作物杂志, 2021, 37(5): 1-5 doi: 10.16035/j.issn.1001-7283.2021.05.001

专题综述

花生分子育种研究进展

蔺儒侠,1,2, 郭凤丹1,2, 王兴军1,2, 夏晗1,2, 侯蕾1,2

1山东师范大学生命科学学院,250014,山东济南

2山东省农业科学院生物技术研究中心/山东省作物遗传改良与生态生理重点实验室,250100,山东济南

Advances in Peanut Molecular Breeding

Lin Ruxia,1,2, Guo Fengdan1,2, Wang Xingjun1,2, Xia Han1,2, Hou Lei1,2

1School of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China

2Biotechnology Research Center of Shandong Academy of Agricultural Sciences/Shandong Key Laboratory of Crop Genetics and Breeding and Ecological Physiology, Jinan 250100, Shandong, China

通讯作者: 侯蕾,主要从事作物遗传育种工作,E-mail: houlei9042@163.com

收稿日期: 2020-09-15   修回日期: 2021-06-25   网络出版日期: 2021-08-25

基金资助: 山东省农业重大应用技术创新项目
山东省农业良种工程项目(2016LZGC025)
山东省农业良种工程项目(2017LZN032)
山东省重点研发项目(2019GSF107008)
山东省农业科学院青年英才
山东省泰山学者特聘工程(ts20190964)
山东省农业科学院农业科技创新工程(CXGC2018E13)

Received: 2020-09-15   Revised: 2021-06-25   Online: 2021-08-25

作者简介 About authors

蔺儒侠,主要从事作物遗传育种工作,E-mail: 2289048573@qq.com

摘要

随着高通量测序技术、基因组学分析技术和分子生物学技术的发展,分子育种已成为花生育种的重要手段之一。在新一代高通量测序技术的影响下,大量的花生功能基因和分子标记被挖掘出来,遗传连锁图谱更加精细化,强化了分子标记与常规育种的有机结合,促进了花生转基因技术发展。本文对国内外花生分子育种的研究进展进行综述,并对花生分子育种的主要问题和发展前景进行了讨论。

关键词: 花生; 分子育种; 高通量测序技术; 分子标记; 转基因

Abstract

With the development of high-throughput sequencing, genomics analysis and molecular biology technologies, molecular marker-assisted selection has become an important means of peanut breeding. Benefit from the new generation of high-throughput sequencing technology, a large number of molecular markers have been developed and genetic linkage maps were increasingly refined. Several new functional genes/QTLs had been discovered. Then the combination of molecular markers and conventional breeding work were strengthened. Great progress has also been achieved in peanut gene engineering studies. This article reviews the research progress of peanut molecular breeding in recent years and the problems and prospects of peanut molecular breeding.

Keywords: Peanut; Molecular breeding; High-throughput sequencing; Molecular markers; Transgene

PDF (577KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

蔺儒侠, 郭凤丹, 王兴军, 夏晗, 侯蕾. 花生分子育种研究进展. 作物杂志, 2021, 37(5): 1-5 doi:10.16035/j.issn.1001-7283.2021.05.001

Lin Ruxia, Guo Fengdan, Wang Xingjun, Xia Han, Hou Lei. Advances in Peanut Molecular Breeding. Crops, 2021, 37(5): 1-5 doi:10.16035/j.issn.1001-7283.2021.05.001

花生是世界范围内重要的油料作物和经济作物。近年来,花生全基因组测序的完成促进了分子标记的开发利用和关键农艺性状连锁QTL的鉴定,加速了转基因技术改良花生品种的进程,标志着分子育种已经成为花生新品种培育的重要技术手段之一。本文概述了近年来花生分子育种的研究进展,并对现代分子生物学和生物技术在花生育种方面存在的主要问题和应用前景进行了讨论。

1 花生分子标记的开发

分子标记是分子辅助选择和设计育种的基础,近年来花生中大量的分子标记被开发出来,为花生分子育种提供了便利条件。Zhao等[1]以二倍体野生种花生基因组为参考序列,分别从A和B基因组中鉴定出135 529和199 957个SSR位点,并分别构建了花生A和B基因组的物理图谱。Zhong等[2]对花生果针不同发育时期的转录组数据进行分析,挖掘出5058个SSR标记,利用其中的200个SSR标记对22个花生品种进行多态性分析,筛选出17个具有多态性的SSR标记。徐志军等[3]根据花生栽培种RNA-Seq数据,鉴定出19 143个SSR位点,其中13 477个SSR位点可用于分子标记开发。

在高通量和低成本测序技术的推动下,包括测序基因分型(genotyping-by-sequencing,GBS)、限制性位点关联的DNA测序技术(restriction-site associated DNA,ddRAD-seq)和特异位点扩增片段测序(specific-locus amplified fragment sequencing,SLAF-seq)等简化基因组测序技术也逐渐应用到花生分子标记的开发中。有研究[4]对169份花生核心种质进行GBS分析,从全基因组水平开发InDel标记,获得了10 401个InDel标记,并对其进行功能分类和注释,为进一步种质遗传资源研究和分子遗传改良奠定基础。Zhou等[5]以花生品种中花5号和ICGV86699为亲本构建重组自交系(recombinant inbred line,RIL)群体,通过分析ddRAD-seq所得的序列,在亲本中开发出53 257个SNP标记,从群体中开发出14 663个SNP标记。

2 花生遗传连锁图谱的构建

花生不同类型分子标记的大量开发,促进了高密度花生遗传连锁图谱的构建。Halward等[6]利用野生种群体构建了第1张花生属遗传图谱,该图谱含有117个RFLP标记和11个连锁群,总长度1063cM。Creste等[7]通过二倍体野生种种间杂交和再回交法组建群体,构建了含有167个RAPD标记和39个RFLP标记的遗传图谱。Milla等[8]也利用二倍体野生种杂交后代群体构建了一张含有78个AFLP标记的遗传连锁图谱。另外,近年栽培种花生的遗传连锁图谱构建也取得了很大进展。Varshney等[9]利用RIL群体构建了首张基于SSR标记的栽培种花生遗传图谱,Ravi等[10]在该图谱基础上又增加了56个位点,构建了包含191个SSR标记的遗传图谱,涵盖22个连锁群,全长1785.4cM,标记间平均距离9.3cM。Hong等[11]对栽培花生的3个RIL群体进行遗传图谱构建,检测到175个多态性SSR位点,涵盖22个连锁群,全长885.4cM。Zhou等[5]基于SNP测序构建花生栽培种遗传图谱,包括1621个SNP标记和64个SSR标记,涵盖20个连锁群,全长1446.7cM。Khan等[12]构建了具有1975个SNP位点和5022个SNP位点的2个高密度遗传连锁图谱。Agarwal等[13]也开发了基于SNP标记的高密度遗传图谱,包括8869个SNP标记,涵盖20个连锁群,全长3120cM。

3 重要性状的分子标记与QTL定位

鉴定重要性状连锁的分子标记是标记开发的关键环节。目前开发的花生重要性状的分子标记大多与抗病相关。夏友霖等[14]以AFLP分析结合BSA方法筛选到与晚斑病抗性连锁较紧密的3个AFLP标记,与抗性间的遗传距离分别为7.40、7.40和8.67cM。Shoba等[15]和Sukruth等[16]分别鉴定出1个和3个与晚斑病抗性显著相关的SSR标记。雷永等[17]采用AFLP技术和BSA分析方法,获得了与花生黄曲霉菌侵染抗性连锁的2个分子标记,与抗性间的遗传距离分别为8.8和6.6cM。任小平等[18]采用AFLP技术和BSA分析方法,获得2个与花生青枯病抗性基因连锁的分子标记,与抗性间的遗传距离分别为8.12和11.46cM。Herselman等[19]和肖洋等[20]采用BSA法获得与花生矮化病毒病抗性基因连锁的AFLP和SSR分子标记。黄莉等[21]通过筛选远杂9102和中花5号杂交后代衍生的RIL群体,获得了2个与花生含油量相关的SSR标记,其中标记2A5-250与低油特性的相关性为95.0%,标记2A5-240与高油特性的相关性为88.9%。有关花生关键性状连锁标记的开发仍然较少,在一定程度上限制了育种工作中分子标记辅助选择的利用。

花生重要性状关联的QTL和候选基因的定位为花生分子育种提供了有力的支撑。在抗病方面,Wang等[22]利用高抗青枯病品种远杂9102构建RIL群体,在B02染色体定位了4个与抗青枯病相关的QTL,其中QTL主效区域包含21个NBS-LRR基因。同样,Luo等[23]基于测序QTL定位方法(QTL-seq),在B02染色体上定位了1个与青枯病相关的QTL,区间大小为2.07Mb。在抗叶斑病方面,Agarwal等[13]利用Tifrunner和GT-C20构建的RIL群体,定位了7个与早斑病抗性关联的QTL、3个与晚斑病关联的QTL和9个与番茄斑萎病关联的QTL。Shirasawa等[24]利用感病品系Tag24和抗病品系GPBD4建立RIL群体,分别将晚斑病和锈病关联的候选QTL定位于A02和A03染色体1.4和2.7Mb基因组区间内。Agarwal等[25]利用SunOleic 97R和NC94022构建RIL群体,定位了3个与番茄斑萎病抗性相关的QTL,其中对表型变异贡献率最大的QTL位于89.5kb的物理距离范围内,利用该QTL连锁的竞争性等位基因特异性PCR(kompetitive allele specific PCR,KASP)标记能实现群体内抗病和感病个体的快速分离。

在产量和品质性状方面,Wang等[26]利用195份花生材料挖掘出13 435个高质量的SNP位点,通过GWAS分析发现93个SNP与4个产量性状连锁。Zhang等[27]采用花育36号和种质系6-3的RIL群体,鉴定出与百粒重、种子长度和种子宽度等性状相关的27个QTL。Pandey等[28]利用SunOleic 97R×NC94022和Tifrunner×GT-C20的RIL群体,分别鉴定出6个和9个与控制含油量关联的QTL。Liu等[29]以徐花13和中花6号的RIL为材料,检测到7个控制含油量的QTL,将位于A08染色体上的主效QTL qOCA08.1定位在0.8Mb的物理区间内,并发现了2个调控油脂合成的基因。

株型和脱壳率等重要农艺性状与花生的产量、抗病性和机械化收获息息相关。Li等[30]以直立型花生品种冀花5号和匍匐型品种M130的杂交群体为材料,通过SLAF-seq技术检测到39个与生长习性相关的QTL,其中有12个QTL在B05号染色体上0.17Mb的区间内,该区间多数基因与光和激素信号相关。Luo等[31]利用QTL-seq方法在远杂9102和徐州68-4杂交的RIL群体中发现2个与调控脱壳率相关的QTL,分别位于A09(2.75Mb)和B02(1.1Mb)染色体上,在这2个区段上包含9个与脱壳率相关的候选基因。

4 利用分子标记辅助选择培育高油酸花生

分子标记辅助育种与传统遗传育种相结合能够加速育种的进程。高油酸花生品质稳定,营养价值高,国内多家单位开展花生高油酸分子标记辅助育种,是迄今为止花生分子标记辅助选择技术应用到育种中最成功的例子。花生高油酸性状主要由2个主效基因FAD2AFAD2B控制,针对这2个主效基因突变位点已经开发的检测方法包括CAPS标记、KASP标记、等位基因特异PCR和PCR产物测序等[32,33,34]。赵术珍等[35]以花育23号和花育31号为母本,以高油酸花生品种Sunoleic95R、DF12和开农176为父本,利用优化的CAPS标记和PCR产物测序法以及FAD2基因KASP检测方法,对自交和回交后代进行检测,获得一批高油酸花生材料。Bera等[36]利用分子标记辅助回交技术,将高油酸种质SunOleic95R的2个FAD2突变等位基因导入高油酸花生育种系ICGV06100,轮回亲本油酸含量提高97%,亚油酸含量降低92%,油酸/亚油酸(O/L)比值增加到25。潘雷雷等[37]以鲁花11号为母本、开农1715为父本,利用PCR产物测序法和系谱法筛选出油酸含量80.40%、亚油酸含量2.50%、O/L比值32.16的高油酸花生新品种宇花91。以大面积推广的4个不同类型花生品种为轮回亲本,利用FAD2标记辅助回交选择,定向获得了24个稳定的高油酸改良材料[38,39]。Chu等[40]利用CAPS标记辅助选择技术对线虫抗性品种Tifguard油酸含量进行改良,育成油酸含量高的抗线虫新材料。

5 花生转基因研究

近年来,利用基因工程将外源基因导入花生,获得了一些优质的花生转基因品系,为花生育种和种质创新提供了另一个选择。目前,用于花生基因转化的主要有油脂合成相关基因、过敏原基因和抗性基因等。

5.1 油脂合成相关基因的转化

花生作为重要的油料作物,其脂肪酸含量和种类一直是受关注的问题。磷酸烯醇式丙酮酸羧化酶(PEPC)在脂肪酸合成过程中起着非常关键的作用。将AhPEPC基因反义表达载体转入花生,通过抑制花生中AhPEPC基因的表达,可提高转基因种子含油量5.7%~10.3%[41]AtLEC1参与调节种子或其他器官中贮藏脂类的生物合成与积累。Tang等[42]利用种胚特异启动子将AtLEC1基因转入花生,转基因花生种子含油量提高4.42%~15.89%,硬脂酸、油酸和亚油酸等脂肪酸含量在不同品系间也发生了显著变化。利用种子特异启动子Lectin和组成型启动子CaMV35S构建AhFAD2基因的RNAi干扰载体,分别转化丰花1号和花育23号获得转基因花生纯合体株系,各转基因株系中AhFAD2基因的转录水平普遍下调,后代株系种子的油酸含量显著提高,丰花1号和花育23号的转基因后代分别提高15.09%和36.40%[43]。与组成型启动子CaMV35S相比,Lectin启动子对AhFAD2基因表达的抑制效果更明显。

5.2 过敏原基因的转化

花生是重要的食物过敏原之一,在人体内会引起lgE介导的超敏反应,严重时会导致死亡。通过构建花生过敏原基因Arah2的敲除载体,转化花生,使转基因花生种子中Arah2基因表达量显著降低,且未检测到Arah2蛋白积累[44]。利用基因枪法用Arah2的RNAi载体转化花生,在3个转基因株系中Arah2的表达均受到显著抑制,其中2个株系中Arah6的表达也显著降低[45]

5.3 抗性基因的转化

在花生抗逆性方面,以抗虫、抗病、抗旱和抗除草剂基因方面研究较多。将烟草条纹病毒的外壳蛋白基因转入花生,对转基因纯合株系进行接种试验,结果表明转基因植株对病毒侵染抗性明显增强[46]。将豇豆胰蛋白抑制剂基因CtPI转入花生,在成熟胚中定向表达,明显提高了转基因花生对棉铃虫的抗性[47]。通过转化水稻几丁质酶基因,明显提高了转基因花生叶片中几丁质酶活性,比对照花生叶片高2~14倍,使转基因花生叶片获得对晚斑病、锈病和黄曲霉的抗性[48]。在抗旱基因方面,脱水响应元件转录因子DREB是一类可以激活多个干旱响应基因表达的转录因子,可提高作物抗旱性。王旭达等[49]将耐盐作物獐毛中的AlDREB2A基因导入花生中,提高了花生叶片相对含水量和脯氨酸含量,增强了植株的耐旱性。异戊烯基转移酶(IPT)是细胞分裂素生物合成途径中的关键酶。Qin等[50]用胁迫诱导启动子驱动的异戊烯基转移酶基因转化花生,转基因花生的耐旱性显著提高。为了培育抗除草剂品种,Chu等[51]Bcl-xL基因转入花生后,检测出1个T1代继续表达中等水平Bcl-xL的品系,经5μmol/L百草枯处理后的叶绿素水平明显高于对照,表现出对百草枯的耐受性。

6 问题与展望

花生全基因组测序、分子标记开发、图谱构建、QTL定位及转基因工程等领域的发展为花生分子育种奠定了坚实的基础。但与玉米、水稻等主要模式作物相比,花生分子育种研究明显落后,许多问题亟待进一步研究和解决。

6.1 加强与花生关键农艺性状连锁标记的开发

与花生抗性、产量和品质等重要农艺性状连锁的标记数量少,大大限制了分子标记辅助选择在育种中的应用。鉴定评价优异种质资源和突变体材料,解析更多关键农艺性状形成的分子机理,挖掘有用的基因和QTL,开发连锁的分子标记,是促进花生分子育种的重要支撑。

6.2 提高花生转基因效率

转基因效率低会影响基因工程改良,限制花生育种工作的发展。提高花生转基因效率是促进基因工程种质创新、研究基因功能的基础。

6.3 加大开发功能性分子标记

随着全基因组测序的完成,花生基因组学和功能基因组学研究将不断深入,利用高通量测序和SNP芯片技术对不同种质资源进行全面评价和解析,发掘更多有利用价值的基因和QTL,以及功能性分子标记,进而促进花生分子育种技术的发展和完善,分子育种将在花生精准改良中发挥更大的作用。

参考文献

Zhao C, Qiu J, Agarwal G, et al.

Genome-wide discovery of microsatellite markers from diploid progenitor species,Arachis duranensis and A. ipaensis,and their application in cultivated peanut (A. hypogaea)

Plant Science, 2017, 8:1209.

[本文引用: 1]

Zhong R, Zhou M, Zhao C, et al.

SSR marker development from peanut gynophore transcriptome sequencing

Plant Breeding, 2016, 135(1):111-117.

DOI:10.1111/pbr.2016.135.issue-1      URL     [本文引用: 1]

徐志军, 赵胜, 徐磊, .

基于RNA-seq数据的栽培种花生SSR位点鉴定和标记开发

中国农业科学, 2020, 53(4):695-706.

[本文引用: 1]

王娟, 刘宇, 李春娟, .

基于简化基因组的花生InDel标记开发和功能解析

植物遗传资源学报, 2019, 20(1):183-191.

[本文引用: 1]

Zhou X J, Xia Y L, Ren X P, et al.

Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site- associated DNA sequencing (ddRADseq)

BMC Genomics, 2014, 15(1):351.

DOI:10.1186/1471-2164-15-351      URL     [本文引用: 2]

Halward T, Stalker H T, Kochert G.

Development of an RFLP linkage map in diploid peanut species

Theoretical and Applied Genetics, 1993, 87(3):379-384.

DOI:10.1007/BF01184927      PMID:24190266      [本文引用: 1]

An RFLP linkage map of peanut has been developed for use in genetic studies and breeding programs aimed at improving the cultivated species (Arachis hypogaea L.). An F2 population derived from the interspecific hybridization of two related diploid species in the sectionArachis (A. stenosperma ×A. cardenasii) was used to construct the map. Both random genomic and cDNA clones were used to develop the framework of the map. In addition, three cDNA clones representing genes coding for enzymes involved in the lipid biosynthesis pathway have been mapped in peanut. Of the 100 genomic and 300 cDNA clones evaluated, 15 and 190, respectively, revealed polymorphisms among the parents of our mapping population. Unfortunately, a large number of these produced complex banding patterns that could not be mapped. Of the 132 markers analyzed for segregation, 117 are distributed among 11 linkage groups, while 15 have not yet been associated with any other marker. A total map distance of approximately 1063 cM has been covered to-date.

Creste S, Tsai S M, Valls J, et al.

Genetic characterization of Brazilian annual Arachis species from sections Arachis and Heteranthae using RAPD markers

Genetic Resources and Crop Evolution, 2005, 52(8):1079-1086.

DOI:10.1007/s10722-004-6098-9      URL     [本文引用: 1]

Milla S, Isleib T G, Stalker H T.

Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers

Genome, 2005, 48(1):1-11.

PMID:15729391      [本文引用: 1]

Cultivated peanut, Arachis hypogaea L., is a tetraploid (2n = 4x = 40) species thought to be of allopolyploid origin. Its closest relatives are the diploid (2n = 2x = 20) annual and perennial species included with it in Arachis sect. Arachis. Species in section Arachis represent an important source of novel alleles for improvement of cultivated peanut. A better understanding of the level of speciation and taxonomic relationships between taxa within section Arachis is a prerequisite to the effective use of this secondary gene pool in peanut breeding programs. The AFLP technique was used to determine intra- and interspecific relationships among and within 108 accessions of 26 species of this section. A total of 1328 fragments were generated with 8 primer combinations. From those, 239 bands ranging in size from 65 to 760 bp were scored as binary data. Genetic distances among accessions ranged from 0 to 0.50. Average distances among diploid species (0.30) were much higher than that detected between tetraploid species (0.05). Cluster analysis using different methods and principal component analysis were performed. The resulting grouping of accessions and species supports previous taxonomic classifications and genome designations. Based on genetic distances and cluster analysis, A-genome accessions KG 30029 (Arachis helodes) and KSSc 36009 (Arachis simpsonii) and B-genome accession KGBSPSc 30076 (A. ipaensis) were the most closely related to both Arachis hypogaea and Arachis monticola. This finding suggests their involvement in the evolution of the tetraploid peanut species.

Varshney R K, Bertioli D J, Moretzsohn M C, et al.

The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.)

Theoretical and Applied Genetics, 2009, 118(4):729-739.

DOI:10.1007/s00122-008-0933-x      PMID:19048225      [本文引用: 1]

Molecular markers and genetic linkage maps are pre-requisites for molecular breeding in any crop species. In case of peanut or groundnut (Arachis hypogaea L.), an amphidiploid (4X) species, not a single genetic map is, however, available based on a mapping population derived from cultivated genotypes. In order to develop a genetic linkage map for tetraploid cultivated groundnut, a total of 1,145 microsatellite or simple sequence repeat (SSR) markers available in public domain as well as unpublished markers from several sources were screened on two genotypes, TAG 24 and ICGV 86031 that are parents of a recombinant inbred line mapping population. As a result, 144 (12.6%) polymorphic markers were identified and these amplified a total of 150 loci. A total of 135 SSR loci could be mapped into 22 linkage groups (LGs). While six LGs had only two SSR loci, the other LGs contained 3 (LG_AhXV) to 15 (LG_AhVIII) loci. As the mapping population used for developing the genetic map segregates for drought tolerance traits, phenotyping data obtained for transpiration, transpiration efficiency, specific leaf area and SPAD chlorophyll meter reading (SCMR) for 2 years were analyzed together with genotyping data. Although, 2-5 QTLs for each trait mentioned above were identified, the phenotypic variation explained by these QTLs was in the range of 3.5-14.1%. In addition, alignment of two linkage groups (LGs) (LG_AhIII and LG_AhVI) of the developed genetic map was shown with available genetic maps of AA diploid genome of groundnut and Lotus and Medicago. The present study reports the construction of the first genetic map for cultivated groundnut and demonstrates its utility for molecular mapping of QTLs controlling drought tolerance related traits as well as establishing relationships with diploid AA genome of groundnut and model legume genome species. Therefore, the map should be useful for the community for a variety of applications.

Ravi K, Vadez V, Isobe S, et al.

Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.)

Theoretical and Applied Genetics, 2011, 122(6):1119-1132.

DOI:10.1007/s00122-010-1517-0      PMID:21191568      [本文引用: 1]

Cultivated groundnut or peanut (Arachis hypogaea L.), an allotetraploid (2n = 4x = 40), is a self pollinated and widely grown crop in the semi-arid regions of the world. Improvement of drought tolerance is an important area of research for groundnut breeding programmes. Therefore, for the identification of candidate QTLs for drought tolerance, a comprehensive and refined genetic map containing 191 SSR loci based on a single mapping population (TAG 24 x ICGV 86031), segregating for drought and surrogate traits was developed. Genotyping data and phenotyping data collected for more than ten drought related traits in 2-3 seasons were analyzed in detail for identification of main effect QTLs (M-QTLs) and epistatic QTLs (E-QTLs) using QTL Cartographer, QTLNetwork and Genotype Matrix Mapping (GMM) programmes. A total of 105 M-QTLs with 3.48-33.36% phenotypic variation explained (PVE) were identified using QTL Cartographer, while only 65 M-QTLs with 1.3-15.01% PVE were identified using QTLNetwork. A total of 53 M-QTLs were such which were identified using both programmes. On the other hand, GMM identified 186 (8.54-44.72% PVE) and 63 (7.11-21.13% PVE), three and two loci interactions, whereas only 8 E-QTL interactions with 1.7-8.34% PVE were identified through QTLNetwork. Interestingly a number of co-localized QTLs controlling 2-9 traits were also identified. The identification of few major, many minor M-QTLs and QTL × QTL interactions during the present study confirmed the complex and quantitative nature of drought tolerance in groundnut. This study suggests deployment of modern approaches like marker-assisted recurrent selection or genomic selection instead of marker-assisted backcrossing approach for breeding for drought tolerance in groundnut.

Hong Y, Chen X, Liang X, et al.

A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome

BMC Plant Biology, 2010, 10(1):17.

DOI:10.1186/1471-2229-10-17      URL     [本文引用: 1]

Khan S A, Zhang C, Ali N, et al.

High-density SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut (Arachis hlypogaea)

Theoretical and Applied Genetics, 2020, 133(7):2239-2257.

DOI:10.1007/s00122-020-03594-0      URL     [本文引用: 1]

Agarwal G, Clevenger J, Pandey M K, et al.

High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut

Plant Biotechnology Journal, 2018, 16(11):1954-1967.

DOI:10.1111/pbi.12930      PMID:29637729      [本文引用: 2]

Whole-genome resequencing (WGRS) of mapping populations has facilitated development of high-density genetic maps essential for fine mapping and candidate gene discovery for traits of interest in crop species. Leaf spots, including early leaf spot (ELS) and late leaf spot (LLS), and Tomato spotted wilt virus (TSWV) are devastating diseases in peanut causing significant yield loss. We generated WGRS data on a recombinant inbred line population, developed a SNP-based high-density genetic map, and conducted fine mapping, candidate gene discovery and marker validation for ELS, LLS and TSWV. The first sequence-based high-density map was constructed with 8869 SNPs assigned to 20 linkage groups, representing 20 chromosomes, for the 'T' population (Tifrunner × GT-C20) with a map length of 3120 cM and an average distance of 1.45 cM. The quantitative trait locus (QTL) analysis using high-density genetic map and multiple season phenotyping data identified 35 main-effect QTLs with phenotypic variation explained (PVE) from 6.32% to 47.63%. Among major-effect QTLs mapped, there were two QTLs for ELS on B05 with 47.42% PVE and B03 with 47.38% PVE, two QTLs for LLS on A05 with 47.63% and B03 with 34.03% PVE and one QTL for TSWV on B09 with 40.71% PVE. The epistasis and environment interaction analyses identified significant environmental effects on these traits. The identified QTL regions had disease resistance genes including R-genes and transcription factors. KASP markers were developed for major QTLs and validated in the population and are ready for further deployment in genomics-assisted breeding in peanut.© 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

夏友霖, 廖伯寿, 李加纳, .

花生晚斑病抗性 AFLP标记

中国油料作物学报, 2007, 29(3):318-321.

[本文引用: 1]

Shoba D, Manivannan N, Vindhiyavarman P, et al.

SSR markers associated for late leaf spot disease resistance by bulked segregant analysis in groundnut (Arachis hypogaea L.)

Euphytica, 2012, 188(2):265-272.

DOI:10.1007/s10681-012-0718-9      URL     [本文引用: 1]

Sukruth M, Paratwagh S A, Sujay V, et al.

Validation of markers linked to late leaf spot and rust resistance,and selection of superior genotypes among diverse recombinant inbred lines and backcross lines in peanut(Arachis hypogaea L.)

Euphytica, 2015, 204(2):343-351.

DOI:10.1007/s10681-014-1339-2      URL     [本文引用: 1]

雷永, 廖伯寿, 王圣玉, .

花生黄曲霉侵染抗性的 AFLP 标记

作物学报, 2005, 31(10):1349-1353.

[本文引用: 1]

任小平, 姜慧芳, 廖伯寿.

花生抗青枯病分子标记研究

植物遗传资源学报, 2008, 9(2):163-167.

[本文引用: 1]

Herselman L, Thwaites R, Kimmins F M, et al.

Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease

Theoretical and Applied Genetics, 2004, 109(7):1426-1433.

PMID:15290049      [本文引用: 1]

Groundnut rosette disease is the most destructive viral disease of peanut in Africa and can cause serious yield losses under favourable conditions. The development of disease-resistant cultivars is the most effective control strategy. Resistance to the aphid vector, Aphis craccivora, was identified in the breeding line ICG 12991 and is controlled by a single recessive gene. Bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) analysis were employed to identify DNA markers linked to aphid resistance and for the development of a partial genetic linkage map. A F(2:3) population was developed from a cross using the aphid-resistant parent ICG 12991. Genotyping was carried out in the F2 generation and phenotyping in the F3 generation. Results were used to assign individual F2 lines as homozygous-resistant, homozygous-susceptible or segregating. A total of 308 AFLP (20 EcoRI+3/MseI+3, 144 MluI+3/MseI+3 and 144 PstI+3/MseI+3) primer combinations were used to identify markers associated with aphid resistance in the F(2:3) population. Twenty putative markers were identified, of which 12 mapped to five linkage groups covering a map distance of 139.4 cM. A single recessive gene was mapped on linkage group 1, 3.9 cM from a marker originating from the susceptible parent, that explained 76.1% of the phenotypic variation for aphid resistance. This study represents the first report on the identification of molecular markers closely linked to aphid resistance to groundnut rosette disease and the construction of the first partial genetic linkage map for cultivated peanut.

肖洋, 晏立英, 雷永, .

花生矮化病毒病抗性SSR标记

中国油料作物学报, 2011, 33(6):561-566.

[本文引用: 1]

黄莉, 赵新燕, 张文华, .

利用RIL群体和自然群体检测与花生含油量相关的SSR标记

作物学报, 2011, 37(11):1967-1974.

[本文引用: 1]

Wang L F, Zhou X J, Ren X P, et al.

A Major and stable QTL for bacterial wilt resistance on chromosome B02 identified using a high-density SNP-based genetic linkage map in cultivated peanut Yuanza 9102 derived population

Frontiers in Genetics, 2018, 9:652.

DOI:10.3389/fgene.2018.00652      URL     [本文引用: 1]

Luo H, Pandey M K, Khan A W, et al.

Next-generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut (Arachis hypogaea L.)

Plant Biotechnology Journal, 2019, 17(12):2356-2369.

DOI:10.1111/pbi.v17.12      URL     [本文引用: 1]

Shirasawa K, Bhat R S, Khedikar Y P, et al.

Sequencing analysis of genetic loci for resistance for Late Leaf Spot and Rust in peanut (Arachis hypogaea L.)

Plant Science, 2018, 9:1727.

[本文引用: 1]

Agarwal G, Clevenger J, Kale S M, et al.

A recombination bin-map identified a major QTL for resistance to Tomato Spotted Wilt Virus in peanut (Arachis hypogaea)

Scientific Reports, 2019, 9(1):18246.

DOI:10.1038/s41598-019-54747-1      PMID:31796847      [本文引用: 1]

Tomato spotted wilt virus (TSWV) is a devastating disease to peanut growers in the South-eastern region of the United States. Newly released peanut cultivars in recent years are crucial as they have some levels of resistance to TSWV. One mapping population of recombinant inbred line (RIL) used in this study was derived from peanut lines of SunOleic 97R and NC94022. A whole genome re-sequencing approach was used to sequence these two parents and 140 RILs. A recombination bin-based genetic map was constructed, with 5,816 bins and 20 linkage groups covering a total length of 2004 cM. Using this map, we identified three QTLs which were colocalized on chromosome A01. One QTL had the largest effect of 36.51% to the phenotypic variation and encompassed 89.5 Kb genomic region. This genome region had a cluster of genes, which code for chitinases, strictosidine synthase-like, and NBS-LRR proteins. SNPs linked to this QTL were used to develop Kompetitive allele specific PCR (KASP) markers, and the validated KASP markers showed expected segregation of alleles coming from resistant and susceptible parents within the population. Therefore, this bin-map and QTL associated with TSWV resistance made it possible for functional gene mapping, map-based cloning, and marker-assisted breeding. This study identified the highest number of SNP makers and demonstrated recombination bin-based map for QTL identification in peanut. The chitinase gene clusters and NBS-LRR disease resistance genes in this region suggest the possible involvement in peanut resistance to TSWV.

Wang J, Yan C, Li Y, et al.

GWAS discovery of candidate genes for yield-related traits in peanut and support from earlier QTL mapping studies

Genes, 2019, 10(10):803.

DOI:10.3390/genes10100803      URL     [本文引用: 1]

Zhang S, Hu X, Miao H, et al.

QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut ( Arachis hypogaea L.)

BMC Plant Biology, 2019, 19(1):1-15.

DOI:10.1186/s12870-018-1600-2      URL     [本文引用: 1]

Pandey M K, Wang M L, Qiao L X, et al.

Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.)

BMC Genetics, 2014, 15(1):133.

DOI:10.1186/s12863-014-0133-4      URL     [本文引用: 1]

Liu N, Guo J, Zhou X, et al.

High-resolution mapping of a major and consensus quantitative trait locus for oil content to a ~ 0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.)

Theoretical and Applied Genetics, 2020, 133(1):37-49.

DOI:10.1007/s00122-019-03438-6      URL     [本文引用: 1]

Li L, Yang X, Cui S, et al.

Construction of high-density genetic map and mapping quantitative trait loci for growth habit-related traits of peanut (Arachis hypogaea L.)

Plant Science, 2019, 10:745.

[本文引用: 1]

Luo H, Pandey M K, Khan A W, et al.

Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut ( Arachis hypogaea L.)

Plant Biotechnology Journal, 2019, 17(7):1248-1260.

DOI:10.1111/pbi.2019.17.issue-7      URL     [本文引用: 1]

Chu Y, Holbrook C C, Oziasakins P, et al.

Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut

Crop Science, 2009, 49(6):2029-2036.

DOI:10.2135/cropsci2009.01.0021      URL     [本文引用: 1]

Yu H T, Yang W Q, Tang Y Y, et al.

An AS-PCR assay for accurate genotyping of FAD2A/FAD2B genes in peanuts (Arachis hypogaea L.)

Grasas Y Aceites:International Journal of Fats and Oils, 2013, 64(4):395-399.

[本文引用: 1]

Zhao S, Li A, Li C, et al.

Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut

Electronic Journal of Biotechnology, 2017, 25:9-12.

DOI:10.1016/j.ejbt.2016.10.010      URL     [本文引用: 1]

赵术珍, 侯蕾, 李长生, .

分子标记辅助回交选育高油酸花生新种质

中国油料作物学报, 2017, 39(1):30-36.

[本文引用: 1]

Bera S K, Kamdar J H, Kasundra S V, et al.

Steady expression of high oleic acid in peanut bred by marker-assisted backcrossing for fatty acid desaturase mutant alleles and its effect on seed germination along with other seedling traits

PLoS ONE, 2019, 14(12):e0226252.

DOI:10.1371/journal.pone.0226252      URL     [本文引用: 1]

潘雷雷, 姜亚男, 周文杰, .

高油酸花生新品种宇花91的选育

生物工程学报, 2019, 35(9):1698-1706.

[本文引用: 1]

Huang B, Qi F, Sun Z, et al.

Marker-assisted backcrossing to improve seed oleic acid content in four elite and popular peanut (Arachis hypogaea L.) cultivars with high oil content

Breeding Science, 2019, 69(2):234-243.

DOI:10.1270/jsbbs.18107      URL     [本文引用: 1]

黄冰艳, 董文召, 汤丰收, .

以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价

作物学报, 2019, 45(4):546-555.

DOI:10.3724/SP.J.1006.2019.84096      [本文引用: 1]

高油酸是花生重要的品质性状, 高油酸花生及其制品具有较好的品质稳定性和较高的营养和保健价值。我国高油酸花生的育成品种类型较少, 遗传背景不够丰富, 育种手段比较单一。针对上述问题, 本研究开发了AS-PCR-MP高油酸分子标记检测方法, 优化了KASP分子标记检测体系, 利用分子标记辅助连续回交, 结合近红外品质快速检测技术及南繁加代技术, 以河南省大面积推广的豫花15、远杂9102、豫花9327、豫花9326四个不同类型品种为轮回亲本, 5年内连续回交4代、自交4代, 定向获得了4个轮回亲本遗传背景的BC<sub>4</sub>F<sub>4</sub>和BC<sub>4</sub>F<sub>5</sub>稳定高油酸改良材料24个。调查分析了BC<sub>4</sub>F<sub>4</sub>和BC<sub>4</sub>F<sub>5</sub>单株的13个农艺性状与轮回亲本的相似度, 并利用轮回亲本与非轮回亲本之间的差异SNP的KASP分子标记进行了BC<sub>4</sub>F<sub>4</sub>和BC<sub>4</sub>F<sub>5</sub>株系的轮回亲本遗传背景检测。结果表明, 轮回亲本的遗传背景在BC<sub>4</sub>F<sub>5</sub>的比例为79.49%~92.31%。本研究为快速高效改良花生油酸含量探索了新的方法, 获得的新品系拓展了高油酸花生的遗传背景, 获得的一系列近等基因系可作为遗传研究材料进一步加以利用。

Chu Y, Wu C L, Holbrook C C, et al.

Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut

Plant Genome, 2011, 4(2):110.

DOI:10.3835/plantgenome2011.01.0001      URL     [本文引用: 1]

潘丽娟.

花生PEPC家族基因分析及反义PEPC1基因遗传转化研究

泰安:山东农业大学, 2017.

[本文引用: 1]

Tang G Y, Xu P L, Ma W H, et al.

Seed-specific expression of AtLEC1 increased oil content and altered fatty acid composition in seeds of peanut (Arachis hypogaea L.)

Plant Science, 2018, 9:260.

[本文引用: 1]

徐平丽, 唐桂英, 毕玉平, .

花生AhFAD2基因抑制表达的转基因后代分析

生物工程学报, 2018, 34(9):104-112.

[本文引用: 1]

Dodo H W, Konan K N, Chen F C, et al.

Alleviating peanut allergy using genetic engineering:the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity

Plant Biotechnology Journal, 2010, 6(2):135-145.

DOI:10.1111/pbi.2008.6.issue-2      URL     [本文引用: 1]

Chu Y, Faustinelli P, Ramos M L, et al.

Reduction of lgE binding and nonpromotion of Aspergillus flavus fungal growth by simultaneously silencing Ara h 2 and Ara h 6 in peanut

Journal of Agricultural and Food Chemistry, 2008, 56(23):11225-11233.

DOI:10.1021/jf802600r      PMID:19007236      [本文引用: 1]

The most potent peanut allergens, Ara h 2 and Ara h 6, were silenced in transgenic plants by RNA interference. Three independent transgenic lines were recovered after microprojectile bombardment, of which two contained single, integrated copies of the transgene. The third line contained multiple copies of the transgene. Ara h 2 expression was significantly suppressed in all three lines, whereas Ara h 6 was reduced in two lines. Expression of peanut allergens Ara h 1 and Ara h 3 was not noticeably affected. Significant reduction of human IgE binding to Ara h 2 and Ara h 6 also was observed. Seed weight and germination data from transgenic and nontransgenic segregants showed no significant differences. Data collected from in vitro Aspergillus flavus infection indicate no significant difference in fungal growth between the transgenic lines and the nontransgenic controls. These data suggest that silencing Ara h 2 and Ara h 6 is a feasible approach to produce hypoallergenic peanut.

Mehta R, Radhakrishnan T, Kumar A, et al.

Coat protein-mediated transgenic resistance of peanut (Arachis hypogaea L.) to peanut stem necrosis disease through Agrobacterium-mediated genetic transformation

Virus Disease, 2013, 24(2):205-213.

[本文引用: 1]

徐平丽, 单雷, 柳展基, .

农杆菌介导抗虫CpTI基因的花生遗传转化及转基因植株的再生

中国油料作物学报, 2003, 25(2):5-8.

[本文引用: 1]

Prasad K, Bhatnagar-Mathur P, Waliyar F, et al.

Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens

Journal of Plant Biochemistry and Biotechnology, 2013, 22(2):222-233.

DOI:10.1007/s13562-012-0155-9      URL     [本文引用: 1]

王旭达, 于树涛, 张高华, .

农杆菌介导花生转化体系的优化及转化AlDREB2A基因花生的耐旱性研究

中国农业大学学报, 2018, 23(7):26-35.

[本文引用: 1]

Qin H, Gu Q, Zhang J L, et al.

Regulated expresstion of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions

Plant and Cell Physiology, 2011, 52(11):1904-1914.

DOI:10.1093/pcp/pcr125      URL     [本文引用: 1]

Chu Y, Deng X Y, Faustinelli P, et al.

Bcl-xL transformed peanut (Arachis hypogaea L.) exhibits paraquat tolerance

Plant Cell Reports, 2008, 27(1):85-92.

PMID:17891400      [本文引用: 1]

The human Bcl-xL gene was transformed into peanut cultivar Georgia Green via microprojectile bombardment. Following selection on hygromycin-containing medium and regeneration, eighty hygromycin-resistant callus clusters were recovered. Southern blot analysis of ten fertile lines revealed multiple insertions of the Bcl-xL transgene in most lines. Western blot analysis of primary plants and T1 progenies demonstrated detectable levels of Bcl-xL expression in four transgenic lines. We could not detect Bcl-xL protein in other tested lines even though transcripts were identified by RT-PCR and northern blot. Three of the western-positive transgenic lines either were sterile or the progenies lost the expressive copy of Bcl-xL. Only T1 progenies from line BX25-4-2a-19 continued to express an intermediate level of Bcl-xL. This line demonstrated paraquat tolerance at the 5 microM level. Tolerance to salt of T1 and T2 seeds from seven other transgenic lines also was tested, but no tolerance was found in these lines. A high level of Bcl-xL transgene expression may be deleterious to plant growth and development even though the gene may confer tolerance to other abiotic and biotic stresses such as drought and pathogens.

/