作物杂志, 2021, 37(6): 1-8 doi: 10.16035/j.issn.1001-7283.2021.06.001

专题综述

根系分泌物对根际土壤关键氮转化过程的影响

王锐,, 陈士勇, 陈志青, 崔培媛, 卢豪, 杨艳菊, 张海鹏,, 张洪程,

江苏省作物栽培生理重点实验室/江苏省粮食作物现代产业技术协同创新中心/农业农村部长江流域稻作技术创新中心,225009,江苏扬州

Effects of Root Exudates on Key Processes of Soil Nitrogen Cycling: A Review

Wang Rui,, Chen Shiyong, Chen Zhiqing, Cui Peiyuan, Lu Hao, Yang Yanju, Zhang Haipeng,, Zhang Hongcheng,

Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Innovation Center of Rice Cultivation Technology in Yangtza River Valley of Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China

通讯作者: 张海鹏,从事作物氮素高效利用研究,E-mail: hpzhang@yzu.edu.cn; 张洪程为共同通信作者,从事作物栽培生理研究,E-mail: hczhang@yzu.edu.cn

收稿日期: 2021-04-27   修回日期: 2021-07-5   网络出版日期: 2021-11-15

基金资助: 国家自然科学基金(31901447)
国家自然科学基金(41701329)
江苏省重点研发计划(BE2020319)
江苏省“双创博士”(JSSCBS20211062)
扬州大学“青蓝工程”

Received: 2021-04-27   Revised: 2021-07-5   Online: 2021-11-15

作者简介 About authors

王锐,从事作物氮素高效利用研究,E-mail: ruiwang0812@163.com

摘要

根系分泌物是影响土壤氮素转化、N2O排放和植株氮肥利用率的重要因素之一,也是土壤学、植物营养学、作物生理生态与耕作栽培学、环境科学等学科的重要关注点。为全面认识根系分泌物在土壤氮循环中的作用,综述了根系分泌物的种类和测定方法,介绍了根系分泌物影响土壤关键氮转化过程及N2O排放的机理,根系分泌物对土壤硝化和反硝化过程及N2O排放的抑制作用,并对该领域未来的研究方向进行了展望。为土壤氮素转化的土壤–植物–微生物互作机制研究提供一定参考,以进一步提高氮肥利用率,减少氮肥引起的环境污染。

关键词: 根系分泌物; 氮素; 矿化和固定过程; 硝化过程; 反硝化过程; N2O排放

Abstract

Root exudates play an important role in soil nitrogen cycle, N2O emissions, and plants nitrogen use efficiency, and it is also at the forefront of soil science, plant nutrition, environmental science and interdisciplinary. In order to understand the effects of root exudates on the nitrogen cycle in the soil, this position paper presents the fractions and the methods to study root exudates. The effects of root exudates on the most important nitrogen conversion processes in soils were investigated. The ability to suppress soil nitrification, denitrification and N2O emissions through the release of exudates from plant roots is highlighted and the further prospects are suggested. This work will provide some references for the investigation of the nitrogen cycle mechanism of interaction effects between soil-plant-microorganisms to further improve the utilization rate of nitrogen fertilizer and reduce the environmental pollution caused by nitrogen fertilizer.

Keywords: Root exudates; Nitrogen; Mineralization and immobilization; Nitrification; Denitrification; N2O emission

PDF (690KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王锐, 陈士勇, 陈志青, 崔培媛, 卢豪, 杨艳菊, 张海鹏, 张洪程. 根系分泌物对根际土壤关键氮转化过程的影响. 作物杂志, 2021, 37(6): 1-8 doi:10.16035/j.issn.1001-7283.2021.06.001

Wang Rui, Chen Shiyong, Chen Zhiqing, Cui Peiyuan, Lu Hao, Yang Yanju, Zhang Haipeng, Zhang Hongcheng. Effects of Root Exudates on Key Processes of Soil Nitrogen Cycling: A Review. Crops, 2021, 37(6): 1-8 doi:10.16035/j.issn.1001-7283.2021.06.001

氮是植株生长的必需营养元素之一。氮肥的施用可以增加作物产量,满足人们日益增长的粮食需求[1]。自人工固氮发明以来,大量人工固定的氮肥被投入到农业生产系统中,使世界粮食产量大大增加,保证了世界粮食安全。但是,氮肥大量施用也付出了巨大的环境成本,如温室效应、地下水硝酸盐污染、地表水体富营养化等[2]。有学者[3]提出了各种措施来提高氮肥利用率,减少氮肥用量,然而世界范围内氮肥用量不仅没有下降,相反在过去50年中增加了4倍[4]。就我国而言,近几年平均氮肥用量高达200kg/hm2,显著高于世界其他国家的平均水平[5,6,7],但是氮肥利用率却较低,仅为30%左右[8]。大部分氮肥流失到环境中,造成了严重环境污染问题。因此,提高氮肥利用率、减少氮肥流失造成的环境污染仍是目前氮肥施用过程中值得研究的重要问题。

氮的固定,有机氮的矿化、氨化、硝化和反硝化作用是组成土壤氮循环的主要过程,其决定土壤氮的形态并与植株氮肥利用率密切相关[9]。其中,硝化过程是将稳定的铵态氮转化为移动性较强的硝态氮,增加了土壤氮素流失的风险[10]。植株根际氮的流失、地下水和地表水硝态氮含量及N2O排放均与硝化作用相关,是导致环境变差的原因之一。据估算,农业生态系统流失的硝态氮到2050年将达到每年61.5Tg[11,12,13],并且当前化学氮肥的持续较高投入还会促使土壤硝化能力逐渐增强[14]。这些具有高硝化能力且高产出的土壤导致投入的70%氮肥流失[15]。预计到2050年,氮肥的投入将成倍增长,达到每年300Tg,这将进一步增加农业系统氮的损失,造成更加严重的环境问题[11]。反硝化作用则是农田生态系统,特别是稻田氮肥损失的主要途径,损失约占稻田氮肥投入的40%以上[16],并且硝化和反硝化过程释放的中间产物N2O是目前最具破坏性的温室气体。据估算[17],每年有将近17Tg的氮以N2O的形式排放到大气中。由于氮肥用量的增加,预计到2100年,全球N2O排放量将是现在的4倍。世界农业系统排放了大气中将近30%的NO和70%的N2O[18]。综上所述,硝化和反硝化过程对土壤无机氮形态、温室气体排放和氮损失都具有显著影响。为了抑制氮的流失,人们开发了多种手段包括利用多种形态的氮肥作为氮源,来达到降低硝化和反硝化过程造成的氮损失和N2O排放的目的。

作物主要通过根系从土壤中吸收氮素,因此,根系及其微环境(根际)是氮素养分进入作物体内的门户和桥梁。根系分泌物是植株与土壤进行物质交换和信息传递的重要载体,也是根际对话的主要调控者[19]。根系分泌物对根际土壤氮素养分的转化过程决定氮素养分供应的强度和有效性,并最终影响作物氮肥的利用效率和作物产量。虽然目前针对植株根系分泌物和土壤氮转化过程的研究都已经取得了很大的进步,但有关植株根系分泌物对土壤关键氮转化过程的研究还较少。因此,本文综述了植株根系分泌物对土壤关键氮转化过程的影响,系统地介绍了根系分泌物介导下的植物―土壤―微生物的相互作用方式与机理,以及对土壤关键氮转化过程的影响,为揭示植物―土壤―微生物系统对氮肥利用率、环境污染和N2O排放等方面的影响提供参考。

1 根系分泌物的种类及采集方法

根系分泌物(root exudate)是指在特定环境条件下,植株根系的不同部位释放到根际环境中有机物质的总称[20,21,22,23],主要包括渗出物、分泌物和排泄物等。根系分泌物按照分子量的高低分为2类,高分子量根系分泌物主要有黏胶和胞外酶,低分子量根系分泌物主要包括有机酸、糖、酚和氨基酸[24]。根系分泌物还可以按照种类不同分为糖类、有机酸类、氨基酸类、脂肪酸类、蛋白质和生长因子等[25]

目前,植株根系分泌物的采集、测定及分类方法已日趋成熟且应用广泛。根据检测地点不同,分为原位收集和扰动收集[26];按照培养介质不同分为水培法、土培法和基质培(砂培、蛭石等)收集法[27];还可以根据鉴定方法不同分为生物测试法和仪器分析法。生物测试法是根据某些细菌和植株幼苗对分泌物中特定组分的敏感性进行的定性分析。目前应用较为广泛的鉴定根系分泌物仪器主要有红外光谱仪、毛细管电泳仪、气相色谱仪、质谱仪和离子色谱仪等。

2 根系分泌物对氮素矿化和固定的影响

氮素矿化和固定过程因决定着土壤氮素的形态及有效性而受到了广大研究者的重视。有研究[28,29]用葡萄糖和草酸模拟根系分泌物对森林土壤氮素转化的影响,发现二者均促进了氮素的固定,使土壤中矿质态氮含量下降。Jilling等[30]发现,常见根系分泌物如葡萄糖与草酸等可以通过调动矿物伴生有机质(MAOM)为植物和微生物富氮提供可能性。根系分泌物促进土壤氮的固定主要是由于其中含有微生物可利用的碳源,使根际微生物数量增加,因此,微生物自身固定了一定量的氮素。Nardi等[31]研究表明,根系分泌物中的黄酮类物质可以促进土壤中固氮细菌数量的增加,促进氮的固定。豆科作物作为大家所熟知的固氮作物,其根系分泌物中所特有的异黄酮对固氮起着主要作用。异黄酮可以吸引更多的固氮细菌在根际范围内,使更多的氮固定在植株和土壤中[32]。根系分泌物中的糖类、苯并噁唑嗪酮和氨基酸类物质可能是促进土壤固氮细菌提高固氮能力的主要物质[33]

根系分泌物还可以通过促进与土壤氮素矿化相关的微生物和相关酶的活性来促进有机氮的矿化过程[34]。根系分泌物可以作为微生物活动所必需的能量物质,促进与矿化相关的微生物活性,同时通过激发效应促进土壤氮的矿化过程。Meier等[35]对森林土壤的研究表明,根系分泌物可以通过促进多酚还原酶、过氧化物酶和降解有机氮相关的氨基葡萄糖酐酶的活性来促进土壤有机氮的矿化。Pathan等[36]研究发现,玉米根系分泌物可以通过提高根际土壤脲酶的活性而促进有机氮向矿质态氮转化。根系分泌物除了通过分泌含碳有机物、低分子有机酸等物质影响与土壤氮素矿化相关微生物的数量和酶活性,从而间接影响土壤氮素的矿化和固定,根系分泌物还可以通过直接分泌氮素来影响土壤氮素的矿化速率[37]。Morris等[38]研究发现,在美国西部草原土壤上一年生旱雀麦草的根系分泌物中含有较高的有效氮,这些有效氮激发了根际土壤氮素的矿化。

根系分泌物除了具有促进氮素固定和矿化的功能,也可抑制氮素固定和矿化过程。根系分泌物还可以通过提供强大的选择性压力来减少根际微生物的多样性,降低土壤氮的矿化速率。研究[39]表明,根系分泌物中的某些酸性物质会抑制根际土壤氮的矿化和固定,主要是由于根系分泌物降低根际土壤的pH,导致与氮矿化和固定相关的微生物活性降低。

3 根系分泌物对硝化作用及N2O排放的影响

硝化作用是硝化微生物在有氧条件下,将较稳定的铵态氮氧化为活性较强、更易随水流失的硝态氮的过程[40]。硝化作用的发生降低了土壤对无机氮的固持能力,间接地增加了氮的损失。因此,硝化作用受到了广大研究者的重视。硝化和反硝化过程是有机废弃物和水生态系统中去除硝态氮的主要过程[41]。相反,在农业土壤中,快速和无规律的硝化作用导致氮肥利用率的下降,增加氮的流失和环境污染。虽然大多数植株既可以利用铵态氮又可以利用硝态氮作为自身生长所需氮源,但减少农业生态系统中硝化作用的速率并不是改变植株本身对无机氮形态的吸收能力,而是增加氮以铵态氮的形态而不是易移动的硝态氮在植株根际的持留时间,增加植株吸收氮的时间,减少因淋洗和反硝化作用损失的氮[42]

植株根系分泌物种类不同,对土壤硝化作用的影响也不同。根系分泌物中有些物质对硝化作用有影响,有些则没有明显影响。其中根据对硝化作用影响效果可以分为抑制作用和促进作用。

3.1 抑制作用

根系分泌物对土壤硝化作用抑制的机理主要分为2种(图1),一是抑制氨氧化过程中氨单加氧酶(ammonia monooxygenase,AMO)的活性抑制硝化作用;二是根系分泌物中具有抑制硝化作用的物质可以打破羟胺还原酶(hydroxylamine reductase,HR)、泛酸和辅酶Q之间的电子传递,这一电子传递是亚单胞杆菌的重要代谢功能[43,44,45]。也可能是通过影响氨氧化细菌(AOB)来影响硝化作用。目前越来越多的人认为,氨氧化古菌(AOA)在很多生态系统的硝化作用中起着主要的作用。AMO在AOA和AOB中都是控制硝化作用的主要因素,因此根系分泌物主要是通过影响AMO的活性来影响硝化活性[46]。根系分泌物既可以影响AOA,也可以影响AOB,但是通过影响HR这一途径仅能影响AOB的活性,HR对AOA的影响还需要进一步的研究和证实[47]

图1

图1   根系分泌物对土壤硝化过程的抑制作用

AMO:氨单加氧酶;HR:羟胺还原酶;NXR:亚硝酸盐氧化还原酶;AOA:氨氧化古菌;AOB:氨氧化细菌;NOB:亚硝酸盐氧化菌

Fig.1   Inhibition of root exudates on soil nitrification

AMO: ammonia monooxygenase; HR: hydroxylamine reductase; NXR: nitrite oxidoreductase; AOA: ammonia-oxidizing archaea; AOB: ammonia-oxidizing bacteria; NOB: nitrite oxidizing bacteria


研究[46,48-51]表明,在牧草、高梁、小麦和大麦植株根系分泌物中可以检测到抑制硝化作用的物质。在营养液条件下,高梁根系分泌的苯丙酯(MHPP)对硝化作用具有一定的抑制效果。MHPP对硝化作用的抑制主要是通过抑制AMO的活性来达到抑制硝化作用的目的[48]。高粱根系分泌物中的苯醌也具有抑制硝化作用的能力[49]。苯基化合物在玉凤花的根系分泌物中也具有抑制硝化作用的能力,苯醌的抑制效果显著高于香豆素和阿魏酸,后两者对硝化作用的抑制效果几乎可以忽略[52]。这些结果表明,根系渗出物和根系组织在分化过程中产生的物质对硝化作用的抑制也起到了很重要的作用。从西黄松种子根部分离得到的水黄皮素也对土壤硝化作用表现出了很强的抑制效果[53,54,55,56]。水黄皮素中的呋喃环可能在硝化过程中起着关键性的作用[57]。据报道[58],十字花科植物根系组织脱落过程中产生的异硫氰酸盐也具有很强的抑制土壤硝化作用的能力,并且十字花科的作物残茬也可能对土壤硝化作用产生抑制。在水稻根系分泌物中分离鉴定的脂肪醇类化合物1,9-癸二醇同样具有较强的硝化抑制能力[59]。这些植株根系可以产生并释放抑制硝化微生物活性的物质,目前被称为生物硝化抑制剂(biological nitrification inhibition,BNI)。表1汇总了目前从根系分泌物中成功分离的具有抑制土壤硝化作用的物质。生物硝化抑制剂可以减少土壤氮损失,提高氮肥利用率,相对于人工合成的硝化抑制剂具有更多的优点,受到了广大科研工作者的重视。

表1   根系分泌物中抑制土壤硝化作用的物质及作用途径

Table 1  Nitrification inhibitors and its function ways in root exudates

根系分泌物成分
Root exudate component
植物
Plant
抑制途径
Inhibition pathway
参考文献
Reference
苯丙酯MHPP玉凤花AMO[48]
亚油酸Linoleic acid玉凤花AMO和HR[49]
亚麻酸Linolenic acid高梁AMO和HR[52-53]
脂肪醇1,9-decanediol水稻AMO[59-60]
脂肪酸化合物Sorgoleone高粱AMO和HR[61]
樱花素Sakuranetin高粱AMO和HR[62]
柠檬烯Limonene西黄松AMO[63]

新窗口打开| 下载CSV


虽然已经通过很多试验和生物技术手段成功地分离了不同化学种类生物硝化抑制剂,但其具有较高的专一性。高粱根系分泌物中可以抑制硝化作用的主要成分是不饱和脂肪酸中的亚油酸(linoleic acid)和亚麻酸(linolenic acid)。其他游离脂肪酸如硬质脂肪酸和花生四烯酸等并没有表现出硝化抑制的效果[64]。亚油酸对硝化作用的抑制效果随它转化成亚油酸甲酯(LA-ME)数量的增加而增加[62]。但是当它转化成亚油酸乙酯(LA-EE)时其抑制硝化作用的活性消失[65]。亚麻酸转化成亚麻酸甲酯(LN-ME)后活性消失,表明当化学结构具有很高的专一性时才可以表达出硝化抑制效果[66]

合成和释放生物硝化抑制剂受环境因素的影响。供给氮的形态对生物硝化抑制剂的合成和释放起着关键作用。在某些植株生长以硝态氮为氮源的情况下,其根系不释放生物硝化抑制剂,而以铵态氮为氮源的植株则可以释放硝化抑制剂[51]。根系组织除了生长在铵态氮环境下释放较高的生物硝化抑制剂外,将根系直接暴露在铵态氮环境下也会释放自身合成的硝化抑制剂[67]。除了受外源供给氮源形态的影响,植株根际的pH也是影响植株硝化抑制剂的另一主要因素。目前的研究[68]结果表明,高粱植株的根系即使在以铵态氮为氮源并且根际土壤pH>7的条件下,其根系也不分泌硝化抑制剂,只有当pH在5~6之间才分泌硝化抑制剂。除土壤pH外,土壤质地也是影响根系释放硝化抑制剂的一个重要因素。研究[68,69]表明,高梁根系适合在质地较轻、pH<6的酸性土壤上释放生物硝化抑制剂。

根系分泌物在抑制土壤硝化作用的同时也会在一定程度上抑制该过程N2O排放。研究[70]表明,杨梅树根系和分解落叶的时候可以通过分泌儿茶素和儿茶酸来抑制硝化作用及N2O排放。牧草的根系分泌物对土壤的硝化能力和硝化微生物具有明显的抑制效果,由于硝化微生物数量的减少,氨氧化过程比对照处理降低了90%,N2O的排放量也降低了90%[71]。N2O排放与根系分泌硝化抑制剂能力之间呈显著负相关。

3.2 促进作用

由于硝化作用在一定程度上促进了土壤氮的损失,降低植株氮的利用率,所以人们更加关注根系分泌物对硝化作用抑制的效果和强度,而关于根系分泌物对土壤硝化作用促进效果的关注较少。根系分泌物中的碳、有机物质、低分子的有机酸和氨基酸等物质均可以促进土壤硝化作用的进行。Weng等[72]在添加铵态氮的条件下研究秋茄树根际土壤氮转化过程中发现,秋茄树根系分泌的低分子有机酸如甲酸、酒石酸、氨基酸和糖类等与硝化微生物数量和硝化速率呈显著正相关关系,说明根系分泌物促进了土壤硝化作用的进行。Shi等[73]研究表明,根系分泌物中的糖类(葡萄糖、果糖和蔗糖)和低分子有机酸(奎宁酸、乳酸和顺丁烯二酸)可以为土壤微生物提供碳源、提高土壤pH和还原酶活性来增加细菌的数量,这也可能是根系分泌物促进硝化作用进行的原因。

根系分泌物促进硝化作用进行的机理主要是通过影响硝化微生物的活性达到促进硝化速率。研究[74]表明,通过光合作用将固定在植株体内的碳以根系分泌物的形式释放到土壤中,为土壤微生物提供丰富的营养,进而促进硝化微生物的活性。此外,根系分泌物中的低分子有机化合物,如糖类、有机酸、氨基酸等可以通过活化土壤中的矿质养分,进而提高硝化微生物的活性,使土壤的硝化作用增强[75]。某些具有通气组织的植株,如水稻,在淹水的条件下可以通过分泌氧气,在淹水氧气浓度较低的情况下来维持硝化作用的进行[76]。同时由于某些硝化微生物是异养菌,需要外界提供能源物质来进行硝化作用,根系分泌的葡萄糖等可以作为硝化微生物的能源物质促进硝化作用的进行[76]

4 根系分泌物对反硝化作用及N2O排放的影响

反硝化作用是在厌氧条件下,将NO3-和NO2-逐步还原为NO、N2O和N2的过程,是农业生态系统特别是稻田生态系统氮损失的主要途径[77]。研究[78,79,80]表明,根系分泌物对土壤反硝化氮损失的影响可以分为促进作用、抑制作用和无明显作用。由于反硝化作用是厌氧的过程,因此,根系分泌的氧气在根际会抑制土壤反硝化作用的进行;但根系分泌的氧气也可以通过促进硝化过程的进行,促使土壤中反硝化作用的底物NO3-增加,当NO3-移动到厌氧区域时,促进反硝化作用的进行及反硝化过程中间产物N2O排放的增加[78]。根系分泌的酸性物质会导致根际土壤酸化,土壤pH降低则会显著地增加反硝化过程的中间产物N2O的排放。研究[79]表明,当土壤pH低于4.4时,反硝化过程是土壤N2O排放的主要来源。Weng等[72]在添加硝态氮的条件下研究秋茄树根际土壤氮转化过程,发现秋茄树根系分泌的低分子有机酸如甲酸、酒石酸、氨基酸和糖类等与根际反硝化微生物数量以及反硝化潜力呈显著正相关,说明根系分泌物促进了土壤反硝化作用的进行。根系分泌物中的脂肪酸酰胺(fatty acid amides),如油酸酰胺(oleamide)和芥酸酰胺(erucamide)可以显著促进反硝化作用的进行,在高氮的环境条件下其促进效果更加明显[79]。脂肪酸酰胺主要是通过促进反硝化过程中硝酸还原酶和亚硝酸还原酶的活性来促进反硝化作用[80]。Michalet等[81]研究表明,由于镰形木夹苏木(Eprua falcata)是喜硝态氮的树木,其可以通过调节自身根系分泌物来满足对硝态氮的需求。其根系分泌物中的查耳酮类化合物、黄烷酮类化合物以及甘草素可以显著抑制根际土壤中硝酸还原酶活性和反硝化细菌的数量,进而抑制土壤反硝化作用。植物对氮形态的喜好也会通过控制根系分泌物来影响土壤反硝化作用。金花柚木喜好硝态氮,它会通过根系分泌4,7-二羟基黄浣酮和4,2,4-三羟基查耳酮来抑制土壤的反硝化作用,进而达到积累硝态氮的目的[80]

与根系分泌的酸性物质或氧气相比,根系分泌的葡萄糖、蔗糖等含碳有机物对土壤反硝化作用的影响则更加复杂[82]。首先,如前面提到的根系分泌的含碳物质可以促进土壤硝化作用的进行,间接地为反硝化过程提供一定的底物;其次,根系分泌的葡萄糖等可以作为反硝化过程的碳源,为反硝化微生物提供能量,促进反硝化过程及N2O的排放[83];最后,葡萄糖等根系分泌物可能会提高土壤中某些好氧微生物的活性,加速土壤中氧的消耗,使土壤达到厌氧环境,进而促进反硝化过程及N2O的排放[84,85]

5 展望

现代的生态系统是以人为中心的生态系统,人们向生态系统中投入大量氮肥,导致该生态系统具有较高的硝化、反硝化及N2O排放能力。进入农业系统中的活性氮将近95%迅速通过硝化作用转化成硝态氮,从而使硝酸盐成为主要的无机氮形态,这导致了当今农业系统氮肥利用率低的同时,由氮肥造成的环境污染更加严重。平均每年175Tg氮投入到全球的农业系统中,仅有不足1Tg氮存在于人体中,剩余的90%都通过硝化和反硝化损失,并以N2O或没有活性的N2形式返回到大气中[77,83]。然而,为了维持作物的产量,还需要继续投入氮肥。因此,土壤的硝化和反硝化过程应该被有效控制。

目前,针对根系分泌物的研究多数是在非生物环境下进行,对“植物―土壤”等系统的研究非常少,而针对“植物―土壤”系统中氮素的转化及其中以根系分泌物为媒介的相互作用方面更需要深入研究。通过某种特定的根系分泌物来控制土壤硝化和反硝化对减少农田生态系统N2O排放、改善土壤对氮的持留能力、提高氮肥利用率是十分必要的。人工合成的硝化抑制剂价钱昂贵,且作用不稳定,并且其对反硝化过程的影响目前还不明确。而植株的某些根系分泌物抑制硝化作用的同时也可以对反硝化作用产生影响,其功能强大。在以后的研究中,应该从基因角度去挖掘,发展成植株的一个特点,为发展低硝化能力、低N2O排放和氮高效的农业生产系统做准备。

参考文献

Sutton M A, Oenema O, Erisman J W, et al.

Too much of a good thing

Nature, 2011, 472(2):159-161.

DOI:10.1038/472159a      URL     [本文引用: 1]

Hungate B A, Dukes J S, Shaw M R, et al.

Nitrogen and climate change

Science, 2003, 302(5650):1512-1513.

PMID:14645831      [本文引用: 1]

Cai Z C, Shan Y H, Xu H.

Effects of nitrogen fertilization on CH4 emissions from rice fields

Soil Science and Plant Nutrition, 2007, 53(4):353-361.

DOI:10.1111/j.1747-0765.2007.00153.x      URL     [本文引用: 1]

Date O P.

Guatemala:FAO/WFP crop and food security assessment mission to Guatemala

(2010-02-23) [2021-04-01]. http://www.fao.org/giews/.

URL     [本文引用: 1]

Peng S B, Buresh R J, Huang J L, et al.

Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China

Field Crops Research, 2006, 96(1):37-47.

DOI:10.1016/j.fcr.2005.05.004      URL     [本文引用: 1]

Chen D, Suter H C, Islam A, et al.

Prospects of improving efficiency of fertiliser nitrogen in Australian agriculture:a review of enhanced efficiency fertilisers

Australian Journal of Soil Research, 2008, 46(4):289-301.

[本文引用: 1]

Geng J B, Chen J Q, Sun Y B, et al.

Controlled release urea improved nitrogen use efficiency and yield of wheat and corn

Soil Fertility and Crop Nutrition, 2016, 108(4):1666-1673.

[本文引用: 1]

Zhu T B, Zhang J B, Cai Z C.

The contribution of nitrogen transformation processes to total N2O emissions from soils used for intensive vegetable cultivation

Plant and Soil, 2011, 343(1):313-327.

DOI:10.1007/s11104-011-0720-3      URL     [本文引用: 1]

Subbarao G V, Sahrawat K L, Nakahara K, et al.

A paradigm shift towards low-nitrifying production systems:the role of biological nitrification inhibition

Annals of Botany, 2013, 112(3):297-316.

DOI:10.1093/aob/mcs230      URL     [本文引用: 1]

Ju X T, Xing G X, Chen X P, et al.

Reducing environmental risk by improving N management in intensive Chinese agricultural systems

Proceedings of National Academy of Sciences of the United States of America, 2009, 106(2):3041-3046.

[本文引用: 1]

Tilman D, Fargione J, Wolff B, et al.

Forecasting agriculturally driven global environmental change

Science, 2001, 292(5515):281-284.

PMID:11303102      [本文引用: 2]

During the next 50 years, which is likely to be the final period of rapid agricultural expansion, demand for food by a wealthier and 50% larger global population will be a major driver of global environmental change. Should past dependences of the global environmental impacts of agriculture on human population and consumption continue, 10(9) hectares of natural ecosystems would be converted to agriculture by 2050. This would be accompanied by 2.4- to 2.7-fold increases in nitrogen- and phosphorus-driven eutrophication of terrestrial, freshwater, and near-shore marine ecosystems, and comparable increases in pesticide use. This eutrophication and habitat destruction would cause unprecedented ecosystem simplification, loss of ecosystem services, and species extinctions. Significant scientific advances and regulatory, technological, and policy changes are needed to control the environmental impacts of agricultural expansion.

Glass A D M.

Nitrogen use efficiency of crop plants:physiological constraints upon nitrogen absorption

Critical Reviews in Plant Sciences, 2003, 22(5):453-470.

DOI:10.1080/07352680390243512      URL     [本文引用: 1]

Schafer A, Victor D G.

Global passenger travel:implications for carbon dioxide emissions

Energy, 1999, 24(8):657-679.

DOI:10.1016/S0360-5442(99)00019-5      URL     [本文引用: 1]

Raun W R, Johnson G V.

Improving nitrogen use efficiency for cereal production

Agronomy Journal, 1999, 91(3):357-363.

DOI:10.2134/agronj1999.00021962009100030001x      URL     [本文引用: 1]

Li Y, Ouyang J, Wang Y Y, et al.

Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development

Scientific Reports, 2015, 5(1):1-10.

[本文引用: 1]

Schlesinger W H.

On the fate of anthropogenic nitrogen

Proceedings of National Academy of Sciences of the United States of America, 2009, 106(1):203-208.

[本文引用: 1]

Hofstra N, Bouwman A F.

Denitrification in agricultural soils:summarizing published data and estimating global annual rates

Nutrient Cycling Agroecosystems, 2005, 72(3):267-278.

DOI:10.1007/s10705-005-3109-y      URL     [本文引用: 1]

Burney J A, Davis S J, Lobell D B.

Greenhouse gas mitigation by agricultural intensification

Proceedings of National Academy of Sciences of the United States of America, 2010, 107(26):12052-12057.

[本文引用: 1]

吴林坤, 林向民, 林文雄.

根系分泌物介导下植株-土壤-微生物互作关系研究进展与展望

植物生态学报, 2014, 38(3):298-310.

DOI:10.3724/SP.J.1258.2014.00027      [本文引用: 1]

根系分泌物是植物与土壤进行物质交换和信息传递的重要载体物质, 是植物响应外界胁迫的重要途径, 是构成植物不同根际微生态特征的关键因素, 也是根际对话的主要调控者。根系分泌物对于生物地球化学循环、根际生态过程调控、植物生长发育等均具有重要功能, 尤其是在调控根际微生态系统结构与功能方面发挥着重要作用, 调节着植物-植物、植物-微生物、微生物-微生物间复杂的互作过程。植物化感作用、作物间套作、生物修复、生物入侵等都是现代农业生态学的研究热点, 它们都涉及十分复杂的根际生物学过程。越来越多的研究表明, 不论是同种植物还是不同种植物之间相互作用的正效应或是负效应, 都是由根系分泌物介导下的植物与特异微生物共同作用的结果。近年来, 随着现代生物技术的不断完善, 有关土壤这一&ldquo;黑箱&rdquo;的研究方法与技术取得了长足的进步, 尤其是各种宏组学技术(meta-omics technology), 如环境宏基因组学、宏转录组学、宏蛋白组学、宏代谢组学等的问世, 极大地推进了人们对土壤生物世界的认知, 尤其是对植物地下部生物多样性和功能多样性的深层次剖析, 根际生物学特性的研究成果被广泛运用于指导生产实践。深入系统地研究根系分泌物介导下的植物-土壤-微生物的相互作用方式与机理, 对揭示土壤微生态系统功能、定向调控植物根际生物学过程、促进农业生产可持续发展等具有重要的指导意义。该文综述了根系分泌物的概念、组成及功能, 论述了根系分泌物介导下植物与细菌、真菌、土壤动物群之间的密切关系, 总结了探索根际生物学特性的各种研究技术及其优缺点, 并对该领域未来的研究方向进行了展望。

Paterson E, Gebbing T, Abel C, et al.

Rhizodeposition shapes rhizosphere microbial community structure in organic soil

New Phytologist, 2007, 173(3):600-610.

DOI:10.1111/j.1469-8137.2006.01931.x      PMID:17244055      [本文引用: 1]

The aims of the study were to determine group specificity in microbial utilization of root-exudate compounds and whole rhizodeposition; quantify the proportions of carbon acquired by microbial groups from soil organic matter and rhizodeposition, respectively; and assess the importance of root-derived C as a driver of soil microbial community structure. Additions of 13C-labelled root-exudate compounds to organic soil and steady-state labelling of Lolium perenne, coupled to compound-specific isotope ratio mass spectrometry, were used to quantify group-specific microbial utilization of rhizodeposition. Microbial utilization of glucose and fumaric acid was widespread through the microbial community, but glycine was utilized by a narrower range of populations, as indicated by the enrichment of phospholipid fatty acid (PLFA) analysis fractions. In L. perenne rhizospheres, high rates of rhizodeposit utilization by microbial groups showed good correspondence with increased abundance of these groups in the rhizosphere. Although rhizodeposition was not the quantitatively dominant C source for microbes in L. perenne rhizospheres, relative utilization of this C source was an important driver of microbial group abundance in organic soil.

East R.

Microbiome:soil science comes to life

Nature, 2013, 501(26):S18-S19.

DOI:10.1038/501S18a      URL     [本文引用: 1]

陆玉芳, 施卫明.

生物硝化抑制剂的研究进展及其农业应用前景

土壤学报, 2021, 58(3):545-557.

[本文引用: 1]

Wu H W, Haig T, Pratley J, et al.

Allelo-chemicals in wheat (Triticum aestivum L.):cultivar difference in the exudation of phenolic acids

Journal of Agricultural and Food Chemistry, 2001, 27(1):125-135.

[本文引用: 1]

Materechera S A, Dexter A R, Alston A M.

Formation of aggregates by plant roots in homogenized soils

Plant and Soil, 1992, 142(1):69-79.

DOI:10.1007/BF00010176      URL     [本文引用: 1]

Soloducho J, Cabaj J.

Phenolic compounds hybrid detectors

Journal of Biomaterials and Nanobiotechology, 2013, 4(3):17-27.

[本文引用: 1]

Dessureault-Rompré J, Nowack B, Schulin D, et al.

Modified micro suction cup rhizobox approach for the in-situ detection of organic acids in rhizosphere soil solution

Plant and Soil, 2006, 286(1):99-107.

DOI:10.1007/s11104-006-9029-z      URL     [本文引用: 1]

Greogory P J, Hinsinger P.

New approaches to studying chemical and physical changes in the rhizosphere:An overview

Plant and Soil, 1999, 211(24):1-9.

DOI:10.1023/A:1004547401951      URL     [本文引用: 1]

Landi L, Valori F, Ascher J, et al.

Root exudate effects on the bacterial communities,CO2 evolution,nitrogen transformations and ATP content of rhizosphere and bulk soils

Soil Biology and Biochemistry, 2006, 38(3):509-516.

DOI:10.1016/j.soilbio.2005.05.021      URL     [本文引用: 1]

Landi L, Badalucco L, Nannipieri P.

Changes in inorganic N and CO2 evolution in soil induced by L-methionine-suphoximine

Soil Biology and Biochemistry, 1995, 27(10):1345-1351.

DOI:10.1016/0038-0717(95)00052-G      URL     [本文引用: 1]

Jilling A, Keiluweit M, Gutknecht J, et al.

Priming mechanisms providing plants and microbes access to mineral-associated organic matter

Soil Biology and Biochemistry, 2021, 158:108265.

DOI:10.1016/j.soilbio.2021.108265      URL     [本文引用: 1]

Nardi S, Concheri G, Pizzeghello D, et al.

Soil organic matter mobilization by root exudates

Chemosphere, 2000, 41(5):653-658.

PMID:10834364      [本文引用: 1]

In order to study the different soil organic matter mobilisation by agrarian (Zea mais: cultivars Paolo and Sandek) and forest (Picea abies Karst. and Pinus sylvestris L.) root exudates, three different soils (Dystric Spodic Cambisol--S1, Haplic Luvisol--S2 and Calcaric Cambisol--S3) have been considered. Treating the soils with water (control) or plant root exudates, soil organic matter extracts were obtained. The extracts were characterised by hormone-like activities and gas chromatographic/mass spectrometric (GC/MS) measurements. Water extract and plant root exudates exhibited no hormone-like activity, while the other soil-extracts were endowed with a different hormone-like behaviour. GC/MS data indicated that in the acid soils (S1) Sandek and Picea abies exudates showed a greater ability in extracting organic acid isomers (Cl4COOH, Cl5COOH and Cl7COOH), while in neutral soils (S3) all the exudates were active in separating organic acids. In intermediate conditions (S2), Picea abies and Pinus sylvestris exudates liberated C15COOH isomers, Paolo C11COOH isomers, while Sandek was not effective. The different role of plant root exudates in mobilising bio-molecules from the bulk of the soil is proposed.

Neal A L, Ahmad S, Gordon-Weeks R, et al.

Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere

PLoS ONE, 2012, 7(4):e35489.

DOI:10.1371/journal.pone.0035489      URL     [本文引用: 1]

Rasmann S, Turlings T C J.

Root signals that mediate mutualistic interactions in the rhizosphere

Current Opinion in Plant Biology, 2016, 32(8):62-68.

DOI:10.1016/j.pbi.2016.06.017      URL     [本文引用: 1]

Nardi N, Reniero F, Concheri G.

Soil organic matter mobilization by root exudates of three maize hybrids

Chemosphere, 1997, 35(10):2237-2244.

DOI:10.1016/S0045-6535(97)00302-0      URL     [本文引用: 1]

Meier I C, Pritchard S G, Brzostek E R, et al.

The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2

New Phytologist, 2015, 205(3):1164-1174.

DOI:10.1111/nph.13122      PMID:25348688      [本文引用: 1]

While multiple experiments have demonstrated that trees exposed to elevated CO₂ can stimulate microbes to release nutrients from soil organic matter, the importance of root- versus mycorrhizal-induced changes in soil processes are presently unknown. We analyzed the contribution of roots and mycorrhizal activities to carbon (C) and nitrogen (N) turnover in a loblolly pine (Pinus taeda) forest exposed to elevated CO₂ by measuring extracellular enzyme activities at soil microsites accessed via root windows. Specifically, we quantified enzyme activity from soil adjacent to root tips (rhizosphere), soil adjacent to hyphal tips (hyphosphere), and bulk soil. During the peak growing season, CO₂ enrichment induced a greater increase of N-releasing enzymes in the rhizosphere (215% increase) than in the hyphosphere (36% increase), but a greater increase of recalcitrant C-degrading enzymes in the hyphosphere (118%) than in the rhizosphere (19%). Nitrogen fertilization influenced the magnitude of CO₂ effects on enzyme activities in the rhizosphere only. At the ecosystem scale, the rhizosphere accounted for c. 50% and 40% of the total activity of N- and C-releasing enzymes, respectively. Collectively, our results suggest that root exudates may contribute more to accelerated N cycling under elevated CO₂ at this site, while mycorrhizal fungi may contribute more to soil C degradation.© 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

Pathan S I, Ceccherini M T, Pietramellara G, et al.

Enzyme activity and microbial community structure in the rhizosphere of two maize lines differing in N use efficiency

Plant and Soil, 2015, 387(28):413-424.

DOI:10.1007/s11104-014-2306-3      URL     [本文引用: 1]

Narula N, Kothe E, Behl R K.

Role of root exudates in plant-microbe interactions

Journal of Applied Botany and Food Quality, 2009, 82(6):122-130.

[本文引用: 1]

Morris K A, Stark J M, Bugbee B, et al.

The invasive annual cheat grass releases more nitrogen than crested wheatgrass through root exudation and senescence

Oecologia, 2016, 181(4):971-983.

DOI:10.1007/s00442-015-3544-7      URL     [本文引用: 1]

Taylor A E, Zeglin L H, Dooley S, et al.

Evidence for different contributions of archaea and bacteria to the ammonia-oxidizing potential of diverse Oregon soils

Applied Environmental Microbiology, 2010, 76(23):7691-7698.

DOI:10.1128/AEM.01324-10      URL     [本文引用: 1]

Dinnes D L, Karlen D L, Jaynes D B, et al.

Nitrogen management strategies to reduce nitrate leaching in tile drained Mid-Western soils

Agronomy Journal, 2002, 94(8):153-171.

DOI:10.2134/agronj2002.1530      URL     [本文引用: 1]

Hodge A, Robinson D, Fitter A H.

Are microorganisms more effective than plants at competing for nitrogen?

Trends in Plant Science, 2000, 5(7):304-308.

PMID:10871903      [本文引用: 1]

Plant scientists have long debated whether plants or microorganisms are the superior competitor for nitrogen in terrestrial ecosystems. Microorganisms have traditionally been viewed as the victors but recent evidence that plants can take up organic nitrogen compounds intact and can successfully acquire N from organic patches in soil raises the question anew. We argue that the key determinants of 'success' in nitrogen competition are spatial differences in nitrogen availability and in root and microbial distributions, together with temporal differences in microbial and root turnover. Consequently, it is not possible to discuss plant-microorganism competition without taking into account this spatiotemporal context.

Chuckran Peter F, Fofanov V, Hungate B A, et al.

Rapid response of nitrogen cycling gene transcription to labile carbon amendments in a soil microbial community

mSystems, 2021, 6(3):e00161.

[本文引用: 1]

Subbarao G V, Ishikawa T, Ito O, et al.

A bioluminescence assay to detect nitrification inhibitors released from plant roots:a case study with Brachiaria humidicola

Plant and Soil, 2006, 288(1/2):101-112.

DOI:10.1007/s11104-006-9094-3      URL     [本文引用: 1]

Subbarao G V, Wang H Y, Ito O, et al.

NH4+ triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola roots

Plant and Soil, 2007, 290(1):245-257.

DOI:10.1007/s11104-006-9156-6      URL     [本文引用: 1]

Leninger S, Urich T, Schloter M, et al.

Archaea predominate among ammonia-oxidizing prokaryotes in soils

Nature, 2006, 442(17):806-809.

DOI:10.1038/nature04983      URL     [本文引用: 1]

Zakir H A K M, Subbarao G V, Pearse S J, et al.

Detection,isolation and characterization of a root-exuded compound,methyl 3-(4-hydroxyphenyl) propionate,responsible for biological nitrification inhibition by sorghum (Sorghum bicolor)

New Phytologist, 2008, 180(2):442-451.

DOI:10.1111/nph.2008.180.issue-2      URL     [本文引用: 2]

Zhu X M, Liu D Y, Yin H J.

Roots regulate microbial N processes to achieve an efficient NH4+ supply in the rhizosphere of alpine coniferous forests

Biogeochemistry, 2021, 12:1-19.

[本文引用: 1]

Boudsocq S, Lata J C, Mathieu J, et al.

Modelling approach to analyses the effects of nitrification inhibition on primary production

Functional Ecology, 2009, 23(1):220-230.

DOI:10.1111/fec.2009.23.issue-1      URL     [本文引用: 2]

Frank D A, Groffman P M.

Plant rhizosphere N processes:what we don’t know and why we should care

Ecology, 2009, 90(6):1512-1519.

DOI:10.1890/08-0789.1      URL     [本文引用: 1]

Subbarao G V, Kishii M, Nakahara K, et al.

Biological nitrification inhibition (BNI)-is there potential for genetic interventions in the Triticeae?

Breeding Science, 2009, 59(5):529-545.

DOI:10.1270/jsbbs.59.529      URL    

Thilakarathna S K, Hernandez-Ramirez G.

How does management legacy, nitrogen addition, and nitrification inhibition affect soil organic matter priming and nitrous oxide production?

Journal of Environmental Quality, 2020, 50(1):78-93.

DOI:10.1002/jeq2.v50.1      URL     [本文引用: 2]

Raaijmakers J M, Paulitz T C, Steinberg C, et al.

The rhizosphere:a playground and battle-field for soil borne pathogens and beneficial microorganisms

Plant and Soil, 2009, 321(1):341-361.

DOI:10.1007/s11104-008-9568-6      URL     [本文引用: 1]

Walker T S, Bais H P, Grotewold E, et al.

Root exudation and rhizosphere biology

Plant Physiology, 2003, 132(1):44-51.

DOI:10.1104/pp.102.019661      URL     [本文引用: 1]

Rengel Z, Marschner P.

Nutrient availability and management in the rhizosphere:exploiting genotypic differences

New Phytologist, 2005, 168(2):305-312.

PMID:16219070      [本文引用: 1]

Crop nutrition is frequently inadequate as a result of the expansion of cropping into marginal lands, elevated crop yields placing increasing demands on soil nutrient reserves, and environmental and economic concerns about applying fertilizers. Plants exposed to nutrient deficiency activate a range of mechanisms that result in increased nutrient availability in the rhizosphere compared with the bulk soil. Plants may change their root morphology, increase the affinity of nutrient transporters in the plasma membrane and exude organic compounds (carboxylates, phenolics, carbohydrates, enzymes, etc.) and protons. Chemical changes in the rhizosphere result in altered abundance and composition of microbial communities. Nutrient-efficient genotypes are adapted to environments with low nutrient availability. Nutrient efficiency can be enhanced by targeted breeding through pyramiding efficiency mechanisms in a desirable genotype as well as by gene transfer and manipulation. Rhizosphere microorganisms influence nutrient availability; adding beneficial microorganisms may result in enhanced availability of nutrients to crops. Understanding the role of plant-microbe-soil interactions in governing nutrient availability in the rhizosphere will enhance the economic and environmental sustainability of crop production.

Wattenburger C J, Gutknecht J, Zhang Q, et al.

The rhizosphere and cropping system,but not arbuscular mycorrhizae,affect ammonia oxidizing archaea and bacteria abundances in two agricultural soils

Applied Soil Ecology, 2020, 151:103540.

DOI:10.1016/j.apsoil.2020.103540      URL     [本文引用: 1]

Lata J C, Degrange V, Raynaud X, et al.

Grass populations control nitrification in savanna soils

Functional Ecology, 2004, 18(4):605-611.

DOI:10.1111/fec.2004.18.issue-4      URL     [本文引用: 1]

Lu Y F, Zhang X N, Jiang J F, et al.

Effect of the biological nitrification inhibitor 1,9-decanediol on nitrification and ammonia oxidizers in three agricultural soils

Soil Biology and Biochemistry, 2019, 129:48-59.

DOI:10.1016/j.soilbio.2018.11.008      URL     [本文引用: 1]

Myrold D D, Tiedje J M.

Establishment of denitrification capacity in soil:effects of carbon,nitrate and moisture

Soil Biology and Biochemistry, 1985, 17(6):819-822.

DOI:10.1016/0038-0717(85)90140-3      URL     [本文引用: 1]

张晓楠, 陆玉芳, 杨婷, .

水稻生物硝化抑制剂1,9,-癸二醇的定量方法优化

土壤, 2020, 52(6):1152-1157.

[本文引用: 1]

Subbarao G V, Yoshashi T, Worthington M, et al.

Suppression of soil nitrification by plants

Plant Science, 2015, 233(1):155-164.

DOI:10.1016/j.plantsci.2015.01.012      URL    

Subbarao G V, Rondon M, Ito O, et al.

Biological nitrification inhibition (BNI)- is it a widespread phenomenon?

Plant and Soil, 2007, 294(1):5-18.

DOI:10.1007/s11104-006-9159-3      URL    

Subbarao G V, Ban T, Masahiro K, et al.

Can biological nitrification inhibition (BNI) genes from perennial Leymus racemosus (Triticeae) combat nitrification in wheat farming?

Plant and Soil, 2007, 299(1):55-64.

DOI:10.1007/s11104-007-9360-z      URL     [本文引用: 1]

Subbarao G V, Nakahara K, Hurtado M P, et al.

Evidence for biological nitrification inhibition in Brachiaria pastures

Proceedings of National Academy of Sciences of the United States of America, 2009, 106(41):17302-17307.

Subbarao G V, Nakahara K, Ishikawa T, et al.

Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification

Plant and Soil, 2008, 313(2):89-99.

DOI:10.1007/s11104-008-9682-5      URL     [本文引用: 1]

Coskun D, Britto D T, Shi W M, et al.

Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition

Nature Plants, 2017, 3(6):1-9.

[本文引用: 1]

Subbarao G V, Nakahara K, Ishikawa T, et al.

Biological nitrification inhibition (BNI) activity in sorghum and its characterization

Plant and Soil, 2013, 366(1):243-259.

DOI:10.1007/s11104-012-1419-9      URL     [本文引用: 1]

Wolt J D.

A meta-evaluation of nitrapyrin agronomic and environmental effectiveness with emphasis on corn production in the Mid-Western USA

Nutrient Cycling in Agroecosystems, 2004, 69(1):23-41.

DOI:10.1023/B:FRES.0000025287.52565.99      URL     [本文引用: 1]

Gopalakrishnan S, Watanabe T, Pearse S J, et al.

Biological nitrification inhibition by Brachiaria humidicola roots varies with soil type and inhibits nitrifying bacteria,but not other major soil microorganisms

Soil Science and Plant Nutrition, 2009, 55(5):725-733.

DOI:10.1111/j.1747-0765.2009.00398.x      URL     [本文引用: 2]

Cooper A B.

Suppression of nitrate formation with an exotic conifer plantation

Plant and Soil, 1986, 93(3):383-394.

DOI:10.1007/BF02374289      URL     [本文引用: 1]

Canfield D E, Glazer A N, Falkowski P G.

The evolution and future of earth’s nitrogen cycle

Science, 2010, 330(4):192-196.

DOI:10.1126/science.1186120      URL     [本文引用: 1]

McCarty G W.

Modes of action of nitrification inhibitors

Biology and Fertility of Soils, 1999, 29(1):1-9.

DOI:10.1007/s003740050518      URL     [本文引用: 1]

Weng B, Xie X Y, Yang J J, et al.

Research on the nitrogen cycle in rhizosphere of Kandelia obovate under ammonium and nitrate addition

Marine Pollution Bulletin, 2013, 76(4):227-240.

DOI:10.1016/j.marpolbul.2013.08.034      URL     [本文引用: 2]

Shi S J, Richardson A E, O’Callaghan M, et al.

Effects of selected root exudate components on soil bacterial communities

FEMS Microbiology Ecology, 2011, 77(3):600-610.

DOI:10.1111/j.1574-6941.2011.01150.x      URL     [本文引用: 1]

Bais H P, Weir T L, Perry L G, et al.

The role of root exudates in rhizosphere interactions with plants and other organisms

Annual Review of Plant Biology, 2006, 57(1):233-266.

DOI:10.1146/arplant.2006.57.issue-1      URL     [本文引用: 1]

Li B, Li Y Y, Wu H M, et al.

Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation

Proceedings of National Academy of Sciences, 2016, 113(23):6496-6501.

[本文引用: 1]

Jalonen R, Nygren P, Sierra J.

Root exudates of a legume tree as a nitrogen source for a tropical fodder grass

Nutrition Cycling and Agroecosystem, 2009, 85(3):203-213.

[本文引用: 2]

Zhu Y H, Zhang S Z, Huang H L, et al.

Effects of maize root exudates and organic acids on the desorption of phenanthrene from soils

Journal of Environmental Sciences, 2009, 21(7):920-926.

DOI:10.1016/S1001-0742(08)62362-1      URL     [本文引用: 2]

Yuan H Z, Zhu Z K, Liu S L, et al.

Microbial utilization of rice root exudates:13C labeling and PLFA composition

Biology and Fertility of Soils, 2016, 52(5):615-627.

DOI:10.1007/s00374-016-1101-0      URL     [本文引用: 2]

Yin H J, Wheeler E, Phillips R P.

Root-induced changes in nutrient cycling in forests depend on exudation rates

Soil Biology and Biochemistry, 2014, 78(6):213-221.

DOI:10.1016/j.soilbio.2014.07.022      URL     [本文引用: 3]

Vranova V, Rejsek K, Skene K R, et al.

Methods of collection of plant root exudates in relation to plant metabolism and purpose:a review

Journal of Plant Nutrition Soil Science, 2013, 176(2):175-199.

DOI:10.1002/jpln.v176.2      URL     [本文引用: 3]

Michalet S, Rohr J, Warshan D, et al.

Phytochemical analysis of mature tree root exudates in situ and their role in shaping soil microbial communities in relation to tree N-acquisition strategy

Plant Physiology and Biochemistry, 2013, 72(3):169-177.

DOI:10.1016/j.plaphy.2013.05.003      URL     [本文引用: 1]

Suo B, Chen Q, Wu W X, et al.

Chemotactic responses of Phytophthora sojae zoospores to amino acids and sugars in root exudates

Journal of General Plant Pathology, 2016, 82(2):142-148.

DOI:10.1007/s10327-016-0651-1      URL     [本文引用: 1]

Sun L, Lu Y F, Kronzucker H J, et al.

Quantification and enzyme targets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification

Journal of Plant Physiology, 2016, 198(1):81-88.

DOI:10.1016/j.jplph.2016.04.010      URL     [本文引用: 2]

Li H, Yang X R, Weng B, et al.

The phenological stage of rice growth determines anaerobic ammonium oxidation activity in rhizosphere soil

Soil Biology and Biochemistry, 2016, 100(1):59-65.

DOI:10.1016/j.soilbio.2016.05.015      URL     [本文引用: 1]

Roque-Malo S, Woo D K, Kumar P.

Modeling the role of root exudation in critical zone nutrient dynamics

Water Resources Research, 2020, 56:1-23.

[本文引用: 1]

/