作物杂志, 2022, 38(2): 69-74 doi: 10.16035/j.issn.1001-7283.2022.02.010

遗传育种·种质资源·生物技术

小麦品种周麦22抗叶锈病的QTL定位

闫晓翠,1, 段振盈2, 杨华丽2, 姚占军,2,*, 李在峰,1,*

1河北农业大学植物保护学院/河北省农作物病虫害生物防治工程技术研究中心,071001,河北保定

2河北农业大学农学院/华北作物种质资源研究与利用教育部重点实验室,071001,河北保定

QTLs Mapping of Leaf Rust Resistance in Wheat Variety Zhoumai 22

Yan Xiaocui,1, Duan Zhenying2, Yang Huali2, Yao Zhanjun,2,*, Li Zaifeng,1,*

1College of Plant Protection, Hebei Agricultural University/Biological Control Center for Plant Diseases and Plant Pests of Hebei, Baoding 071001, Hebei, China

2College of Agronomy, Hebei Agricultural University/Key Laboratory of Research and Utilization of Crop Germplasm Resources in North China, Ministry of Education, Baoding 071001, Hebei, China

通讯作者: *姚占军,主要从事小麦抗锈病遗传育种,E-mail: yzhj201@aliyun.com; 李在峰为共同通信作者,主要从事小麦抗锈病遗传育种,E-mail: lzf7551@aliyun.com

收稿日期: 2021-03-5   修回日期: 2021-05-11   网络出版日期: 2021-12-31

基金资助: 国家重点研发计划(2017YFD300901)
河北省在读研究生创新项目(CXZZBS2020093)

Received: 2021-03-5   Revised: 2021-05-11   Online: 2021-12-31

作者简介 About authors

闫晓翠,主要从事小麦抗病育种,E-mail: yanxiaocui101412@126.com

摘要

小麦叶锈病(leaf rust)是对小麦危害最严重的真菌病害之一,原菌群体中新致病菌类型的不断出现导致部分抗叶锈病基因的抗性功能逐步丧失,不断发掘和研究利用新抗源基因、培育种植抗病品种是控制该病害最有效的方法。周麦22在田间成株期对叶锈病表现出良好的抗性,为解析周麦22成株期抗叶锈病的遗传基础,将周麦22与铭贤169杂交构建遗传群体,获得255个F2:3家系群体,经2个年度的大田成株期抗叶锈病鉴定,并利用复合区间作图法对该群体的抗叶锈病QTL进行定位分析。结果显示,该群体成株期检测到2个抗叶锈病QTL位点,分别位于1BL和2BS染色体上,命名为QLr.hebau-1BLQLr.hebau-2BS,分别解释9.62%~11.88%和16.89%~20.99%的表型变异,该位点对叶锈病抗性表现稳定,均来自抗病品种周麦22。初步的遗传定位结果显示,QLr.hebau-2BS可能为已知抗叶锈病基因LrZH22,而QLr.hebau-1BL是新的抗病QTL。

关键词: 小麦; 叶锈病; 成株抗性; QTL定位

Abstract

Leaf rust (LR) is one of the serious fungal diseases of wheat. Planting resistant cultivars is the most effective and safe way to control the disease. Due to the emergence of new pathotypes in the pathogen population, the resistance of the existing leaf rust resistance gene is gradually lost. Therefore, it is necessary to continuously explore and study new resistance sources to control this important disease. In the present study, the wheat variety Zhoumai 22 showed resistance to leaf rust at the adult plant stage. In order to analyze the genetic basis of resistance to leaf rust at the adult plant stage of Zhoumai 22, 255 F2:3 lines were obtained by crossing Zhoumai 22 with Mingxian 169. The resistance to leaf rust was identified at adult plant stage in field in two crop seasons, and the QTL for leaf rust resistance in the population was analyzed by composite interval mapping. The results showed that two QTLs for leaf rust resistance were detected at adult plant stage in the population, which were located on 1BL and 2BS chromosomes respectively. The two QTLs were designated as QLr.hebau-1BL and QLr.hebau-2BS, and they explained the phenotypic variation of 9.62%-11.88% and 16.89%-20.99%, respectively. The two QTLs showed stable resistance to leaf rust, and they were provided by Zhoumai 22. Results based on preliminary genetic mapping indicated that QLr.hebau-2BS is LrZH22, whereas QLr.hebau-1BL is a new leaf rust resistance QTL.

Keywords: Wheat; Leaf rust; Adult-plant resistance; QTL mapping

PDF (627KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

闫晓翠, 段振盈, 杨华丽, 姚占军, 李在峰. 小麦品种周麦22抗叶锈病的QTL定位. 作物杂志, 2022, 38(2): 69-74 doi:10.16035/j.issn.1001-7283.2022.02.010

Yan Xiaocui, Duan Zhenying, Yang Huali, Yao Zhanjun, Li Zaifeng. QTLs Mapping of Leaf Rust Resistance in Wheat Variety Zhoumai 22. Crops, 2022, 38(2): 69-74 doi:10.16035/j.issn.1001-7283.2022.02.010

小麦叶锈病是由叶锈病菌(Puccinia tirticina)侵染引起的真菌病害,致病菌属于活体寄生菌,主要侵染小麦叶片,但在发病严重或高度感病的小麦品种中,也可侵染叶鞘和颖壳[1-2],该病害是影响世界小麦生产安全的主要病害之一。几乎每年小麦主产区均有叶锈病的发生,20世纪中后期墨西哥西北部发生叶锈病害大流行,产量损失高达70%[3],在中国华北冬麦区发生过6次(1969、1973、1975、1979、2012和2015年)叶锈病害流行,其中仅2015年产量损失就高达19.1万t[4-5]。近年来,小麦叶锈病发生危害有明显加重趋势。虽然采用化学药剂能短暂防治叶锈病,但培育广谱抗病品种是行之有效的最佳方法。

小麦对叶锈病抗性分为小种专化抗性(race specific resistance)和非小种专化抗性(non-race specific resistance)[6]。小种专化抗性通常是对特定菌种表现出抗性,常发生在小麦苗期,又称为苗期抗性,常因病原菌毒性的变异而丧失[7-8],通过基因聚合和基因布局可以延长此类抗性基因的有效性。非小种专化抗性一般对1种病原菌的多个不同生理小种或者多种病原菌有效,一般在成株期表现,通常具有慢锈抗病性(slow rusting resistance)和持久抗病性(durable resistance)的特点[9],多个抗性基因的聚合可能表现出对此类病菌完全抗病。

至今,已正式命名的抗叶锈病基因(Lr)有79个[10],其中大部分为苗期抗病基因,仅有16个抗叶锈病基因表现为成株抗性(Lr12Lr13Lr22aLr22bLr34Lr35Lr37Lr46Lr48Lr49Lr67Lr68Lr74Lr75Lr77Lr78)。其中,Lr34/Yr18/Pm38/Sr57[11]Lr46/Yr29/Pm38/Sr58[12]Lr67/Yr46/Pm46/Sr55[13]等基因兼抗多种病害,具有一因多效及抗性持久稳定的优点。SSR标记具有多态性高、稳定性强、共显性高及成本低等优点,常被广泛应用于抗病基因的初步定位[14]。2016年,师令智等[15]利用SSR标记在CIMMYT品系19HRWSN-76中定位出1个苗期叶锈抗病基因LrHR76;2015年,王佳真等[16]在潍麦8号中定位到1个位于2AS染色体上的成株QTL位点QLr.hbau-2AS

小麦品种周麦22(国审麦2007007)是河南省周口市农业科学院选育出的优良品种,该品种为半冬性品种,具有产量高、品质优、农艺性状优良及抗病性好等优点,在我国黄淮冬麦区南部得到了大面积推广和应用。至2019年周麦22累计种植面积达670万hm2,高产稳产的原因之一是对小麦叶锈病[17]和条锈病[18]均表现出良好的抗性。Wang等[17]对周麦22进行了苗期抗叶锈病研究,定位到1个苗期抗叶锈病基因LrZH22。为了明确其所携带的成株抗叶锈基因,本研究利用周麦22/铭贤169及其255个F2:3家系,对其进行成株期抗叶锈病QTL分析,并结合已有的研究结果进行比较,挖掘周麦22中抗小麦叶锈病的新QTL位点,并找到与QTL紧密连锁的分子标记以应用于辅助选择育种。

1 材料与方法

1.1 供试材料

抗病亲本为周麦22,系谱:周麦12(周8425A/SW73295)/温6//周麦13(周8425B/周麦9号),感病亲本铭贤169及其杂交、自交获得的255个F2:3家系群体;感病对照品种为郑州5389,也作为叶锈菌的扩繁材料。于小麦成株期接种3个叶锈菌生理小种FHRT、THTT和THJT的混合菌种。小种的命名采用Long等[19]的四字母命名法。所有供试材料和叶锈菌种均由河北农业大学植物保护学院小麦锈病实验室提供。

1.2 成株期接种和侵染型调查

于2014-2015和2015-2016年度将抗病亲本周麦22、感病亲本铭贤169及其255个F2:3代群体分别播种于河北农业大学(河北保定)试验地。田间种植方式为行距25cm,行长1.5m,每行25粒,每9行加种1份感病品种郑州5389作为发病对照。适当浇水、施肥和田间除草。

在小麦拔节期采用喷雾法进行田间接种,接种日期通常为4月下旬的16:00,确保土壤有一定湿度。若土壤太旱,需在接菌前2d进行灌溉,避免接菌时湿度不够而影响接种质量。当感病对照郑州5389病斑占叶片的表面积达100%时进行田间成株表型鉴定,即最终病害严重度(final disease severity,FDS)。其接菌流程与田间病害表型鉴定参考Li等[20]的方法。

1.3 DNA提取及分子标记筛选

利用CTAB法[21]提取抗病亲本周麦22、感病亲本铭贤169及其F2:3代家系小麦叶片全基因组DNA,其中每份材料分别选取3~5株进行DNA混合提取,并分别用1×TE稀释成40~50ng/µL工作液,作为大群体的筛选。此外,参照Hao等[22]提出的优选小群体(PSG)策略构建抗感小群体,结合田间FDS从中选取5个抗病(FDS 5%以下)和5个感病(FDS尽量选最大,接近100%)的家系植株,分别提取叶片全基因组DNA作为抗感小群体。利用分布在所有小麦染色体组的1005对SSR标记对周麦22、铭贤169及抗感小群体进行多态性分子标记筛选。所需的PCR扩增体系、反应程序和PCR检测参考王佳真等[23]的方法。

1.4 遗传图谱构建及QTL定位

以多态性SSR分子标记筛选抗感亲本及其255个F2:3家系,将田间成株叶锈病FDS与筛选的基因型数据进行整理。利用Excel软件分析田间成株期叶锈病表型的分布,采用QTL Cartographer软件进行遗传定位分析,其LOD值设为2.5,分析有效的QTL位点贡献率和加性效应等遗传信息。

2 结果与分析

2.1 周麦22/铭贤169 F2:3群体成株期叶锈病抗性表型分析

依据FDS分析可知,感叶锈病对照品种郑州5389在2个年度的FDS分别为90%和100%,表明在每个环境中抗病亲本周麦22/感病亲本铭贤169 F2:3群体的叶锈病发病良好。其抗病亲本周麦22的FDS在5%左右,感病亲本铭贤169的FDS在80%以上,255个家系的叶片病斑面积呈1%~100%的连续性分布,说明该群体呈现数量性状遗传特性(图1)。

图1

图1   周麦22/铭贤169 F2:3叶锈病最终严重度的频率分布

箭头表示亲本周麦22和铭贤169的FDS平均值

Fig.1   Frequency distributions of the FDS of Zhoumai 22×Mingxian 169 F2:3 lines for leaf rust

Arrows mean FDS average values for the parents ‘Zhoumai 22’ and ‘Mingxian 169’


此外,由表1可知,在2个年度中抗病亲本周麦22和感病亲本铭贤169的平均FDS分别为5%和85%,且在其群体中的平均FDS为30.5%~30.9%。同时,对2个年度中叶锈病FDS的相关系数进行计算,其呈现出显著相关(P<0.001),叶锈病FDS的相关系数(r)为0.95。

表1   周麦22/铭贤169 F2:3 255个群体在2个年度中的FDS

Table 1  FDS for leaf rust of 255 F2:3 from Zhoumai 22×Mingxian 169 in two years

年份
Year
周麦22
Zhoumai 22
铭贤169
Mingxian 169
F2:3群体F2:3 population
均值
Mean
最小值
Min.
最大值
Max.
2014-201558030.55100
2015-201659030.95100

新窗口打开| 下载CSV


2.2 叶锈病成株期抗性QTL分析

利用分布于小麦染色体上的现存1005对SSR引物进行亲本多态性筛选,获得304对多态性SSR引物。将这些多态性标记应用于抗感小群体的筛选,获得交换值低于30%的55对多态性SSR标记(表2),并用其对周麦22/铭贤169的255个F2:3家系进行多态性筛选获得基因型。再结合2个年度的FDS结果,在群体中检测到2个成株抗性QTL,暂将其命名为QLr.hbau-1BLQLr.hbau-2BS表3图2)。2个成株抗性QTL均来自抗性亲本周麦22,且这2个QTL均在2个年度中稳定被检测到(图2)。

表2   55对SSR标记信息

Table 2  Information of 55 SSR markers

标记Marker染色体ChromosomeF引物(5’-3’)Forward primer (5’-3’)R引物(5’-3’)Reverse primer (5’-3’)
Xwmc3361AGTCTTACCCCGCGATCTGCGCGGCCTGAGCTTCTTGAG
Xbarc1481AGCGCAACCACAATGTATGCTGGGGTGTTTTCCTATTTCTT
Xbarc611BTGCATACATTGATTCATAACTCTCTTCTTCGAGCGTTATGATTGAT
Xwmc1341BCCAAGCTGTCTGACTGCCATAgAGTATAGACCTCTGGCTCACGG
Xwmc7661BAGATGGAGGGGATATGTTGTCACTCGTCCCTGCTCATGCTG
Xcfd481BATGGTTGATGGTGGGTGTTTATGTATCGATGAAGGGCCAA
Xgpw11701BAGATCGTTCATCCGATCTGCCAATCTCAGTTTGATGTCCTTCAG
Xcfd651BAGACGATGAGAAGGAAGCCACCTCCCTTGTTTTTGGGATT
Xcfd591BTCACCTGGAAAATGGTCACAAAGAAGGCTAGGGTTCAGGC
Glu-B31BGGTACCAACAACAACAACCCGGTACCAACAACAACAACCC
ω-secalin1BACCTTCCTCATCTTTGTCCTCCGATGCCTATACCACTACT
Xwmc441BGGTCTTCTGGGCTTTGATCCTGTGTTGCTAGGGACCCGTAGTGG
Xbarc811BGCGCTAGTGACCAAGTTGTTATATGAGCGGTTCGGAAAGTGCTATTCTACAGTAA
Xwmc311BGTTCACACGGTGATGACTCCCACTGTTGCTTGCTCTGCACCCTT
Xwmc6311BTTGCTCGCCCACCTTCTACCGGAAACCATGCGCTTCACAC
Xwmc4321DATGACACCAGATCTAGCACAATATTGGCATGATTACACA
Xbarc2122AGGCAACTGGAGTGATATAAATACCGCAGGAAGGGAGGAGAACAGAGG
Xbarc2202ACCTCTGCCATAAACATCACCTCTCGGCCTCAACATCATGTGAAAGA
Xwms6142AGATCACATGCATGCGTCATGTTTTACCGTTCCGGCCTT
Xbarc452BCCCAGATGCAATGAAACCACAATGCGTAGAACTGAAGCGTAAAATTA
Xwms1112BTCTGTAGGCTCTCTCCGACTGACCTGATCAGATCCCACTCG
Xbarc912BTTCCCATAACGCCGATAGTAGCGTTTAATATTAGCTTCAAGATCAT
Xbarc552BGCGGTCAACACACTCCACTCCTCTCTCCGCTGCTCCCATTGCTCGCCGTTA
Xgwm1482BGTGAGGCAGCAAGAGAGAAACAAAGCTTGACTCAGACCAAA
Xgwm4102BGCTTGAGACCGGCACAGTCGAGACCTTGAGGGTCTAGA
Xgwm3742BATAGTGTGTTGCATGCTGTGTGTCTAATTAGCGTTGGCTGCC
Xcfd442DAAACCCAATGGCTCTCACACATGGCCCAATTATGCAACTC
Xwms3492DGGCTTCCAGAAAACAACAGGATCGGTGCGTACCATCCTAC
Xwms1553ACAATCATTTCCCCCTCCCAATCATTGGAAATCCATATGCC
Xbarc123ACGACAGAGTGATCACCCAAATATAACATCGGTCTAATTGTCAATGTA
Xwms3893BATCATGTCGATCTCCTTGACGTGCCATGCACATTAGCAGAT
Xbarc1473BGCGCCATTTATTCATGTTCCTCATCCGCTTCACATGCAATCCGTTGAT
Xwms3974ATGTCATGGATTATTTGGTCGGCTGCACTCTCGGTATACCAGC
Xbarc704AGCGAAAAACGATGCGACTCAAAGGCGCCATATAATTCAGACCCACAAAA
Xbarc104BGCGTGCCACTGTAACCTTTAGAAGAGCGAGTTGGAATTATTTGAATTAAACAAG
Xwmc684BTACACCTCGCGTGTGTAGCCAAGCTCGAATTCTGGCTCGGCAAC
Xwmc4194BGTTTCGGATAAAACCGGAGTGCACTACTTGTGGGTTATCACCAGCC
Xbarc204BGCGATCCACACTTTGCCTCTTTTACAGCGATGTCGGTTTTCAGCCTTTT
Xbarc11184DCGCAGTTGCCTCCCTTGTTAGATGTTCGCTTATTCCTTTCTCATTGGGTTTG
Xbarc1555AGCGAGTATTGACGTCTTATTTTTGAAGCGTCATGAATTCTAACAATGTGCATA
Xbarc1845BTTCGGTGATATCTTTTCCCCTTGACCGAGTTGACTGTGTGGGCTTGCTG
Xwmc3765BTCTCAACCACCGACTTGTAAACATGTAATTGGGGACACTG
Xwms3715BGACCAAGATATTCAAACTGGCCAGCTCAGCTTGCTTGGTACC
Xwms5405BTCTCGCTGTGAAATCCTATTTCAGGCATGGATAGAGGGGC
Xbarc595BGCGTTGGCTAATCATCGTTCCTTCAGCACCCTACCCAGCGTCAGTCAAT
Xwms1825DTGATGTAGTGAGCCCATAGGCTTGCACACAGCCAAATAAGG
Xgwm 1076BATTAATACCTGAGGGAGGTGCGGTCTCAGGAGCAAGAACAC
Xbarc1986BCGCTGAAAAGAAGTGCCGCATTATGACGCTGCCTTTTCTGGATTGCTTGTCA
Xwmc4696DAGGTGGCTGCCAACGCAATTTTATCAGATGCCCGA
Xcfa22407ATGCAGCATGCATTTTAGCTTTGCCGCACTTATTTGTTCAC
Xwms2827ATTGGCCGTGTAAGGCAGTCTCATTCACACACAACACTAGC
Xcfa20197AGACGAGCTAACTGCAGACCCCTCAATCCTGATGCGGAGAT
Xbarc657BCCCATGGCCAAGTATAATATGCGAAAAGTCCATAGTCCATAGTCTC
Xwmc2737BAGTTATGTATTCTCTCGAGCCTGAGTTATGTATTCTCTCGAGCCTG
Xbarc327BGCGTGAATCCGGAAACCCAATCTGTGTGGAGAACCTTCGCATTGTGTCATTA

新窗口打开| 下载CSV


表3   周麦22/铭贤169 255个F2:3家系的叶锈病FDS的QTL

Table 3  QTL for FDS to leaf rust in 255 F2:3 lines from Zhoumai 22/Mingxian 169

年份
Year
QTLSSR标记区间
SSR marker interval
LOD值
LOD value
表型变异
Phenotypic variation (%)
加性效应
Add effect
贡献亲本
Contributing parent
2014-2015QLr.hbau-1BLXwmc31-Xwmc6316.689.6210.17周麦22
QLr.hbau-2BSXgwm374-Xbarc5515.8420.9914.09周麦22
2015-2016QLr.hbau-1BLXwmc31-Xwmc6317.7111.8814.56周麦22
QLr.hbau-2BSXgwm374-Xbarc5513.4316.8916.50周麦22

新窗口打开| 下载CSV


图2

图2   位于1BL和2BS染色体上连续2年成株抗叶锈病

Fig.2   Leaf rust adult-plant resistance QTL on chromosomes 1BL and 2BS in two years


表3可知,第1个QTL QLr.hbau-1BL的侧翼标记为Xwmc31Xwmc631,分别解释了2014-2015和2015-2016年度表型变异为9.62%和11.88%,加性效应分别为10.17%和14.56%。第2个QTL QLr.hbau-2BS侧翼标记Xgwm374Xbarc55位于2BS染色体上,在2014-2015和2015-2016年度中均能检测到,分别解释了20.99%和16.89%的表型变异,其加性效应分别为14.09%和16.50%。结果表明,抗病品种周麦22中至少存在2个稳定有效的QTL,且表现出较高的抗性。因此,鉴定的QTL可作为抗叶锈病品种的亲本。同时,这些位点和它们紧密连锁的分子标记对于基因精细定位和分子标记辅助选择有重要作用。

3 讨论

本研究共检测到2个抗叶锈病QTL分别是QLr.hbau-1BLQLr.hbau-2BS。QTL解释的总表型变异在叶锈病环境中为9.62%~20.99%,证明它们对减轻病害严重程度的显著作用。目前,位于1B染色体上的基因或QTL有Lr46/Yr29[24]QLr.caas-1BL[25]QLr.pser-1BL[26]QLr.hbu-1BL.2[27]及本研究中的QLr.hbau-1BL,根据它们的连锁或侧翼标记csLv46g22Xwmc59-Xbarc213Xwmc631-Xgwm268Xbarc80-Xwmc728Xwmc31-Xwmc631,确定其物理位置依次为670.2、667.2、637.2、685.1-686.7和610.35Mb。可知本研究中的QLr.hbau-1BL位点可能为新的成株抗叶锈位点。但由于标记区间较宽,还需要对图谱进行加密和进一步检验。对本研究中的第2个位于2B染色体上的抗病QTL QLr.hbau-2BS进行分析,有5个已知的抗叶锈病基因定位于小麦2BS染色体上,分别为Lr13[28]Lr16[29]Lr23[30]Lr73[31]LrZH22[17]。Wang等[17]在周麦22中定位了苗期抗叶锈病基因LrZH22,与本研究中QLr.hbau-2BS位置一致,均位于紧密连锁的SSR标记Xbarc55Xgwm374之间,抗性由已知抗叶锈病基因LrZH22提供,其抗病QTL均来自同一亲本周麦22。

周8425B作为河南省骨干亲本广泛应用于我国小麦育种中。Zhang等[32]研究表明,LrZH22来源于周8425B的姊妹系周8425A,且具有全生育期抗性。Zhang等[33]对部分周麦系列品种进行了抗性鉴定和标记分析,发现携带抗病基因LrZH22的品种在田间均表现很好的抗叶锈性,目前已知携带LrZH22的周麦系列品种有周8425B、周麦11、周麦18、周麦22、周麦28和周麦30等。因此目前我国有效抗叶锈病基因为抗叶锈病基因LrZH22,抗性稳定,在不同抗性群体中的贡献率均很显著,有利于小麦抗叶锈病基因育种的研究。小麦品种中国春完整基因组序列公示将会极大促进小麦抗叶锈病基因的定位和克隆。同时根据中国春参考序列,可开发出紧密连锁或共分离分子标记,从而对定位的抗病基因进行精细定位,并用于分子标记辅助选择育种。

本研究中在周麦22中定位了2个抗叶锈病位点,可能还含有其他抗病位点,有待下一步研究。同时,本研究中找到的与抗病基因紧密连锁的分子标记可用于对抗病基因品种的筛选。

4 结论

在周麦22/铭贤169的255个F2:3家系群体中定位出2个抗病QTL,为QLr.hebau-1BLQLr.hebau-2BS,分别解释9.62%~11.88%和16.89%~20.99%的表型变异。其中QLr.hebau-1BL可能为1个新的成株抗病位点,而QLr.hebau-2BS可能为全生育期抗病基因LrZH22。这2个抗病位点在2个年度中均表现出良好的抗性,为今后进一步基因挖掘及分子标记辅助选择育种提供良好基础。

参考文献

Mcintosh R A, Wellings C R, Park R F.

Wheat rusts: an atlas of resistance genes

Australia,Sydney:Kluwer Academic Publishers, 1995.

[本文引用: 1]

刘成, 闫红飞, 宫文萍, .

小麦叶锈病新抗源筛选研究

植物遗传资源学报, 2013, 14(5):936-944.

[本文引用: 1]

Dubin H J, Torres E.

Causes and consequences of the 1976-1977 wheat leaf rust epidemic in Northwest Mexico

Annual Review of Phytopathology,1981, 19(1):41-49.

DOI:10.1146/annurev.py.19.090181.000353      URL     [本文引用: 1]

董金皋. 农业植物病理学(北方本). 北京: 中国农业出版社, 2001.

[本文引用: 1]

彭红, 吕国强, 王江蓉.

河南省2015年小麦主要病害发生特点及原因分析

中国植保导刊, 2016, 36(4):29-33.

[本文引用: 1]

Johnson R.

Durable resistance to yellow (stripe) rust in wheat and its implications in plant breeding

Mexico,DF,CIMMYT, 1988.

[本文引用: 1]

Li Z F, Zheng T C, He Z H, et al.

Molecular tagging of stripe rust resistance gene YrZH84in Chinese wheat line Zhou 8425B

Theoretical and Applied Genetics, 2006, 112(6):1098-1103.

PMID:16450183      [本文引用: 1]

Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most damaging diseases in common wheat (Triticum aestivum L.). With the objective of identifying and tagging new genes for resistance to stripe rust, F1, F2 and F3 populations from the cross Zhou 8425B/Chinese Spring were inoculated with Chinese PST isolate CYR32 in the greenhouse. A total of 790 SSR primers were used to test the parents and resistant and susceptible bulks. The resulting seven polymorphic markers on chromosome 7BL were used for genotyping F2 and F3 populations. Results indicated that Zhou 8425B carries a single dominant resistance gene, temporarily designated YrZH84, closely linked to SSR markers Xcfa2040-7B and Xbarc32-7B with genetic distances of 1.4 and 4.8 cM, respectively. In a seedling test with 25 PST isolates, the reaction patterns of YrZH84 were different from those of lines carrying Yr2 and Yr6. It was concluded that YrZH84 is probably a new stripe rust resistance gene.

Lin F, Chen X M.

Genetics and molecular mapping of genes for race specific and all-stage resistance and non-specific high temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa

Theoretical and Applied Genetics, 2007, 114:1277-1287.

PMID:17318493      [本文引用: 1]

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is the preferred control of the disease. The spring wheat cultivar 'Alpowa' has both race-specific, all-stage resistance and non-race-specific, high-temperature adult-plant (HTAP) resistances to stripe rust. To identify genes for the stripe rust resistances, Alpowa was crossed with 'Avocet Susceptible' (AVS). Seedlings of the parents, and F(1), F(2) and F(3) progeny were tested with races PST-1 and PST-21 of P. striiformis f. sp. tritici under controlled greenhouse conditions. Alpowa has a single partially dominant gene, designated as YrAlp, conferring all-stage resistance. Resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrAlp. A linkage group of five RGAP markers and two SSR markers was constructed for YrAlp using 136 F(3) lines. Amplification of a set of nulli-tetrasomic Chinese Spring lines with RGAP markers Xwgp47 and Xwgp48 and the two SSR markers indicated that YrAlp is located on the short arm of chromosome 1B. To map quantitative trait loci (QTLs) for the non-race-specific HTAP resistance, the parents and 136 F(3) lines were tested at two sites near Pullman and one site near Mount Vernon, Washington, under naturally infected conditions. A major HTAP QTL was consistently detected across environments and was located on chromosome 7BL. Because of its chromosomal location and the non-race-specific nature of the HTAP resistance, this gene is different from previously described genes for adult-plant resistance, and is therefore designated Yr39. The gene contributed to 64.2% of the total variation of relative area under disease progress curve (AUDPC) data and 59.1% of the total variation of infection type data recorded at the heading-flowering stages. Two RGAP markers, Xwgp36 and Xwgp45 with the highest R (2) values were closely linked to Yr39, should be useful for incorporation of the non-race-specific resistance gene into new cultivars and for combining Yr39 with other genes for durable and high-level resistance.

Bjarko M E, Line R F.

Heritability and number of genes controlling leaf rust resistance in four cultivars of wheat

Phytopathology, 1988(4), 78:457-461.

DOI:10.1094/Phyto-78-457      URL     [本文引用: 1]

Qureshi N, Bariana H, Kumran V V, et al.

A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582

Theoretical and Applied Genetics, 2018, 131(5):1-8.

DOI:10.1007/s00122-017-2954-9      URL     [本文引用: 1]

Lagudah E S, Krattinger S G, Herreraoessel S, et al.

Gene-specifc markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens

Theoretical and Applied Genetics, 2009, 119(5):889-898.

DOI:10.1007/s00122-009-1097-z      PMID:19578829      [本文引用: 1]

The locus Lr34/Yr18/Pm38 confers partial and durable resistance against the devastating fungal pathogens leaf rust, stripe rust, and powdery mildew. In previous studies, this broad-spectrum resistance was shown to be controlled by a single gene which encodes a putative ATP-binding cassette transporter. Alleles of resistant and susceptible cultivars differed by only three sequence polymorphisms and the same resistance haplotype was found in the three independent breeding lineages of Lr34/Yr18/Pm38. Hence, we used these conserved sequence polymorphisms as templates to develop diagnostic molecular markers that will assist selection for durable multi-pathogen resistance in breeding programs. Five allele-specific markers (cssfr1-cssfr5) were developed based on a 3 bp deletion in exon 11 of the Lr34-gene, and one marker (cssfr6) was derived from a single nucleotide polymorphism in exon 12. Validation of reference genotypes, well characterized for the presence or absence of the Lr34/Yr18/Pm38 resistance locus, demonstrated perfect diagnostic values for the newly developed markers. By testing the new markers on a larger set of wheat cultivars, a third Lr34 haplotype, not described so far, was discovered in some European winter wheat and spelt material. Some cultivars with uncertain Lr34 status were re-assessed using the newly derived markers. Unambiguous identification of the Lr34 gene aided by the new markers has revealed that some wheat cultivars incorrectly postulated as having Lr34 may possess as yet uncharacterised loci for adult plant leaf and stripe rust resistance.

Kolmer J A, Lagudah E S, Lillemo M, et al.

The Lr46 gene conditions partial adult plant resistance to stripe rust, stem rust, and powdery mildew in Thatcher Wheat

Crop Science, 2015, 55(6):2557-2565.

DOI:10.2135/cropsci2015.02.0082      URL     [本文引用: 1]

Herrera-Foessel S A, Singh R P, Lillemo M, et al.

Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat

Theoretical and Applied Genetics, 2014, 127(4):781-789.

DOI:10.1007/s00122-013-2256-9      PMID:24408377      [本文引用: 1]

We demonstrate that Lr67/Yr46 has pleiotropic effect on stem rust and powdery mildew resistance and is associated with leaf tip necrosis. Genes are designated as Sr55, Pm46 and Ltn3, respectively. Wheat (Triticum aestivum) accession RL6077, known to carry the pleiotropic slow rusting leaf and yellow rust resistance genes Lr67/Yr46 in Thatcher background, displayed significantly lower stem rust (P. graminis tritici; Pgt) and powdery mildew (Blumeria graminis tritici; Bgt) severities in Kenya and in Norway, respectively, compared to its recurrent parent Thatcher. We investigated the resistance of RL6077 to stem rust and powdery mildew using Avocet × RL6077 F6 recombinant inbred lines (RILs) derived from two photoperiod-insensitive F3 families segregating for Lr67/Yr46. Greenhouse seedling tests were conducted with Mexican Pgt race RTR. Field evaluations were conducted under artificially initiated stem rust epidemics with Pgt races RTR and TTKST (Ug99 + Sr24) at Ciudad Obregon (Mexico) and Njoro (Kenya) during 2010-2011; and under natural powdery mildew epiphytotic in Norway at Ås and Hamar during 2011 and 2012. In Mexico, a mean reduction of 41 % on stem rust severity was obtained for RILs carrying Lr67/Yr46, compared to RILs that lacked the gene, whereas in Kenya the difference was smaller (16 %) but significant. In Norway, leaf tip necrosis was associated with Lr67/Yr46 and RILs carrying Lr67/Yr46 showed a 20 % reduction in mean powdery mildew severity at both sites across the 2 years of evaluation. Our study demonstrates that Lr67/Yr46 confers partial resistance to stem rust and powdery mildew and is associated with leaf tip necrosis. The corresponding pleiotropic, or tightly linked, genes, designated as Sr55, Pm46, and Ltn3, can be utilized to provide broad-spectrum durable disease resistance in wheat.

Röder M S, Korzun V, Wendehake K, et al.

A microsatellite map of wheat

Genetics, 1998, 149(4):2007-2023.

DOI:10.1093/genetics/149.4.2007      PMID:9691054      [本文引用: 1]

Hexaploid bread wheat (Triticum aestivum L. em. Thell) is one of the world's most important crop plants and displays a very low level of intraspecific polymorphism. We report the development of highly polymorphic microsatellite markers using procedures optimized for the large wheat genome. The isolation of microsatellite-containing clones from hypomethylated regions of the wheat genome increased the proportion of useful markers almost twofold. The majority (80%) of primer sets developed are genome-specific and detect only a single locus in one of the three genomes of bread wheat (A, B, or D). Only 20% of the markers detect more than one locus. A total of 279 loci amplified by 230 primer sets were placed onto a genetic framework map composed of RFLPs previously mapped in the reference population of the International Triticeae Mapping Initiative (ITMI) Opata 85 x W7984. Sixty-five microsatellites were mapped at a LOD >2.5, and 214 microsatellites were assigned to the most likely intervals. Ninety-three loci were mapped to the A genome, 115 to the B genome, and 71 to the D genome. The markers are randomly distributed along the linkage map, with clustering in several centromeric regions.

师令智, 朱琳, 任志宽, .

小麦品系19HRWSN-76的抗叶锈性研究

植物遗传资源学报, 2016, 17(4):696-700.

[本文引用: 1]

王佳真, 师令智, 朱琳, .

小麦品种潍麦8号成株抗叶锈QTL定位

植物遗传资源学报, 2015, 16(4):868-871.

[本文引用: 1]

Wang C F, Yin G H, Xia X C, et al.

Molecular mapping of a new temperature-sensitive gene LrZH22 for leaf rust resistance in Chinese wheat cultivar Zhoumai 22

Molecular Breeding, 2016, 36(2):1-10.

DOI:10.1007/s11032-015-0425-z      URL     [本文引用: 4]

Wang Y, Xie J Z, Zhang H Z, et al.

Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses

Theoretical and Applied Genetics, 2017, 130:2191-2201.

DOI:10.1007/s00122-017-2950-0      URL     [本文引用: 1]

Long D L, Kolmer J A.

A North American system of nomenclature for Puccinia triticina

Phytopathology, 1989, 79:525-529.

DOI:10.1094/Phyto-79-525      URL     [本文引用: 1]

Li Z F, Xia X C, He Z H, et al.

Seedling and slow rusting resistance to leaf rust in Chinese wheat cultivars

Plant Disease, 2010, 94(1):45-53.

DOI:10.1094/PDIS-94-1-0045      PMID:30754399      [本文引用: 1]

Identification of resistance genes is important for developing leaf rust resistant wheat (Triticum aestivum) cultivars. A total of 102 Chinese winter wheat cultivars and advanced lines were inoculated with 24 pathotypes of Puccinia triticina for postulation of leaf rust resistance genes effective at the seedling stage. These genotypes were also planted in the field for characterization of slow rusting responses to leaf rust in the 2006-07 and 2007-08 cropping seasons. Fourteen leaf rust resistance genes-Lr1, Lr2a, Lr3bg, Lr3ka, Lr14a, Lr16, Lr17a, Lr18, Lr20, Lr23, Lr24, Lr26, Lr34, and LrZH84-either singly or in combinations, were postulated in 65 genotypes, whereas known resistance genes were not identified in the other 37 accessions. Resistance gene Lr26 was present in 44 accessions. Genes Lr14a and Lr34 were each detected in seven entries. Lr1 and Lr3ka were each found in six cultivars, and five lines possessed Lr16. Lr17a and Lr18 were each identified in four lines. Three cultivars were postulated to possess Lr3bg. Genes Lr20, Lr24, and LrZH84 were each present in two cultivars. Each of the genes Lr2a and Lr23 may exist in one line. Fourteen genotypes showed slow leaf rusting resistance in two cropping seasons.

Sharp P J, Kreis M, Shewry P R.

Location of β-amylase sequence in wheat and its relatives

Theoretical and Applied Genetics, 1988, 75(2):286-290.

DOI:10.1007/BF00303966      URL     [本文引用: 1]

Hao Y, Liu A, Wang Y, et al.

Pm23:a new allele of Pm4,located on chromosome 2AL in wheat

Theoretical and Applied Genetics, 2008, 117(8):1205-1212.

DOI:10.1007/s00122-008-0827-y      URL     [本文引用: 1]

王佳真, 李在峰, 李星, .

小麦品系5R618抗叶锈病基因的初步定位

植物遗传资源学报, 2014, 15(6):1348-1351.

[本文引用: 1]

Li T, Bai G.

Lesion mimic associates with adult plant resistance to leaf rust infection in wheat

Theoretical and Applied Genetics, 2009, 119(1):13-21.

DOI:10.1007/s00122-009-1012-7      URL     [本文引用: 1]

Ren Y, He Z H, Li J, et al.

QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/catbird

Theoretical and Applied Genetics, 2012, 125(6):1211-1221.

DOI:10.1007/s00122-012-1907-6      URL     [本文引用: 1]

Singh R P, Mujeeb-Kazi A, Huerta-Espino J.

Lr46:a gene conferring slow-rusting resistance to leaf rust in wheat

Phytopathology, 1988, 88(9):890-894.

DOI:10.1094/PHYTO.1998.88.9.890      URL     [本文引用: 1]

Qi A Y, Zhang P P, Zhou Y, et al.

Mapping of QTL conferring leaf rust resistance in Chinese wheat lines W014204 and Fuyu 3 at adult plant stage

Journal of Integrative Agriculture, 2015, 15(1):18-28.

DOI:10.1016/S2095-3119(14)60974-6      URL     [本文引用: 1]

Seyfarth R, Feuillet C, Schachermayr G, et al.

Molecular mapping of the adult-plant leaf rust resistance gene Lr13in wheat (Triticum aestivum L.)

Journal of Genetics and Breeding, 2000, 54:193-194.

[本文引用: 1]

Mulualem T K, Frank M Y, Colin W H, et al.

Highly predictive SNP markers for efficient selection of the wheat leaf rust resistance gene Lr16

BMC Plant Biology, 2017, 17(1):45.

DOI:10.1186/s12870-017-0993-7      PMID:28202046      [本文引用: 1]

Background: Lr16 is a widely deployed leaf rust resistance gene in wheat (Triticum aestivum L.) that is highly effective against the North American Puccinia triticina population when pyramided with the gene Lr34. Lr16 is a seedling leaf rust resistance gene conditioning an incompatible interaction with a distinct necrotic ring surrounding the uredinium. Lr16 was previously mapped to the telomeric region of the short arm of wheat chromosome 2B. The goals of this study were to develop numerous single nucleotide polymorphism (SNP) markers for the Lr16 region and identify diagnostic gene-specific SNP marker assays for marker-assisted selection (MAS).Results: Forty-three SNP markers were developed and mapped on chromosome 2BS tightly linked with the resistance gene Lr16 across four mapping populations representing a total of 1528 gametes. Kompetitive Allele Specific PCR (KASP) assays were designed for all identified SNPs. Resistance gene analogs (RGAs) linked with the Lr16 locus were identified and RGA-based SNP markers were developed. The diagnostic potential of the SNPs co-segregating with Lr16 was evaluated in a diverse set of 133 cultivars and breeding lines. Six SNP markers were consistent with the Lr16 phenotype and are accurately predictive of Lr16 for all wheat lines/cultivars in the panel.Conclusions: Lr16 was mapped relative to SNP markers in four populations. Six SNP markers exhibited high quality clustering in the KASP assay and are suitable for MAS of Lr16 in wheat breeding programs.

Faris J D, Li W L, Liu D J, et al.

Candidate gene analysis of quantitative disease resistance in wheat

Theoretical and Applied Genetics, 1999, 98(2):219-225.

DOI:10.1007/s001220051061      URL     [本文引用: 1]

Park R F, Mohler V, Nazari K, et al.

Characterisation and mapping of gene Lr73 conferring seedling resistance to Puccinia triticina in common wheat

Theoretical and Applied Genetics, 2014, 127(9):2041-2049.

DOI:10.1007/s00122-014-2359-y      PMID:25116148      [本文引用: 1]

A gene conferring seedling resistance to Puccinia triticina was mapped to chromosome 2BS in the wheat Morocco. The gene was shown to be distinct and was therefore designated Lr73. The wheat genotype Morocco, widely susceptible to isolates of Puccinia triticina, was resistant to an Australian isolate of this pathogen collected in 2004. Genetic studies established that the resistance in Morocco was also present the Australian wheat genotypes Avocet, Halberd, Harrier, Tincurrin and a selection of cultivar Warigal lacking the resistance gene Lr20. Genetic studies based on a cross with Halberd showed that the gene is dominant and located on chromosome 2BS (XwPt8760-4 cM-Lr73-1.4 cM-XwPt8235). The gene was genetically independent of the Lr13, Lr16 and Lr23 loci, also located on chromosome 2BS, indicating that it is distinct. The locus designation Lr73 was therefore assigned. On the basis of multi-pathotype tests, it is likely Lr73 is also present in the Australian wheat cultivars Clearfield STL, Federation (with Lr10), Gatcher (with Lr10 and Lr27+Lr31), Marombi (with Lr1 and Lr37), Pugsley (with Lr1 and Lr37), Spear (with Lr1), Stiletto and Tarsa (with Lr1). Gene Lr73 is unlikely to be of value in resistance breeding. However, recognising Lr73 is important to avoid its inadvertent selection in breeding programmes. Furthermore, the apparent rarity of avirulence for genes like Lr73, sometimes referred to as "fossil" resistance genes, makes them of interest in terms of the evolution of disease resistance in host plants and of virulence in the respective rust pathogens.

Zhang P P, Yin G H, Zhou Y, et al.

QTL mapping of adult-plant resistance to leaf rust in the wheat cross Zhou 8425B/Chinese Spring using high-density SNP markers

Frontiers in Plant Science, 2017, 8:793.

DOI:10.3389/fpls.2017.00793      URL     [本文引用: 1]

Zhang P, Yan X, Gebrewahid T W, et al.

Genome-wide association mapping of leaf rust and stripe rust resistance in wheat accessions using the 90K SNP array

Theoretical and Applied Genetics, 2021, 134(4):1233-1251.

DOI:10.1007/s00122-021-03769-3      URL     [本文引用: 1]

/