作物杂志, 2021, 37(6): 88-94 doi: 10.16035/j.issn.1001-7283.2021.06.014

生理生化·植物营养·栽培耕作

外源褪黑素对红小豆生长、光合荧光特性及产量构成因素的影响

陈忠诚,1,2, 金喜军1,2, 李贺1, 周伟鑫1, 强斌斌1, 刘佳1, 张玉先,1,2

1黑龙江八一农垦大学农学院,163319,黑龙江大庆

2国家杂粮工程技术研究中心,163319,黑龙江大庆

Effects of Exogenous Melatonin on Growth, Photosynthetic Fluorescence Characteristics and Yield Components of Adzuki Bean

Chen Zhongcheng,1,2, Jin Xijun1,2, Li He1, Zhou Weixin1, Qiang Binbin1, Liu Jia1, Zhang Yuxian,1,2

1College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China

2National Coarse Cereals Engineering Technology Research Center, Daqing 163319, Heilongjiang, China

通讯作者: 张玉先,主要从事红小豆作物栽培生理研究及大豆逆境栽培生理和轮作体系研究,E-mail: zyx_lxy@126.com

收稿日期: 2021-01-29   修回日期: 2021-03-30   网络出版日期: 2021-11-17

基金资助: 国家重点研发计划(2020YFD1001402)

Received: 2021-01-29   Revised: 2021-03-30   Online: 2021-11-17

作者简介 About authors

陈忠诚,从事红小豆栽培生理研究,E-mail: 784533319@qq.com

摘要

以黑龙江省主栽红小豆品种珍珠红为供试材料,采用盆栽方式,分别在苗期、花荚期和鼓粒期喷施0(CK)、50、100和200μmol/L褪黑素,探讨外源褪黑素对红小豆生长、光合荧光特性和产量构成因素的影响。结果表明,与CK相比,50、100和200μmol/L褪黑素处理均能增加红小豆株高、叶面积和干物质积累,提高红小豆净光合速率、蒸腾速率、气孔导度、胞间CO2浓度、最大光化学效率和潜在光化学活性,且褪黑素浓度为100μmol/L时各指标提高幅度最大。在苗期、花荚期、鼓粒期喷施100μmol/L褪黑素处理的红小豆单株粒重分别为5.53、6.13和5.90g,与CK相比分别增加了6.3%、12.1%和9.5%。综上可知,红小豆花荚期喷施100μmol/L褪黑素增产效果最显著。

关键词: 红小豆; 褪黑素; 干物质积累; 光合特性; 产量

Abstract

In order to study the effects of exogenous melatonin on the growth, photosynthetic fluorescence characteristics and yield components of adzuki bean Zhenzhuhong, the main adzuki bean variety in Heilongjiang province, was used in pot culture, different concentrations of melatonin (0, 50, 100, 200μmol/L) were sprayed at seedling stage, flowering and podding stage and seed filling stage. The results showed that, compared with the control, the treatments of 50, 100 and 200μmol/L melatonin increased plant height, leaf area, dry matter accumulation, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), intercellular CO2 concentration (Ci), maximum photochemical efficiency (Fv/Fm) and potential photochemical activity (Fv/Fo), and the treatment of 100μmol/L melatonin had the greatest improvement. The grain weight per plant of adzuki bean were 5.53, 6.13 and 5.90g at seedling stage, flowering and pod stage and seed filling stage, respectively, which increased by 6.3%, 12.1% and 9.5% compared with CK. In conclusion, spraying 100μmol/L melatonin at flowering and pod stage of adzuki bean had the most significant increase effect on yield.

Keywords: Adzuki bean; Melatonin; Dry matter accumulation; Photosynthetic characteristics; Yield

PDF (677KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈忠诚, 金喜军, 李贺, 周伟鑫, 强斌斌, 刘佳, 张玉先. 外源褪黑素对红小豆生长、光合荧光特性及产量构成因素的影响. 作物杂志, 2021, 37(6): 88-94 doi:10.16035/j.issn.1001-7283.2021.06.014

Chen Zhongcheng, Jin Xijun, Li He, Zhou Weixin, Qiang Binbin, Liu Jia, Zhang Yuxian. Effects of Exogenous Melatonin on Growth, Photosynthetic Fluorescence Characteristics and Yield Components of Adzuki Bean. Crops, 2021, 37(6): 88-94 doi:10.16035/j.issn.1001-7283.2021.06.014

小豆[Vigna angularis (willd)]又名赤豆,是我国原产杂粮作物之一[1]。其富含人体所需氨基酸、蛋白质、维生素及微量元素,是一种药食兼用的粮食作物[2]。红小豆适应环境能力强,具有生物固氮能力,能够起到改良土壤的作用[3]。随着红小豆医疗保健作用不断被挖掘,红小豆的消费量也越来越大,生产中有必要进一步促进红小豆产量和品质的提高以满足日益增加的市场需求。

化学调控技术是调节作物生长发育、增加产量和改善品质的有效手段[4]。褪黑素是一种吲哚胺类化合物,近年来在作物上的相关研究越来越多[5,6,7,8],其作为植物激素,通过改变植物内源激素平衡来调节植物生长发育进程[9]。最初,Murch等[10]以生根模型系统有力地证实了褪黑素对植物生长发育的调节作用。随后,诸多研究表明褪黑素具有多种生理活性,包括增强植物耐非生物胁迫能力[11,12]、提高植物光合能力、促进光合色素合成[13]以及促进干物质积累的作用[14]。外源施用褪黑素能有效提高大豆[15]、蚕豆[16]、玉米[17]、水稻[18]和小麦[19]等作物产量和品质。Li等[20]发现不同浓度褪黑素对小麦生理调控效应不同,李贺等[21]发现对苗期大豆施用褪黑素,其生理效应呈低浓度促进、高浓度抑制的趋势。柯希望等[22]发现,外源褪黑素还可有效维持离体叶片中叶绿素的含量及叶片光系统Ⅱ(PSⅡ)的完整性,进而延迟红小豆叶片的衰老进程。

大量研究表明,褪黑素不仅可促进植物对营养成分的吸收和利用,还可以提高作物抗逆性、产量和品质,且不会经过食物链富集对人体产生不良影响。可见,其在农业上的应用蕴藏巨大价值潜力。目前,关于褪黑素调控红小豆生长发育和产量的研究鲜见报道。

因此,本研究通过比较分析不同生育时期喷施不同浓度褪黑素对红小豆形态、光合荧光等关键指标的调控效应,明确褪黑素对红小豆光合荧光特性及产量构成因素的影响,为实际生产中通过喷施外源褪黑素提高红小豆产量和品质提供理论基础。

1 材料与方法

1.1 试验地概况及供试材料

试验于2019年在国家杂粮工程技术研究中心盆栽场进行,采用盆栽方式,培养基质为黑炭土:蛭石=3:1体积混合,有机质27.52g/kg、全氮1.92g/kg、碱解氮141mg/kg、速效磷9.8mg/kg、速效钾96.75mg/kg,pH 6.8。塑料桶直径0.30m,高0.33m。供试红小豆品种为珍珠红,由国家杂粮工程技术研究中心提供。每桶播种大小均匀、经75%酒精消毒后的红小豆种子9粒,至真叶期定苗3株。

1.2 试验设计

分别在红小豆苗期(第3片3出复叶展开)、花荚期(主茎最上部2个全展复叶节上任意一节开1朵花)、鼓粒期(完全展开的最上部4个节中任一节有1个荚长度达2cm)进行50、100和200μmol/L褪黑素喷施处理,以喷施等量蒸馏水为对照(CK),3次重复,总计12个处理。于处理当日21:30将相应浓度褪黑素喷施于叶片正反面,至叶面布满水珠但不流动。连续处理3d,于处理后第14天取样用于测定各指标。

1.3 测定项目与方法

1.3.1 形态指标 在苗期、花荚期、鼓粒期处理后第14天,各处理随机选取3盆,测量株高和茎粗;使用Yaxin-1241叶面积仪(北京雅欣理仪科技有限公司)测定叶面积。

1.3.2 干物质积累量 将植株分解为地下部(根)和地上部(叶、茎、荚果),根系用自来水冲洗干净后用滤纸吸干表面水分。称量鲜重后,将地上部和地下部各器官置于烘箱中,105℃杀青30min后,80℃烘干至恒重,称量干重。

1.3.3 光合色素含量 在苗期、花荚期、鼓粒期处理后第7天,采用乙醇浸提法测定叶绿素a(chl a)、叶绿素b(chl b)、总叶绿素[chl (a+b)]和类胡萝卜素(Car)含量,并计算chl a/b。具体方法为用直径0.613cm的打孔器打孔,混合取样,分别取10片放置在盛有20mL 95%乙醇提取液的试管中,封口后于黑暗中浸提24h,直至叶片变为白色,然后用分光光度计在665、649和470nm波长下比色,计算得出各组分浓度,各处理重复3次。

1.3.4 气体交换参数 在苗期、花荚期、鼓粒期处理后第7天,以上午10:00完全展开的倒3节位叶片为研究对象,每个处理取3株,采用Li-6400光合仪(美国)测定净光合速率(Pn)、叶片气孔导度(Gs)、蒸腾速率(Tr)和胞间CO2浓度(Ci),测定光强1200μmol/(m2·s),CO2供应浓度400μmol/mol,叶片温度25℃,相对湿度约60%。各处理重复3次。

1.3.5 叶绿素荧光分析 在设定光强下采用便携式叶绿素荧光仪(FMS-2,英国)测定红小豆完全展开倒3叶的叶绿素荧光参数。测定前将叶片暗适应15min,以弱检测光测定初始荧光(Fo),以饱和脉冲光测定最大荧光(Fm)。当荧光从Fm回落至接近Fo时,以连续的作用光测定稳态荧光(Fs)。叠加饱和脉冲光之后,测定光下最大荧光(Fm')。关闭作用光后,远红光下测定最小荧光(Fo')。可变荧光(Fv)即Fm-Fo,PSII的最大光化学效率为Fv/Fm,PSII的量子产额(ΦPSII)按(Fm'-Fs)/Fm'计算,最大光能转化潜力(Fv/Fo)=(Fv/Fm)/(1-Fv/Fm),并测定表观光合传递速率(ETR),各处理重复3次。

1.3.6 产量构成因素 各处理植株成熟期随机取有代表性的10株完整植株,统计单株结荚数、单株荚粒数、单株粒重。各处理随机取100粒进行称重,计百粒重,重复3次。

1.4 数据处理

选用SPSS 19.0的Duncan’s多重比对法对数据进行统计分析(α=0.05),采用Origin 9.4进行绘图。

2 结果与分析

2.1 不同浓度褪黑素对红小豆形态指标的影响

表1可知,褪黑素处理对红小豆各生育时期形态建成起促进作用。不同浓度褪黑素处理均增加了红小豆株高、茎粗和叶面积,随着褪黑素喷施浓度的增加各指标均呈先上升后下降的趋势。在苗期,褪黑素浓度为100μmol/L时对各指标促进效果最明显,其中,与CK相比,株高增加49.2%,茎粗增加9.7%,叶面积增加19.7%。在花荚期,各指标的变化趋势与苗期基本相同,褪黑素浓度为100μmol/L时,叶面积达最大值,较CK增加54.7%。在鼓粒期,喷施褪黑素后各指标变化趋势与苗期和花荚期相同,但各处理间无显著差异。

表1   不同生育时期喷施不同浓度褪黑素对红小豆形态指标的影响

Table 1  Effects of spraying melatonin with different concentrations at different growth stages on morphological indexes of adzuki bean

时期
Period
褪黑素浓度
Melatonin concentration (μmol/L)
株高
Plant height (cm)
茎粗
Stem diameter (mm)
叶面积
Leaf area (mm2)
苗期Seedling stage0 (CK)15.90±0.92c3.41±0.06ab6629.4±2010.1a
5021.33±0.51b3.27±0.05ab7649.5±944.1a
10023.73±0.77a3.74±0.07a7937.2±826.0a
20017.08±0.78c2.98±0.10b7466.9±1219.4a
花荚期Flowering and pod stage0 (CK)16.72±0.74a3.19±0.22a20357.7±1986.6b
5016.58±0.46a2.94±0.14a23280.6±2267.9ab
10018.67±1.23a3.56±0.54a31500.4±5155.7a
20017.03±0.76a2.61±0.14a15567.3±2205.1b
鼓粒期Seed filling stage0 (CK)15.10±1.36a3.24±0.16a20079.7±3661.2c
5016.26±1.03a2.87±0.14a30989.3±3686.5ab
10019.12±1.78a3.70±0.49a33633.0±1700.5a
20015.60±0.48a3.39±0.13a22887.7±1090.7bc

不同小写字母表示不同处理间差异达到显著水平(P<0.05)。下同

Different lowercase letters indicate significant difference at 0.05 level. The same below

新窗口打开| 下载CSV


2.2 不同浓度褪黑素对红小豆物质积累量的影响

表2可知,植株地上鲜重在花荚期和鼓粒期均随褪黑素浓度的升高呈先增后减的趋势,且在褪黑素浓度为100μmol/L时较CK分别增加了70.3%和49.4%,达显著差异水平。植株地下鲜重随褪黑素浓度升高在各生育时期呈先增后减的趋势,在花荚期和鼓粒期各处理间达显著差异水平,且在褪黑素浓度为100μmol/L时促进效果最明显。随着褪黑素浓度的增加,在不同生育时期地下部干重和根冠比的变化趋势相同,仅在鼓粒期部分处理间达显著差异水平。地上部干重在苗期、花荚期和鼓粒期均随褪黑素浓度的升高呈先增后减的趋势,各生育时期均在褪黑素浓度为100μmol/L时地上部干重达最大值,与CK相比分别增加了17.7%、41.7%和32.5%。

表2   不同生育时期喷施不同浓度褪黑素对红小豆物质积累量的影响

Table 2  Effects of spraying melatonin with different concentrations at different growth stages on matter accumulation of adzuki bean

时期
Period
褪黑素浓度
Melatonin concentration
(μmol/L)
地上鲜重
Aboveground
fresh weight (g)
地下鲜重
Underground
fresh weight (g)
地下部干重
Underground
dry weight (g)
地上部干重
Aboveground
dry weight (g)
根冠比
Root shoot
ratio
苗期Seedling stage0 (CK)3.25±0.19a1.51±0.46a0.31±0.03a0.59±0.08b0.50±0.04a
503.21±0.19a1.96±0.41a0.35±0.07a0.76±0.04ab0.53±0.03a
1003.54±0.44a1.26±0.21a0.47±0.06a0.89±0.06a0.56±0.04a
2003.76±0.38a1.86±0.17a0.42±0.05a0.74±0.05b0.49±0.03a
花荚期Flowering and pod stage0 (CK)8.14±0.62c5.80±0.61b0.77±0.09a1.44±0.09bc0.54±0.03a
5010.05±0.10b6.18±0.53ab1.00±0.11a1.68±0.05b0.60±0.02a
10013.86±0.90a7.95±0.89a1.23±0.30a2.04±0.11a0.66±0.04a
2006.73±0.18c4.35±0.39b0.75±0.02a1.30±0.11c0.59±0.06a
鼓粒期Seed filling stage0 (CK)8.05±0.27b4.48±0.81bc0.85±0.11ab1.57±0.14b0.55±0.05ab
5011.38±0.76a6.31±0.56b1.03±0.16ab1.86±0.10ab0.66±0.04ab
10012.03±0.46a8.38±0.47a1.19±0.02a2.08±0.16a0.69±0.05a
2007.79±0.53a4.18±0.40c0.71±0.04b1.60±0.17ab0.51±0.06b

新窗口打开| 下载CSV


2.3 不同浓度褪黑素对红小豆光合色素含量的影响

表3可知,随着生育期进程的推进,Chl a、Chl b、Chl (a+b)含量及Chl (a/b)呈先升后降的趋势,在花荚期维持较高水平。外源褪黑素喷施处理后,同一生育时期,随褪黑素浓度的增加,各指标整体呈现先上升后下降的趋势。在苗期,随着褪黑素处理浓度增加,红小豆Chl a、Chl b、类胡萝卜素、Chl (a+b)含量及Chl (a/b)呈先上升后下降的趋势,且褪黑素浓度为100μmol/L时,除了Chl b,各指标均达最大值。在花荚期,随着褪黑素浓度的增加,红小豆叶片Chl a、Chl b、类胡萝卜素及Chl (a+b) 含量呈先上升后下降的趋势,其中Chl a和Chl b含量均在褪黑素浓度为100μmol/L时达最大值,与CK相比分别增加了47.8%和69.2%;在鼓粒期,随着褪黑素浓度的增加,Chl a、Chl b、Chl (a+b)及类胡萝卜素含量变化趋势与苗期和花荚期相同,但Chl (a/b)则随褪黑素浓度增加呈先下降后上升的趋势。可见,不同浓度褪黑素处理可以使叶片维持较高的光合色素水平,且一定程度上延缓光合色素降解。

表3   不同生育时期喷施不同浓度褪黑素对红小豆光合色素含量的影响

Table 3  Effects of spraying melatonin with different concentrations at different growth stages on photosynthetic pigment contents of adzuki bean

时期
Period
褪黑素浓度
Melatonin concentration (μmol/L)
叶绿素a
Chl a (mg/g)
叶绿素b
Chl b (mg/g)
类胡萝卜素
Carotenoid (mg/g)
总叶绿素a+b
Chl (a+b) (mg/g)
叶绿素比值
Chl (a/b)
苗期Seedling stage0 (CK)1.25±0.064bc0.40±0.018ab0.30±0.025b1.65±0.080ab3.14±0.09b
501.36±0.089ab0.45±0.027a0.29±0.019bc1.81±0.117a3.02±0.02b
1001.46±0.034a0.44±0.012a0.40±0.014a1.89±0.046a3.35±0.01a
2001.07±0.018ab0.36±0.010b0.24±0.003c1.43±0.029ab3.00±0.04ab
花荚期Flowering and pod stage0 (CK)1.82±0.046b0.52±0.019c0.45±0.008b2.35±0.065b3.47±0.04a
502.52±0.126a0.73±0.044b0.59±0.023a3.25±0.169a3.45±0.06a
1002.69±0.213a0.88±0.073a0.55±0.004a3.57±0.285a3.04±0.04b
2001.83±0.091b0.63±0.023bc0.28±0.018c2.46±0.114b2.91±0.05b
鼓粒期Seed filling stage0 (CK)0.99±0.078ab0.29±0.024ab0.43±0.035a1.28±0.101ab3.49±0.03a
500.98±0.021ab0.33±0.008ab0.38±0.011ab1.30±0.030ab2.95±0.01b
1001.19±0.197a0.44±0.083a0.44±0.065a1.63±0.281a2.77±0.07c
2000.69±0.093b0.23±0.028b0.29±0.029b0.92±0.121b2.95±0.06b

新窗口打开| 下载CSV


2.4 不同浓度褪黑素对红小豆光合速率及气体交换参数的影响

图1可知,随着褪黑素浓度的增加,Pn在苗期、花荚期和鼓粒期均呈先增后减的趋势,各处理的Pn均高于CK,且各生育时期均在褪黑素处理浓度为100μmol/L时,对Pn促进效果最明显,3个时期较CK分别增加46.3%、14.7%和10.2%,可知褪黑素在红小豆各生育时期均可促进Pn提高,且对苗期Pn的调控效果最大。随着生育期推进,Gs逐步增加,且在鼓粒期显著升高,不同浓度褪黑素处理在苗期未见明显差异,在花荚期和鼓粒期褪黑素处理后Gs显著增加并均高于CK,且均在褪黑素浓度为100μmol/L时最显著。Ci在各生育时期均随着褪黑素浓度增加呈先增后减的趋势,除苗期200μmol/L处理外,且均高于CK,花荚期和鼓粒期,褪黑素浓度为100μmol/L时,Ci显著高于其他各处理。同时,Tr在各生育时期也随着褪黑素浓度的升高呈先上升后下降的趋势,且均高于CK,其中褪黑素浓度为100μmol/L时,Tr达最大值。综上,在苗期、花荚期和鼓粒期外源褪黑素处理均能有效提高红小豆PnGsCiTr,提升红小豆光合能力,促进物质积累。

图1

图1   不同生育时期喷施不同浓度褪黑素对红小豆光合特性的影响

不同小写字母表示不同处理间差异达到显著水平(P<0.05)。下同

Fig.1   Effects of spraying melatonin with different concentrations at different growth stages on photosynthetic characteristics of adzuki bean

Different lowercase letters indicate significant difference at 0.05 level. The same below


2.5 不同浓度褪黑素对红小豆叶绿素荧光参数的影响

图2可知,与CK相比,褪黑素增加了各生育时期红小豆的Fv/FmFv/FoΦPSII和ETR。其中,Fv/Fm随着生育进程推进呈现逐渐升高的趋势,在各生育时期随着褪黑素浓度的增加光合能力均表现为先增后减的趋势。褪黑素浓度为100μmol/L时,Fv/Fm达最大值。可知褪黑素在红小豆各生育时期均可促进植物光化学效率。Fv/Fo的变化趋势与Fv/Fm相同,在苗期和花荚期随褪黑素浓度升高呈先升后降的趋势,在鼓粒期随着褪黑素浓度增加,各处理之间未见显著差异。ΦPSII在各生育时期也随褪黑素浓度增加呈先增后减的趋势,且均在褪黑素为100μmol/L时达最大值。ETR在各生育时期随褪黑素浓度升高呈先增后减的变化趋势,但仅在苗期和花荚期具有显著的调控效果,在鼓粒期未见显著差异。综上,外源褪黑素处理能有效提高红小豆在苗期、花荚期和鼓粒期叶绿素荧光参数,提升红小豆光合效率,促进物质积累。

图2

图2   不同生育时期喷施不同浓度褪黑素对红小豆叶绿素荧光参数的影响

Fig.2   Effects of spraying melatonin with different concentrations at different growth stages on chlorophyll fluorescence parameters of adzuki bean


2.6 不同浓度褪黑素对红小豆产量构成因素的影响

表4可知,与CK相比,单株荚数、单株粒数、百粒重和单株粒重在各生育时期均随着褪黑素浓度的增加呈先增后减的趋势。苗期由低到高浓度褪黑素处理单株荚数较CK分别增加了4.3%、15.2%和13.0%,处理间未达显著差异。褪黑素浓度为100μmol/L时,单株粒重较CK增加了6.3%,未达显著差异水平。花荚期褪黑素浓度为100μmol/L时调控效果最明显,单株荚数、单株粒数和单株粒重较CK分别增加了14.0%、6.6%和12.1%。鼓粒期褪黑素浓度为100μmol/L时,单株荚数、单株粒数、百粒重和单株粒重较CK分别增加了8.2%、5.3%、21.9%和9.5%。可见外源褪黑素处理通过增加单株荚数、单株粒数和百粒重提高红小豆单株粒重,且花荚期褪黑素浓度为100μmol/L时增产效果最明显。

表4   不同生育时期喷施不同浓度褪黑素对红小豆产量构成因素的影响

Table 4  Effects of spraying melatonin with different concentrations at different growth stages on yield components of adzuki bean

时期
Period
褪黑素浓度
Melatonin concentration (μmol/L)
单株荚数
Pods per plant
单株粒数
Seeds per pod
百粒重
100-grain weight (g)
单株粒重
Grain weight per plant (g)
苗期Seedling stage0 (CK)11.50±0.65a55.00±4.93a9.07±0.21a5.20±0.46a
5012.00±0.71a55.00±3.56a9.08±0.27a5.37±0.31a
10013.25±0.48a55.75±0.95a9.30±0.67a5.53±0.08a
20013.00±0.71a55.75±2.63a9.13±0.34a5.36±0.18a
花荚期Flowering and pod stage0 (CK)12.50±0.65a57.25±2.14a9.02±0.28a5.47±0.06b
5013.75±0.63a59.25±2.06a9.44±0.63a5.76±0.11ab
10014.25±0.75a61.00±1.35a9.82±0.19a6.13±0.09a
20012.00±0.71a54.75±2.50a8.74±0.78a5.45±0.22b
鼓粒期Seed filling stage0 (CK)12.25±0.25a57.00±2.48a8.94±0.45b5.39±0.20ab
5012.50±0.87a58.25±2.06a10.05±0.26a5.65±0.24a
10013.25±0.48a60.00±1.83a10.90±0.17a5.90±0.05a
20012.75±0.63a53.50±2.25b8.92±0.14b5.00±0.17b

新窗口打开| 下载CSV


3 讨论

小豆是中国农业生产中一种重要的杂粮作物[23],具有食用和药用等经济价值[24],其产量和品质的提升对我国农业生产具有重要意义[25]。褪黑素作为显著提高植物生产力的新型植物激素,应用潜力巨大,但其浓度特性也同样显著。对于同一作物而言,不同浓度褪黑素的作用效果存在一定差异。Chen等[26]发现,褪黑素浓度为0.1mmol/L时对芥菜根系具有显著促进作用,浓度为100mmol/L时具有抑制作用。Park等[27]也发现,0.5和1μmol/L褪黑素处理可有效促进野生型水稻根系发育,这说明低浓度褪黑素对于植物根系生长具有促进作用,而高浓度褪黑素对植物根系生长发育呈抑制作用。同时,植物种类不同,褪黑素作用的最适浓度也有所不同,但在同一类植物中存在相似性。如10μmol/L褪黑素抑制樱桃砧木生长发育[28],100μmol/L褪黑素则促进红藜芦开花[29],500μmol/L则对冬小麦生长发育具有促进作用[30]。而本试验通过研究不同浓度褪黑素对红小豆形态指标的影响发现,随着褪黑素施用浓度的升高,株高和叶面积的提高幅度均呈先升高后下降的趋势,100μmol/L褪黑素浓度处理,在苗期和花荚期均能明显促进株高和叶面积,但鼓粒期各处理间未达到显著差异水平,其原因可能是鼓粒期植株主要以生殖生长为主,因而形态指标变化不大。综上可知,褪黑素对红小豆生长发育表现为低浓度促进、高浓度抑制的作用效果,且100μmol/L褪黑素浓度处理可以有效促进红小豆形态建成,为提高红小豆产量奠定了基础。

光合作用是作物生长发育的重要过程,是作物干物质积累和产量形成的基础,提高光合能力有助于植物生长发育及籽粒生物量积累。Wang等[31]发现,50~150μmol/L褪黑素可有效缓解盐胁迫下叶绿素含量的降解及PSⅡ电子传递下降速率,显著提升黄瓜光合能力,促进黄瓜生长发育。Yang等[32]发现,100μmol/L褪黑素可提高PSI和PSⅡ光化学的电子传递速率和量子产率,显著提升番茄光合能力。本试验表明,红小豆叶片Chl a、Chl b、Chl (a+b)、Chl (a/b)与Pn的提高幅度均随褪黑素浓度的增加呈先增后减的趋势,外源褪黑素浓度为100μmol/L时,在各生育时期均达最大值,说明褪黑素可有效提高红小豆叶片光合色素含量,进一步解释了Pn提高的原因。同时,本研究发现褪黑素处理可以提高红小豆叶片Fv/FmFv/FoΦPSⅡ和ETR,说明褪黑素处理能提高光能利用效率和电子传递能力,增强了红小豆植株叶片潜在光合能力,为红小豆产量提升奠定基础。

产量是衡量栽培措施和技术手段的最重要指标,任何产量构成因素的改善均会促进产量的提高。Zafar等[33]研究发现,50μmol/L褪黑素使2个不同品种小麦的产量分别提高了5%和11%,本研究表明,单株荚数、单株粒数、百粒重和单株粒重均随着褪黑素施用浓度的增加呈先增后减的趋势,在苗期、花荚期、鼓粒期褪黑素浓度为100μmol/L时,单株粒重较CK分别增加了6.3%、12.1%和9.5%。这与何松榆[34]在苗期施用褪黑素提高大豆产量及邹京南等[35]在鼓粒期喷施褪黑素提高大豆产量的研究结果相似。说明外源褪黑素处理通过增加单株荚数、单株粒数和百粒重增加红小豆单株粒重,且花荚期褪黑素浓度为100μmol/L时增产效果最明显。

4 结论

外源褪黑素对红小豆形态建成及产量提升具有促进作用,且呈低浓度促进、高浓度抑制的作用效果。在不同生育时期,外源褪黑素均可促进红小豆生长发育、增加红小豆株高、叶面积和干物质积累量,且100μmol/L褪黑素浓度处理增加幅度最大。同时,外源褪黑素处理还增加了红小豆各时期叶片光合色素含量,进而提高PnTrGsCiFv/FmFv/Fo,促进植株光合同化物积累。在苗期、花荚期、鼓粒期喷施100μmol/L褪黑素后单株荚数、单株粒数和百粒重明显增加,单株粒重较CK分别增加了6.3%、12.1%和9.5%。综上可知,在花荚期喷施100μmol/L褪黑素增产效果最显著。

参考文献

唐偲雨, 张玲, 唐进, .

几种红小豆理化特性及淀粉性质研究

中国农学通报, 2018, 34(6):143-148.

[本文引用: 1]

杨小雪, 王丽丽, 丁岚, .

加工方式对红小豆粉理化性质及预估血糖生成指数的影响

中国粮油学报, 2021, 36(1):33-38.

[本文引用: 1]

王慧, 李鑫, 陈梦妮.

水氮配合对不同耐旱性红小豆根际土壤酶活性的影响

山西农业科学, 2020, 48(11):1812-1815,1819.

[本文引用: 1]

吴琼, 丁凯鑫, 余明龙, .

新型植物生长调节剂B2对玉米光合荧光特性及产量的影响

作物杂志, 2020(5):174-181.

[本文引用: 1]

Erland L A, Murch S J, Reiter R J, et al.

A new balancing act:the many roles of melatonin and serotonin in plant growth and development

Plant Signaling and Behavior, 2015, 10(11):e1096469.

DOI:10.1080/15592324.2015.1096469      URL     [本文引用: 1]

Hardeland R.

Melatonin in plants and other phototrophs:advances and gaps concerning the diversity of functions

Journal of Experimental Botany, 2015, 66:627-646.

DOI:10.1093/jxb/eru386      PMID:25240067      [本文引用: 1]

Melatonin is synthesized in Alphaproteobacteria, Cyanobacteria, Dinoflagellata, Euglenoidea, Rhodophyta, Phae ophyta, and Viridiplantae. The biosynthetic pathways have been identified in dinoflagellates and plants. Other than in dinoflagellates and animals, tryptophan is not 5-hydroxylated in plants but is first decarboxylated. Serotonin is formed by 5-hydroxylation of tryptamine. Serotonin N-acetyltransferase is localized in plastids and lacks homology to the vertebrate aralkylamine N-acetyltransferase. Melatonin content varies considerably among species, from a few picograms to several micrograms per gram, a strong hint for different actions of this indoleamine. At elevated levels, the common and presumably ancient property as an antioxidant may prevail. Although melatonin exhibits nocturnal maxima in some phototrophs, it is not generally a mediator of the signal 'darkness'. In various plants, its formation is upregulated by visible and/or UV light. Increases are often induced by high or low temperature and several other stressors including drought, salinity, and chemical toxins. In Arabidopsis, melatonin induces cold- and stress-responsive genes. It has been shown to support cold resistance and to delay experimental leaf senescence. Transcriptome data from Arabidopsis indicate upregulation of genes related to ethylene, abscisic acid, jasmonic acid, and salicylic acid. Auxin-like actions have been reported concerning root growth and inhibition, and hypocotyl or coleoptile lengthening, but effects caused by melatonin and auxins can be dissected. Assumptions on roles in flower morphogenesis and fruit ripening are based mainly on concentration changes. Whether or not melatonin will find a place in the phytohormone network depends especially on the identification of molecular signals regulating its synthesis, high-affinity binding sites, and signal transduction pathways. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

Arnao M B, Hernández-Ruiz J.

Functions of melatonin in plants:a review

Journal of Pineal Research, 2015, 59:133-150.

DOI:10.1111/jpi.12253      URL     [本文引用: 1]

Reiter R, Tan D X, Zhou Z, et al.

Phytomelatonin:assisting plants to survive and thrive

Molecules, 2015, 20(4):7396-7437.

DOI:10.3390/molecules20047396      URL     [本文引用: 1]

庄维兵, 刘天宇, 束小春, .

褪黑素在植物生长发育过程中与植物激素的关系

安徽农业科学, 2018, 46(31):12-16.

[本文引用: 1]

Murch S J, Campbell S S B, Saxena P K.

The role of serotonin and melatonin in plant morphogenesis:regulation of auxin-induced root organogenesis in in vitro-cultured explants of St. John's wort (Hypericum perforatum L.)

In Vitro Cellular and Developmental Biology-Plant, 2001, 37(6):786-793.

DOI:10.1007/s11627-001-0130-y      URL     [本文引用: 1]

田雨菁, 胡雅琦.

外源褪黑素对非生物胁迫下植物生长发育的影响

生物化工, 2020, 6(4):163-164,170.

[本文引用: 1]

武兰兰, 郑耀庭, 李国元, .

褪黑素调节植物非生物胁迫耐性的机理

植物生理学报, 2018, 54(11):1669-1677.

[本文引用: 1]

杨小龙, 须晖, 李天来, .

外源褪黑素对干旱胁迫下番茄叶片光合作用的影响

中国农业科学, 2017, 50(16):3186-3195.

[本文引用: 1]

张明聪, 何松榆, 秦彬, .

外源褪黑素缓解干旱胁迫对春大豆苗期影响的生理调控效应

大豆科学, 2020, 39(5):742-750.

[本文引用: 1]

Wei W, Li Q T, Chu Y N. et al.

Melatonin enhances plant growth and abiotic stress tolerance in soybean plants

Journal of Experimental Botany, 2014, 66(3):695-707.

DOI:10.1093/jxb/eru392      URL     [本文引用: 1]

Dawood M G, El-Awadi M E.

Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin

Acta Biologica Colombiana, 2015, 20(2):223-235.

[本文引用: 1]

杜卓, 侯雯, 王丽, .

外源褪黑素对干旱胁迫下玉米幼苗的影响

中国农学通报, 2020, 36(27):14-19.

[本文引用: 1]

黄益宗, 蒋航, 王农, .

外源褪黑素对砷胁迫下水稻幼苗生长的影响

生态学杂志, 2018, 37(6):1738-1743.

[本文引用: 1]

苗含笑, 李东晓, 王久红, .

褪黑素对干旱胁迫下小麦生长发育和产量的影响

干旱地区农业研究, 2020, 38(5):161-167,191.

[本文引用: 1]

Li D X, Zhang D, Wang H G, et al.

Physiological response of plants to polyethylene glycol (PEG-6000) by exogenous melatonin application in wheat

Zemdirbyste-Agriculture, 2017, 104(3):219-228.

DOI:10.13080/z-a.2017.104.028      URL     [本文引用: 1]

李贺, 姜欣悦, 陈忠诚, .

外源褪黑素对低温胁迫下大豆V1期幼苗光合荧光及抗氧化系统的影响

中国油料作物学报, 2020, 42(4):640-648.

[本文引用: 1]

柯希望, 徐鹏, 殷丽华, .

褪黑素延缓红小豆叶片衰老的作用研究

黑龙江八一农垦大学学报, 2015, 27(5):52-55,86.

[本文引用: 1]

王春华.

红小豆——多功能的补养品

东方食疗与保健, 2007(9):9-10.

[本文引用: 1]

栾换换.

促生菌与氮和磷配施对红小豆生长发育的影响

临汾:山西师范大学, 2018.

[本文引用: 1]

杨倩, 裴红宾, 高振峰, .

芽孢杆菌ZJM-P5与磷肥互作对红小豆根系及产量的影响

西北植物学报, 2020, 40(7):1192-1200.

[本文引用: 1]

Chen Q, Qi W, Reiter R J, et al.

Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea

Journal of Plant Physiology, 2009, 166:324-328.

DOI:10.1016/j.jplph.2008.06.002      URL     [本文引用: 1]

Park S, Back K.

Melatonin promotes seminal root elongation and root growth in transgenic rice after germination

Journal of Pineal Research, 2012, 53:385-389.

DOI:10.1111/jpi.2012.53.issue-4      URL     [本文引用: 1]

Sarropoulou V N, Therios I N, Dimassi-Theriou K N.

Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.),Gisela 6 (P. cerasus × P. canescens),and M × M 60 (P. avium × P. mahaleb)

Journal of Pineal Research, 2012, 52:38-46.

DOI:10.1111/j.1600-079X.2011.00914.x      PMID:21749439      [本文引用: 1]

The objectives of this study were to test the effects of melatonin (N-acetyl-5-methoxytryptamine), a natural compound of edible plants on the rooting of certain commercial sweet cherry rootstocks. Shoot tip explants from previous in vitro cultures of the cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus × P. canescens), and M × M 60 (P. avium × P. mahaleb) were included in the experiment. The effect of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) alone or in combination with melatonin was tested concerning their rooting potential. Seven concentrations of melatonin (0, 0.05, 0.1, 0.5, 1, 5, and 10 μM) alone or in combination with 5.71 μM of IAA or 4.92 μM of IBA were tested. For each rootstock, 21 treatments were included. The explants were grown in glass tubes containing 10 mL of substrate. The parameters measured include rooting percentage, number of roots per rooted explant, root length, and callus formation. The data presented in this study show that melatonin has a rooting promoting effect at a low concentration but a growth inhibitory effect at high concentrations. In the absence of auxin, 1 μM melatonin had auxinic response concerning the number and length of roots, but 10 μM melatonin was inhibitory to rooting in all the tested rootstocks. The final conclusion of this experiment is that exogenously applied melatonin acted as a rooting promoter and its action was similar to that of IAA.© 2011 John Wiley & Sons A/S.

Jan Kolář, Johnson C H, Ivana M.

Exogenously applied melatonin (N-acetyl-5-methoxytryptamine) affects flowering of the short-day plant Chenopodium rubrum

Physiologia Plantarum, 2010, 118(4):605-612.

DOI:10.1034/j.1399-3054.2003.00114.x      URL     [本文引用: 1]

国海燕.

褪黑素引发种子处理对冬小麦光合特性及生长发育的影响

杨凌:西北农林科技大学, 2017.

[本文引用: 1]

Wang L Y, Liu J L, Wang W X, et al.

Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress

Photosynthetica, 2016, 54:19-27.

DOI:10.1007/s11099-015-0140-3      URL     [本文引用: 1]

Yang X L, Xu H, Li D, et al.

Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress

Photosynthetica, 2018, 56:884-892.

DOI:10.1007/s11099-017-0748-6      URL     [本文引用: 1]

Zafar S, Hasnain Z, Anwar S, et al.

Influence of melatonin on antioxidant defense system and yield of wheat (Triticum aestivum L.) genotypes under saline condition

Pakistan Journal of Botany, 2019, 51(6):1987-1994.

DOI:10.30848/PJB2019-6(5)      [本文引用: 1]

Melatonin (N-acetyl-5-methoxytryptamine) has emerged as a new growth regulator in plants due to its positive role in alleviation of abiotic stresses. The regulation effect of melatonin in mediation of salinity stress on antioxidative activities, growth and yield of wheat plants was investigated using genotypes Sarsabz and S-24, grown under 10 dSm(-1) NaCl salinity stress. Different concentrations of melatonin (50, 100, 300 and 500 mu M) were applied foliarly after 45 days of sowing (DAS). Results revealed that melatonin under salinity stress significantly improved the growth and yield of both wheat genotypes as compared to non-treated ones. The yield was enhanced to 5 and 11% by 50 mu M melatonin in both wheat cultivars respectively, which increased further 44 and 48% at 500 mu M melatonin level in Sarsabz and S-24 respectively, as compared to salinity alone treatment. Furthermore, foliar spray of melatonin was effective in improving the activities of catalase, peroxidase and superoxide dismutase under stress conditions in wheat genotypes. The application of 500 mu M melatonin was more effective in reducing the oxidative damage under salinity stress in terms of activities of antioxidant enzymes with an alternate decrease in malondialdehyde content. The increased activities of antioxidant enzymes are positively related with an enhanced biomass production and yield showing the ameliorative effect of melatonin under salt stress condition by up regulating the antioxidative defense mechanism. Results suggested that the foliar application of melatonin can be a useful strategy to help plant combat adverse conditions for enhancing yield of wheat plants.

何松榆.

干旱胁迫下外源褪黑素对大豆苗期生理特性和产量的影响

大庆:黑龙江八一农垦大学, 2020.

[本文引用: 1]

邹京南, 于奇, 金喜军, .

外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响

作物学报, 2020, 46(5):745-758.

DOI:10.3724/SP.J.1006.2020.94111      [本文引用: 1]

干旱胁迫降低大豆产量, 探究提高大豆耐旱能力和降低产量损失的机制对大豆生产具有重要意义。施褪黑素能缓解干旱胁迫对植株生长的抑制和氧化损伤。本试验于2017—2018年研究叶面喷施褪黑素对干旱胁迫下大豆鼓粒期叶片光合、抗逆、碳氮代谢和产量的影响表明, 外源褪黑素提高干旱胁迫下大豆叶片抗氧化酶活性, 抑制活性氧的产生和细胞膜损伤, 缓解干旱胁迫对光合能力的抑制, 提高碳氮同化能力, 最终缓解干旱胁迫造成的产量损失。与干旱胁迫相比, 褪黑素处理下单株荚数、单株粒数和百粒重两年平均提高了2.9%、0.8%和17.2%, 产量(单株粒重)平均提高了14.7%。

/