II. Field environment. Crop Science, 1982,22(2):274-278.
doi: 10.2135/cropsci1982.0011183X002200020018x
[27] Wu W, Ma B L . Erect-leaf posture promotes lodging resistance in oat plants under high plant population. European Journal of Agronomy, 2019,103:175-187.
doi: 10.1016/j.eja.2018.12.010
[28] Berry P M, Sterling M, Spink J H , et al. Understanding and reducing lodging in cereals//Advances in Agronomy. Academic Press, 2004: 217-271.
[29] Mohammadi M, Finnan J, Baker C , et al. The potential impact of climate change on oat lodging in the UK and Republic of Ireland. Advances in Meteorology, 2020: 1-16.
[30] Buerstmayr H, Krenn N, Stephan U , et al. Agronomic performance and quality of oat (Avena sativa L.) genotypes of worldwide origin produced under Central European growing conditions. Field Crops Research, 2007,101(3):343-351.
doi: 10.1016/j.fcr.2006.12.011
[31] Tumino G, Voorrips R E, Morcia C , et al. Genome-wide association analysis for lodging tolerance and plant height in a diverse European hexaploid oat collection. Euphytica, 2017,213(8):163.
doi: 10.1007/s10681-017-1939-8
[32] Zhou Q P, Kumar B D, Ma B L . Comparisons among cultivars of wheat,hulless and hulled oats:dry matter,N and P accumulation and partitioning as affected by N supply. Journal of Plant Nutrition and Soil Science, 2013,176(6):929-941.
doi: 10.1002/jpln.201200265
[33] Wu W, Ma B L . The mechanical roles of the clasping leaf sheath in cereals:two case studies from oat and wheat plants. Journal of Agronomy and Crop Science, 2020,206:118-129.
doi: 10.1111/jac.v206.1
[34] Ma B L, Zheng Z, Pageau D , et al. Nitrogen and phosphorus uptake,yield and agronomic traits of oat cultivars as affected by fertilizer N rates under diverse environments. Nutrient Cycling in Agroecosystems, 2017,108(3):245-265.
doi: 10.1007/s10705-017-9848-8
[35] Finnan J M, Spink J . Identification of yield limiting phenological phases of oats to improve crop management. The Journal of Agricultural Science, 2017,155(1):1-17.
doi: 10.1017/S0021859616000071
[36] Peltonen-Sainio P, Rajala A . Duration of vegetative and generative development phases in oat cultivars released since 1921. Field Crops Research, 2007,101(1):72-79.
doi: 10.1016/j.fcr.2006.09.011
[37] Lawes D . Yield improvement in spring oats. The Journal of Agricultural Science, 1977,89(3):751-757
doi: 10.1017/S0021859600061554
[38] Mahadevan M, Calderini D F, Zwer P K , et al. The critical period for yield determination in oat (Avena sativa L.). Field Crops Research, 2016,199:109-116.
doi: 10.1016/j.fcr.2016.09.021
[39] Finnan J M, Hyland L, Burke B . The effect of seeding rate on radiation interception,grain yield and grain quality of autumn sown oats. European Journal of Agronomy, 2018,101:239-247.
doi: 10.1016/j.eja.2018.09.008
[40] Sadras V O, Mahadevan M, Zwer P K . Oat phenotypes for drought adaptation and yield potential. Field Crops Research, 2017,212:135-144.
doi: 10.1016/j.fcr.2017.07.014
[41] Finnan J, Burke B, Spink J . The plasticity of the oat panicle and associated changes in leaf area and grain weight. Field Crops Research, 2019,242:107592.
doi: 10.1016/j.fcr.2019.107592
[42] Peltonen-Sainio P, Kangas A, Salo Y , et al. Grain number dominates grain weight in temperate cereal yield determination:evidence based on 30 years of multi-location trials. Field Crops Research, 2007,100(2):179-188.
doi: 10.1016/j.fcr.2006.07.002
[43] Miralles D J, Slafer G A . Sink limitations to yield in wheat :how could it be reduced? Journal of Agricultural Science, 2007,145(2):139-149.
[44] Fischer R A . Number of kernels in wheat crops and the influence of solar radiation and temperature. The Journal of Agricultural Science, 1985,105(2):447-461.
doi: 10.1017/S0021859600056495
[45] Peltonen-Sainio P, Forsman K, Poutala T . Crop management effects on pre-and post-anthesis changes in leaf area index and leaf area duration and their contribution to grain yield and yield components in spring cereals. Journal of Agronomy and Crop Science, 1997,179(1):47-61.
doi: 10.1111/j.1439-037X.1997.tb01146.x
[46] Weightman R M, Heywood C, Wade A , et al. Relationship between grain (1→3,1→4)-β-d-glucan concentration and the response of winter-sown oats to contrasting forms of applied nitrogen. Journal of Cereal Science, 2004,40(1):81-86.
doi: 10.1016/j.jcs.2004.04.006
[47] Zhao G Q, Ma B L, Ren C Z . Response of nitrogen uptake and partitioning to critical nitrogen supply in oat cultivars. Crop Science, 2009,49(3):1040-1048.
doi: 10.2135/cropsci2008.05.0292
[48] Finnan J, Burke B, Spink J . The effect of nitrogen timing and rate on radiation interception,grain yield and grain quality in autumn sown oats. Field Crops Research, 2019,231:130-140.
doi: 10.1016/j.fcr.2018.12.001
[49] Richards R A . Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany, 2000,51(S1):447-458.
doi: 10.1093/jexbot/51.suppl_1.447
[50] McMullan P M, McVetty P B, Urquhart A A . Dry matter and nitrogen accumulation and redistribution and their relationship to grain yield and grain protein in oats. Canadian Journal of Plant Science, 1988,68(4):983-993.
doi: 10.4141/cjps88-119
[51] Peltonen-Sainio P . Morphological and physiological characters behind high-yielding ability of oats (Avena sativa),and their implications for breeding. Field Crops Research, 1990,25(3):247-252.
doi: 10.1016/0378-4290(90)90007-X
[52] Zhao B P, Ma B L, Hu Y G , et al. Leaf photosynthesis,biomass production and water and nitrogen use efficiencies of two contrasting naked vs. hulled oat genotypes subjected to water and nitrogen stresses. Journal of Plant Nutrition, 2011,34:2139-2157.
doi: 10.1080/01904167.2011.618574
[53] Hisir Y, Kara R, Dokuyucu T . Evaluation of oat (Avena sativa L.) genotypes for grain yield and physiological traits. Zemdirbyste (Agriculture), 2012,99:55-60.
[54] Frey K . Genetic responses of oat genotypes to environmental factors. Field Crops Research, 1998,56(1):183-185.
doi: 10.1016/S0378-4290(97)00128-7
[55] Frey P J, Lynch K J . Genetic improvement in agronomic and physiological traits of oat since 1914. Crop Science, 1993,33:984-988.
doi: 10.2135/cropsci1993.0011183X003300050022x
[56] Peltonen-Sainio P . Leaf area duration of oat at high latitudes. Journal of Agronomy and Crop Science, 1997,178(3):149-155.
doi: 10.1111/j.1439-037X.1997.tb00483.x
[57] 张玉霞朱爱民, 郭园 , 等. 追施氮肥对灌浆期沙地饲用燕麦叶片衰老特性的影响. 华北农学报, 2019,34(1):124-130.
[58] Sadras V O, Mahadevan M, Zwer P K . Stay-green associates with low water soluble carbohydrates at flowering in oat. Field Crops Research, 2019,230:132-138.
doi: 10.1016/j.fcr.2018.10.007
[59] Sánchez-Martín N J, Rubiales D, Flores F , et al. Adaptation of oat (Avena sativa) cultivars to autumn sowings in Mediterranean environments. Field Crops Research, 2014,156:111-122.
doi: 10.1016/j.fcr.2013.10.018
[60] De Rocquigny P J, Entz M H, Gentile R M , et al. Yield physiology of a semidwarf and tall oat cultivar. Crop Science, 2004,44(6):2116-2122.
doi: 10.2135/cropsci2004.2116
[61] Doehlert D C, McMullen M S, Riveland N R . Sources of variation in oat kernel size. Cereal Chemistry, 2002,79(4):528-534.
doi: 10.1094/CCHEM.2002.79.4.528
[62] Valentine J . Naked oats. The Oat Crop:Production and Utilization. Dordrecht: Springer Netherlands, 1995: 504-532.
[63] Zhao B, Ma B L, Hu Y , et al. Source-sink adjustment:a mechanistic understanding of the timing and severity of drought stress on photosynthesis and grain yields of two contrasting oat (Avena sativa L.) genotypes. Journal of Plant Growth Regulation, 2020,40:263-276.
doi: 10.1007/s00344-020-10093-5
[64] Menon R, Gonzalez T, Ferruzzi M , et al. Oats-From Farm to Fork-Science Direct. Advances in Food and Nutrition Research, 2016,77:1-55.
doi: 10.1016/bs.afnr.2015.12.001 pmid: 26944101
[1] 王炳策, 刘晓娟, 程斌, 任明见, 徐如宏, 张素勤, 张立异, 何方. 燕麦属植物核糖体DNA染色体定位及45S rDNA的系统进化分析[J]. 作物杂志, 2021, (4): 10–17
[2] 王堽, 於丽华, 赵慧杰, 刘钰, 耿贵. 不同时期NaCl胁迫对甜菜生长及光合作用的影响[J]. 作物杂志, 2021, (4): 99–104
[3] 王丽芳, 张德健, 张婷婷. 耕作方式对燕麦田土壤微生物群落多样性的影响[J]. 作物杂志, 2021, (3): 57–64
[4] 周月霞, 范昱, 阮景军, 严俊, 赖弟利, 彭艳, 唐勇, 翁文凤, 程剑平. 燕麦籽粒营养与农艺性状相关性分析[J]. 作物杂志, 2021, (2): 165–172
[5] 张学鹏, 李腾, 王彪, 刘晴, 刘涵瑜, 陶志强, 隋鹏. 玉米叶片“源”的高温胁迫阈值研究[J]. 作物杂志, 2021, (2): 62–70
[6] 周启龙. 西藏阿里19个燕麦引进品种的灰色关联度评价[J]. 作物杂志, 2021, (1): 26–31
[7] 王琦, 孙雯, 武俊英, 刘景辉, 赵宝平. 不同灌水量下喷施腐植酸对燕麦光合特性及产量的影响[J]. 作物杂志, 2021, (1): 98–103
[8] 刘文婷, 张新军, 杨才, 白静, 杨晓虹, 周海涛. 裸燕麦营养品质的差异性及形成因子解析[J]. 作物杂志, 2020, (5): 140–147
[9] 吴琼, 丁凯鑫, 余明龙, 黄文婷, 左官强, 冯乃杰, 郑殿峰. 新型植物生长调节剂B2对玉米光合荧光特性及产量的影响[J]. 作物杂志, 2020, (5): 174–181
[10] 周海涛, 赵孟圆, 张新军, 李天亮, 刘文婷, 刘振宁, 杨晓虹, 袁卉馥. 缩节胺和矮壮素对燕麦生长发育和产量的调控效应[J]. 作物杂志, 2020, (5): 188–193
[11] 孙道旺, 王艳青, 洪波, 卢文洁, 尹桂芳, 王莉花. 云南冬播燕麦的农艺性状主成分和聚类分析[J]. 作物杂志, 2020, (5): 80–87
[12] 张晓艳, 王晓楠, 曹焜, 孙宇峰. 5个工业大麻品种(系)纤维产量及产量构成因素的相关性分析[J]. 作物杂志, 2020, (4): 121–126
[13] 齐冰洁, 王敏, 张智勇, 贺鑫, 刘景辉. 燕麦种质资源矿质元素的多样性分析[J]. 作物杂志, 2020, (4): 72–78
[14] 赖弟利,范昱,朱红林,何凤,梁勇,徐欣然,文杰,王俊珍,严俊,程剑平. 燕麦耐盐性的生理生化指标网络分析[J]. 作物杂志, 2020, (2): 147–155
[15] 荆培培,任红茹,杨洪建,戴其根. 盐胁迫对2个不同盐敏感性水稻品种(系)叶片光合特性与产量的影响[J]. 作物杂志, 2020, (1): 67–75
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!