作物杂志,2021, 第5期: 1–5 doi: 10.16035/j.issn.1001-7283.2021.05.001

• 专题综述 •    下一篇

花生分子育种研究进展

蔺儒侠1,2(), 郭凤丹1,2, 王兴军1,2, 夏晗1,2, 侯蕾1,2   

  1. 1山东师范大学生命科学学院,250014,山东济南
    2山东省农业科学院生物技术研究中心/山东省作物遗传改良与生态生理重点实验室,250100,山东济南
  • 收稿日期:2020-09-15 修回日期:2021-06-25 出版日期:2021-10-15 发布日期:2021-10-14
  • 通讯作者: 侯蕾
  • 作者简介:蔺儒侠,主要从事作物遗传育种工作,E-mail: 2289048573@qq.com
  • 基金资助:
    山东省农业重大应用技术创新项目;山东省农业良种工程项目(2016LZGC025);山东省农业良种工程项目(2017LZN032);山东省重点研发项目(2019GSF107008);山东省农业科学院青年英才;山东省泰山学者特聘工程(ts20190964);山东省农业科学院农业科技创新工程(CXGC2018E13)

Advances in Peanut Molecular Breeding

Lin Ruxia1,2(), Guo Fengdan1,2, Wang Xingjun1,2, Xia Han1,2, Hou Lei1,2   

  1. 1School of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
    2Biotechnology Research Center of Shandong Academy of Agricultural Sciences/Shandong Key Laboratory of Crop Genetics and Breeding and Ecological Physiology, Jinan 250100, Shandong, China
  • Received:2020-09-15 Revised:2021-06-25 Online:2021-10-15 Published:2021-10-14
  • Contact: Hou Lei

摘要:

随着高通量测序技术、基因组学分析技术和分子生物学技术的发展,分子育种已成为花生育种的重要手段之一。在新一代高通量测序技术的影响下,大量的花生功能基因和分子标记被挖掘出来,遗传连锁图谱更加精细化,强化了分子标记与常规育种的有机结合,促进了花生转基因技术发展。本文对国内外花生分子育种的研究进展进行综述,并对花生分子育种的主要问题和发展前景进行了讨论。

关键词: 花生, 分子育种, 高通量测序技术, 分子标记, 转基因

Abstract:

With the development of high-throughput sequencing, genomics analysis and molecular biology technologies, molecular marker-assisted selection has become an important means of peanut breeding. Benefit from the new generation of high-throughput sequencing technology, a large number of molecular markers have been developed and genetic linkage maps were increasingly refined. Several new functional genes/QTLs had been discovered. Then the combination of molecular markers and conventional breeding work were strengthened. Great progress has also been achieved in peanut gene engineering studies. This article reviews the research progress of peanut molecular breeding in recent years and the problems and prospects of peanut molecular breeding.

Key words: Peanut, Molecular breeding, High-throughput sequencing, Molecular markers, Transgene

[1] Zhao C, Qiu J, Agarwal G, et al. Genome-wide discovery of microsatellite markers from diploid progenitor species,Arachis duranensis and A. ipaensis,and their application in cultivated peanut (A. hypogaea). Plant Science, 2017, 8:1209.
[2] Zhong R, Zhou M, Zhao C, et al. SSR marker development from peanut gynophore transcriptome sequencing. Plant Breeding, 2016, 135(1):111-117.
doi: 10.1111/pbr.2016.135.issue-1
[3] 徐志军, 赵胜, 徐磊, 等. 基于RNA-seq数据的栽培种花生SSR位点鉴定和标记开发. 中国农业科学, 2020, 53(4):695-706.
[4] 王娟, 刘宇, 李春娟, 等. 基于简化基因组的花生InDel标记开发和功能解析. 植物遗传资源学报, 2019, 20(1):183-191.
[5] Zhou X J, Xia Y L, Ren X P, et al. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site- associated DNA sequencing (ddRADseq). BMC Genomics, 2014, 15(1):351.
doi: 10.1186/1471-2164-15-351
[6] Halward T, Stalker H T, Kochert G. Development of an RFLP linkage map in diploid peanut species. Theoretical and Applied Genetics, 1993, 87(3):379-384.
doi: 10.1007/BF01184927 pmid: 24190266
[7] Creste S, Tsai S M, Valls J, et al. Genetic characterization of Brazilian annual Arachis species from sections Arachis and Heteranthae using RAPD markers. Genetic Resources and Crop Evolution, 2005, 52(8):1079-1086.
doi: 10.1007/s10722-004-6098-9
[8] Milla S, Isleib T G, Stalker H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome, 2005, 48(1):1-11.
pmid: 15729391
[9] Varshney R K, Bertioli D J, Moretzsohn M C, et al. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2009, 118(4):729-739.
doi: 10.1007/s00122-008-0933-x pmid: 19048225
[10] Ravi K, Vadez V, Isobe S, et al. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2011, 122(6):1119-1132.
doi: 10.1007/s00122-010-1517-0 pmid: 21191568
[11] Hong Y, Chen X, Liang X, et al. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biology, 2010, 10(1):17.
doi: 10.1186/1471-2229-10-17
[12] Khan S A, Zhang C, Ali N, et al. High-density SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut (Arachis hlypogaea). Theoretical and Applied Genetics, 2020, 133(7):2239-2257.
doi: 10.1007/s00122-020-03594-0
[13] Agarwal G, Clevenger J, Pandey M K, et al. High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnology Journal, 2018, 16(11):1954-1967.
doi: 10.1111/pbi.12930 pmid: 29637729
[14] 夏友霖, 廖伯寿, 李加纳, 等. 花生晚斑病抗性 AFLP标记. 中国油料作物学报, 2007, 29(3):318-321.
[15] Shoba D, Manivannan N, Vindhiyavarman P, et al. SSR markers associated for late leaf spot disease resistance by bulked segregant analysis in groundnut (Arachis hypogaea L.). Euphytica, 2012, 188(2):265-272.
doi: 10.1007/s10681-012-0718-9
[16] Sukruth M, Paratwagh S A, Sujay V, et al. Validation of markers linked to late leaf spot and rust resistance,and selection of superior genotypes among diverse recombinant inbred lines and backcross lines in peanut(Arachis hypogaea L.). Euphytica, 2015, 204(2):343-351.
doi: 10.1007/s10681-014-1339-2
[17] 雷永, 廖伯寿, 王圣玉, 等. 花生黄曲霉侵染抗性的 AFLP 标记. 作物学报, 2005, 31(10):1349-1353.
[18] 任小平, 姜慧芳, 廖伯寿. 花生抗青枯病分子标记研究. 植物遗传资源学报, 2008, 9(2):163-167.
[19] Herselman L, Thwaites R, Kimmins F M, et al. Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theoretical and Applied Genetics, 2004, 109(7):1426-1433.
pmid: 15290049
[20] 肖洋, 晏立英, 雷永, 等. 花生矮化病毒病抗性SSR标记. 中国油料作物学报, 2011, 33(6):561-566.
[21] 黄莉, 赵新燕, 张文华, 等. 利用RIL群体和自然群体检测与花生含油量相关的SSR标记. 作物学报, 2011, 37(11):1967-1974.
[22] Wang L F, Zhou X J, Ren X P, et al. A Major and stable QTL for bacterial wilt resistance on chromosome B02 identified using a high-density SNP-based genetic linkage map in cultivated peanut Yuanza 9102 derived population. Frontiers in Genetics, 2018, 9:652.
doi: 10.3389/fgene.2018.00652
[23] Luo H, Pandey M K, Khan A W, et al. Next-generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut (Arachis hypogaea L.). Plant Biotechnology Journal, 2019, 17(12):2356-2369.
doi: 10.1111/pbi.v17.12
[24] Shirasawa K, Bhat R S, Khedikar Y P, et al. Sequencing analysis of genetic loci for resistance for Late Leaf Spot and Rust in peanut (Arachis hypogaea L.). Plant Science, 2018, 9:1727.
[25] Agarwal G, Clevenger J, Kale S M, et al. A recombination bin-map identified a major QTL for resistance to Tomato Spotted Wilt Virus in peanut (Arachis hypogaea). Scientific Reports, 2019, 9(1):18246.
doi: 10.1038/s41598-019-54747-1 pmid: 31796847
[26] Wang J, Yan C, Li Y, et al. GWAS discovery of candidate genes for yield-related traits in peanut and support from earlier QTL mapping studies. Genes, 2019, 10(10):803.
doi: 10.3390/genes10100803
[27] Zhang S, Hu X, Miao H, et al. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut ( Arachis hypogaea L.). BMC Plant Biology, 2019, 19(1):1-15.
doi: 10.1186/s12870-018-1600-2
[28] Pandey M K, Wang M L, Qiao L X, et al. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genetics, 2014, 15(1):133.
doi: 10.1186/s12863-014-0133-4
[29] Liu N, Guo J, Zhou X, et al. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a ~ 0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2020, 133(1):37-49.
doi: 10.1007/s00122-019-03438-6
[30] Li L, Yang X, Cui S, et al. Construction of high-density genetic map and mapping quantitative trait loci for growth habit-related traits of peanut (Arachis hypogaea L.). Plant Science, 2019, 10:745.
[31] Luo H, Pandey M K, Khan A W, et al. Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut ( Arachis hypogaea L.). Plant Biotechnology Journal, 2019, 17(7):1248-1260.
doi: 10.1111/pbi.2019.17.issue-7
[32] Chu Y, Holbrook C C, Oziasakins P, et al. Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Science, 2009, 49(6):2029-2036.
doi: 10.2135/cropsci2009.01.0021
[33] Yu H T, Yang W Q, Tang Y Y, et al. An AS-PCR assay for accurate genotyping of FAD2A/FAD2B genes in peanuts (Arachis hypogaea L.). Grasas Y Aceites:International Journal of Fats and Oils, 2013, 64(4):395-399.
[34] Zhao S, Li A, Li C, et al. Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut. Electronic Journal of Biotechnology, 2017, 25:9-12.
doi: 10.1016/j.ejbt.2016.10.010
[35] 赵术珍, 侯蕾, 李长生, 等. 分子标记辅助回交选育高油酸花生新种质. 中国油料作物学报, 2017, 39(1):30-36.
[36] Bera S K, Kamdar J H, Kasundra S V, et al. Steady expression of high oleic acid in peanut bred by marker-assisted backcrossing for fatty acid desaturase mutant alleles and its effect on seed germination along with other seedling traits. PLoS ONE, 2019, 14(12):e0226252.
doi: 10.1371/journal.pone.0226252
[37] 潘雷雷, 姜亚男, 周文杰, 等. 高油酸花生新品种宇花91的选育. 生物工程学报, 2019, 35(9):1698-1706.
[38] Huang B, Qi F, Sun Z, et al. Marker-assisted backcrossing to improve seed oleic acid content in four elite and popular peanut (Arachis hypogaea L.) cultivars with high oil content. Breeding Science, 2019, 69(2):234-243.
doi: 10.1270/jsbbs.18107
[39] 黄冰艳, 董文召, 汤丰收, 等. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价. 作物学报, 2019, 45(4):546-555.
doi: 10.3724/SP.J.1006.2019.84096
[40] Chu Y, Wu C L, Holbrook C C, et al. Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome, 2011, 4(2):110.
doi: 10.3835/plantgenome2011.01.0001
[41] 潘丽娟. 花生PEPC家族基因分析及反义PEPC1基因遗传转化研究. 泰安:山东农业大学, 2017.
[42] Tang G Y, Xu P L, Ma W H, et al. Seed-specific expression of AtLEC1 increased oil content and altered fatty acid composition in seeds of peanut (Arachis hypogaea L.). Plant Science, 2018, 9:260.
[43] 徐平丽, 唐桂英, 毕玉平, 等. 花生AhFAD2基因抑制表达的转基因后代分析. 生物工程学报, 2018, 34(9):104-112.
[44] Dodo H W, Konan K N, Chen F C, et al. Alleviating peanut allergy using genetic engineering:the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnology Journal, 2010, 6(2):135-145.
doi: 10.1111/pbi.2008.6.issue-2
[45] Chu Y, Faustinelli P, Ramos M L, et al. Reduction of lgE binding and nonpromotion of Aspergillus flavus fungal growth by simultaneously silencing Ara h 2 and Ara h 6 in peanut. Journal of Agricultural and Food Chemistry, 2008, 56(23):11225-11233.
doi: 10.1021/jf802600r pmid: 19007236
[46] Mehta R, Radhakrishnan T, Kumar A, et al. Coat protein-mediated transgenic resistance of peanut (Arachis hypogaea L.) to peanut stem necrosis disease through Agrobacterium-mediated genetic transformation. Virus Disease, 2013, 24(2):205-213.
[47] 徐平丽, 单雷, 柳展基, 等. 农杆菌介导抗虫CpTI基因的花生遗传转化及转基因植株的再生. 中国油料作物学报, 2003, 25(2):5-8.
[48] Prasad K, Bhatnagar-Mathur P, Waliyar F, et al. Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens. Journal of Plant Biochemistry and Biotechnology, 2013, 22(2):222-233.
doi: 10.1007/s13562-012-0155-9
[49] 王旭达, 于树涛, 张高华, 等. 农杆菌介导花生转化体系的优化及转化AlDREB2A基因花生的耐旱性研究. 中国农业大学学报, 2018, 23(7):26-35.
[50] Qin H, Gu Q, Zhang J L, et al. Regulated expresstion of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant and Cell Physiology, 2011, 52(11):1904-1914.
doi: 10.1093/pcp/pcr125
[51] Chu Y, Deng X Y, Faustinelli P, et al. Bcl-xL transformed peanut (Arachis hypogaea L.) exhibits paraquat tolerance. Plant Cell Reports, 2008, 27(1):85-92.
pmid: 17891400
[1] 段振盈, 徐新玉, 李星, 李在峰, 马骏, 姚占军. 12个主产区历史小麦品种抗叶锈病基因分析[J]. 作物杂志, 2021, (5): 20–27
[2] 娄树宝, 李凤云, 田国奎, 王海艳, 田振东, 王立春, 刘喜才, 王辉. 马铃薯种质资源晚疫病抗性评价及分子标记辅助筛选[J]. 作物杂志, 2021, (4): 196–201
[3] 于天一, 郑亚萍, 邱少芬, 姜大奇, 吴正锋, 郑永美, 孙学武, 沈浦, 王才斌, 张建成. 酸化土壤施钙对不同花生品种(系)钙吸收、利用及产量的影响[J]. 作物杂志, 2021, (4): 80–85
[4] 王通, 赵孝东, 甄萍萍, 陈静, 陈明娜, 陈娜, 潘丽娟, 王冕, 许静, 禹山林, 迟晓元, 张建成. 花生TCP转录因子的全基因组鉴定及组织表达特性分析[J]. 作物杂志, 2021, (2): 35–44
[5] 索炎炎, 张翔, 司贤宗, 李亮, 余琼, 余辉. 施用磷和钙对花生生长、产量及磷钙利用效率的影响[J]. 作物杂志, 2021, (1): 187–192
[6] 袁文娅, 赵晓雷, 周旭梅, 王磊, 彭勃, 王奕. waxy基因功能标记开发及在糯玉米育种中的应用[J]. 作物杂志, 2020, (4): 99–106
[7] 刘卫星,贺群岭,张枫叶,范小玉,陈雷,李可,吴继华. 大粒花生品种区域试验的AMMI模型分析[J]. 作物杂志, 2020, (2): 60–64
[8] 李松,张世成,董云武,施德林,史云东. 基于SSR标记的云南腾冲水稻的遗传多样性分析[J]. 作物杂志, 2019, (5): 15–21
[9] 刘念析,陈亮,厉志,刘宝泉,刘佳,衣志刚,董志敏,王曙明. 大豆抗病分子标记的研究进展[J]. 作物杂志, 2019, (4): 10–16
[10] 赵越,孙宇峰,韩承伟,韩喜财,姜颖,曹焜,王晓楠. 分子标记技术在工业大麻性别分化研究中的应用进展[J]. 作物杂志, 2019, (3): 20–23
[11] 鲁守平,张华,孟昭东,穆春华. 利用分子标记技术对玉米自交系子粒油分的改良研究[J]. 作物杂志, 2019, (3): 24–28
[12] 房裕东,韩天富. 作物快速育种技术研究进展[J]. 作物杂志, 2019, (2): 1–7
[13] 郭利磊,朱家林,孙世贤,闫硕. 转基因作物的生物安全:基因漂移及其潜在生态风险的研究和管控[J]. 作物杂志, 2019, (2): 8–14
[14] 王伟伟, 王洪洋, 刘晶, 梁静思, 李灿辉, 唐唯. 马铃薯重要性状QTL定位及3个抗病性状分子标记辅助选育[J]. 作物杂志, 2018, (6): 10–16
[15] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102–105
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!