作物杂志,2022, 第2期: 69–74 doi: 10.16035/j.issn.1001-7283.2022.02.010

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

小麦品种周麦22抗叶锈病的QTL定位

闫晓翠1(), 段振盈2, 杨华丽2, 姚占军2,*(), 李在峰1,*()   

  1. 1河北农业大学植物保护学院/河北省农作物病虫害生物防治工程技术研究中心,071001,河北保定
    2河北农业大学农学院/华北作物种质资源研究与利用教育部重点实验室,071001,河北保定
  • 收稿日期:2021-03-05 修回日期:2021-05-11 出版日期:2022-04-15 发布日期:2022-04-24
  • 通讯作者: 姚占军,李在峰
  • 作者简介:闫晓翠,主要从事小麦抗病育种,E-mail: yanxiaocui101412@126.com
  • 基金资助:
    国家重点研发计划(2017YFD300901);河北省在读研究生创新项目(CXZZBS2020093)

QTLs Mapping of Leaf Rust Resistance in Wheat Variety Zhoumai 22

Yan Xiaocui1(), Duan Zhenying2, Yang Huali2, Yao Zhanjun2,*(), Li Zaifeng1,*()   

  1. 1College of Plant Protection, Hebei Agricultural University/Biological Control Center for Plant Diseases and Plant Pests of Hebei, Baoding 071001, Hebei, China
    2College of Agronomy, Hebei Agricultural University/Key Laboratory of Research and Utilization of Crop Germplasm Resources in North China, Ministry of Education, Baoding 071001, Hebei, China
  • Received:2021-03-05 Revised:2021-05-11 Online:2022-04-15 Published:2022-04-24
  • Contact: Yao Zhanjun,Li Zaifeng

摘要:

小麦叶锈病(leaf rust)是对小麦危害最严重的真菌病害之一,原菌群体中新致病菌类型的不断出现导致部分抗叶锈病基因的抗性功能逐步丧失,不断发掘和研究利用新抗源基因、培育种植抗病品种是控制该病害最有效的方法。周麦22在田间成株期对叶锈病表现出良好的抗性,为解析周麦22成株期抗叶锈病的遗传基础,将周麦22与铭贤169杂交构建遗传群体,获得255个F2:3家系群体,经2个年度的大田成株期抗叶锈病鉴定,并利用复合区间作图法对该群体的抗叶锈病QTL进行定位分析。结果显示,该群体成株期检测到2个抗叶锈病QTL位点,分别位于1BL和2BS染色体上,命名为QLr.hebau-1BLQLr.hebau-2BS,分别解释9.62%~11.88%和16.89%~20.99%的表型变异,该位点对叶锈病抗性表现稳定,均来自抗病品种周麦22。初步的遗传定位结果显示,QLr.hebau-2BS可能为已知抗叶锈病基因LrZH22,而QLr.hebau-1BL是新的抗病QTL。

关键词: 小麦, 叶锈病, 成株抗性, QTL定位

Abstract:

Leaf rust (LR) is one of the serious fungal diseases of wheat. Planting resistant cultivars is the most effective and safe way to control the disease. Due to the emergence of new pathotypes in the pathogen population, the resistance of the existing leaf rust resistance gene is gradually lost. Therefore, it is necessary to continuously explore and study new resistance sources to control this important disease. In the present study, the wheat variety Zhoumai 22 showed resistance to leaf rust at the adult plant stage. In order to analyze the genetic basis of resistance to leaf rust at the adult plant stage of Zhoumai 22, 255 F2:3 lines were obtained by crossing Zhoumai 22 with Mingxian 169. The resistance to leaf rust was identified at adult plant stage in field in two crop seasons, and the QTL for leaf rust resistance in the population was analyzed by composite interval mapping. The results showed that two QTLs for leaf rust resistance were detected at adult plant stage in the population, which were located on 1BL and 2BS chromosomes respectively. The two QTLs were designated as QLr.hebau-1BL and QLr.hebau-2BS, and they explained the phenotypic variation of 9.62%-11.88% and 16.89%-20.99%, respectively. The two QTLs showed stable resistance to leaf rust, and they were provided by Zhoumai 22. Results based on preliminary genetic mapping indicated that QLr.hebau-2BS is LrZH22, whereas QLr.hebau-1BL is a new leaf rust resistance QTL.

Key words: Wheat, Leaf rust, Adult-plant resistance, QTL mapping

图1

周麦22/铭贤169 F2:3叶锈病最终严重度的频率分布 箭头表示亲本周麦22和铭贤169的FDS平均值

表1

周麦22/铭贤169 F2:3 255个群体在2个年度中的FDS

年份
Year
周麦22
Zhoumai 22
铭贤169
Mingxian 169
F2:3群体F2:3 population
均值
Mean
最小值
Min.
最大值
Max.
2014-2015 5 80 30.5 5 100
2015-2016 5 90 30.9 5 100

表2

55对SSR标记信息

标记Marker 染色体Chromosome F引物(5’-3’)Forward primer (5’-3’) R引物(5’-3’)Reverse primer (5’-3’)
Xwmc336 1A GTCTTACCCCGCGATCTGC GCGGCCTGAGCTTCTTGAG
Xbarc148 1A GCGCAACCACAATGTATGCT GGGGTGTTTTCCTATTTCTT
Xbarc61 1B TGCATACATTGATTCATAACTCTCT TCTTCGAGCGTTATGATTGAT
Xwmc134 1B CCAAGCTGTCTGACTGCCATAg AGTATAGACCTCTGGCTCACGG
Xwmc766 1B AGATGGAGGGGATATGTTGTCAC TCGTCCCTGCTCATGCTG
Xcfd48 1B ATGGTTGATGGTGGGTGTTT ATGTATCGATGAAGGGCCAA
Xgpw1170 1B AGATCGTTCATCCGATCTGC CAATCTCAGTTTGATGTCCTTCAG
Xcfd65 1B AGACGATGAGAAGGAAGCCA CCTCCCTTGTTTTTGGGATT
Xcfd59 1B TCACCTGGAAAATGGTCACA AAGAAGGCTAGGGTTCAGGC
Glu-B3 1B GGTACCAACAACAACAACCC GGTACCAACAACAACAACCC
ω-secalin 1B ACCTTCCTCATCTTTGTCCT CCGATGCCTATACCACTACT
Xwmc44 1B GGTCTTCTGGGCTTTGATCCTG TGTTGCTAGGGACCCGTAGTGG
Xbarc81 1B GCGCTAGTGACCAAGTTGTTATATGA GCGGTTCGGAAAGTGCTATTCTACAGTAA
Xwmc31 1B GTTCACACGGTGATGACTCCCA CTGTTGCTTGCTCTGCACCCTT
Xwmc631 1B TTGCTCGCCCACCTTCTACC GGAAACCATGCGCTTCACAC
Xwmc432 1D ATGACACCAGATCTAGCAC AATATTGGCATGATTACACA
Xbarc212 2A GGCAACTGGAGTGATATAAATACCG CAGGAAGGGAGGAGAACAGAGG
Xbarc220 2A CCTCTGCCATAAACATCACCTCTC GGCCTCAACATCATGTGAAAGA
Xwms614 2A GATCACATGCATGCGTCATG TTTTACCGTTCCGGCCTT
Xbarc45 2B CCCAGATGCAATGAAACCACAAT GCGTAGAACTGAAGCGTAAAATTA
Xwms111 2B TCTGTAGGCTCTCTCCGACTG ACCTGATCAGATCCCACTCG
Xbarc91 2B TTCCCATAACGCCGATAGTA GCGTTTAATATTAGCTTCAAGATCAT
Xbarc55 2B GCGGTCAACACACTCCACTCCTCTCTC CGCTGCTCCCATTGCTCGCCGTTA
Xgwm148 2B GTGAGGCAGCAAGAGAGAAA CAAAGCTTGACTCAGACCAAA
Xgwm410 2B GCTTGAGACCGGCACAGT CGAGACCTTGAGGGTCTAGA
Xgwm374 2B ATAGTGTGTTGCATGCTGTGTG TCTAATTAGCGTTGGCTGCC
Xcfd44 2D AAACCCAATGGCTCTCACAC ATGGCCCAATTATGCAACTC
Xwms349 2D GGCTTCCAGAAAACAACAGG ATCGGTGCGTACCATCCTAC
Xwms155 3A CAATCATTTCCCCCTCCC AATCATTGGAAATCCATATGCC
Xbarc12 3A CGACAGAGTGATCACCCAAATATAA CATCGGTCTAATTGTCAATGTA
Xwms389 3B ATCATGTCGATCTCCTTGACG TGCCATGCACATTAGCAGAT
Xbarc147 3B GCGCCATTTATTCATGTTCCTCAT CCGCTTCACATGCAATCCGTTGAT
Xwms397 4A TGTCATGGATTATTTGGTCGG CTGCACTCTCGGTATACCAGC
Xbarc70 4A GCGAAAAACGATGCGACTCAAAG GCGCCATATAATTCAGACCCACAAAA
Xbarc10 4B GCGTGCCACTGTAACCTTTAGAAGA GCGAGTTGGAATTATTTGAATTAAACAAG
Xwmc68 4B TACACCTCGCGTGTGTAGCCAA GCTCGAATTCTGGCTCGGCAAC
Xwmc419 4B GTTTCGGATAAAACCGGAGTGC ACTACTTGTGGGTTATCACCAGCC
Xbarc20 4B GCGATCCACACTTTGCCTCTTTTACA GCGATGTCGGTTTTCAGCCTTTT
Xbarc1118 4D CGCAGTTGCCTCCCTTGTTAGATGTT CGCTTATTCCTTTCTCATTGGGTTTG
Xbarc155 5A GCGAGTATTGACGTCTTATTTTTGAA GCGTCATGAATTCTAACAATGTGCATA
Xbarc184 5B TTCGGTGATATCTTTTCCCCTTGA CCGAGTTGACTGTGTGGGCTTGCTG
Xwmc376 5B TCTCAACCACCGACTTGTAA ACATGTAATTGGGGACACTG
Xwms371 5B GACCAAGATATTCAAACTGGCC AGCTCAGCTTGCTTGGTACC
Xwms540 5B TCTCGCTGTGAAATCCTATTTC AGGCATGGATAGAGGGGC
Xbarc59 5B GCGTTGGCTAATCATCGTTCCTTC AGCACCCTACCCAGCGTCAGTCAAT
Xwms182 5D TGATGTAGTGAGCCCATAGGC TTGCACACAGCCAAATAAGG
Xgwm 107 6B ATTAATACCTGAGGGAGGTGC GGTCTCAGGAGCAAGAACAC
Xbarc198 6B CGCTGAAAAGAAGTGCCGCATTATGA CGCTGCCTTTTCTGGATTGCTTGTCA
Xwmc469 6D AGGTGGCTGCCAACG CAATTTTATCAGATGCCCGA
Xcfa2240 7A TGCAGCATGCATTTTAGCTT TGCCGCACTTATTTGTTCAC
Xwms282 7A TTGGCCGTGTAAGGCAG TCTCATTCACACACAACACTAGC
Xcfa2019 7A GACGAGCTAACTGCAGACCC CTCAATCCTGATGCGGAGAT
Xbarc65 7B CCCATGGCCAAGTATAATAT GCGAAAAGTCCATAGTCCATAGTCTC
Xwmc273 7B AGTTATGTATTCTCTCGAGCCTG AGTTATGTATTCTCTCGAGCCTG
Xbarc32 7B GCGTGAATCCGGAAACCCAATCTGTG TGGAGAACCTTCGCATTGTGTCATTA

表3

周麦22/铭贤169 255个F2:3家系的叶锈病FDS的QTL

年份
Year
QTL SSR标记区间
SSR marker interval
LOD值
LOD value
表型变异
Phenotypic variation (%)
加性效应
Add effect
贡献亲本
Contributing parent
2014-2015 QLr.hbau-1BL Xwmc31-Xwmc631 6.68 9.62 10.17 周麦22
QLr.hbau-2BS Xgwm374-Xbarc55 15.84 20.99 14.09 周麦22
2015-2016 QLr.hbau-1BL Xwmc31-Xwmc631 7.71 11.88 14.56 周麦22
QLr.hbau-2BS Xgwm374-Xbarc55 13.43 16.89 16.50 周麦22

图2

位于1BL和2BS染色体上连续2年成株抗叶锈病

[1] Mcintosh R A, Wellings C R, Park R F. Wheat rusts: an atlas of resistance genes. Australia,Sydney:Kluwer Academic Publishers, 1995.
[2] 刘成, 闫红飞, 宫文萍, 等. 小麦叶锈病新抗源筛选研究. 植物遗传资源学报, 2013, 14(5):936-944.
[3] Dubin H J, Torres E. Causes and consequences of the 1976-1977 wheat leaf rust epidemic in Northwest Mexico. Annual Review of Phytopathology,1981, 19(1):41-49.
doi: 10.1146/annurev.py.19.090181.000353
[4] 董金皋. 农业植物病理学(北方本). 北京: 中国农业出版社, 2001.
[5] 彭红, 吕国强, 王江蓉. 河南省2015年小麦主要病害发生特点及原因分析. 中国植保导刊, 2016, 36(4):29-33.
[6] Johnson R. Durable resistance to yellow (stripe) rust in wheat and its implications in plant breeding. Mexico,DF,CIMMYT, 1988.
[7] Li Z F, Zheng T C, He Z H, et al. Molecular tagging of stripe rust resistance gene YrZH84in Chinese wheat line Zhou 8425B. Theoretical and Applied Genetics, 2006, 112(6):1098-1103.
pmid: 16450183
[8] Lin F, Chen X M. Genetics and molecular mapping of genes for race specific and all-stage resistance and non-specific high temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theoretical and Applied Genetics, 2007, 114:1277-1287.
pmid: 17318493
[9] Bjarko M E, Line R F. Heritability and number of genes controlling leaf rust resistance in four cultivars of wheat. Phytopathology, 1988(4), 78:457-461.
doi: 10.1094/Phyto-78-457
[10] Qureshi N, Bariana H, Kumran V V, et al. A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582. Theoretical and Applied Genetics, 2018, 131(5):1-8.
doi: 10.1007/s00122-017-2954-9
[11] Lagudah E S, Krattinger S G, Herreraoessel S, et al. Gene-specifc markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theoretical and Applied Genetics, 2009, 119(5):889-898.
doi: 10.1007/s00122-009-1097-z pmid: 19578829
[12] Kolmer J A, Lagudah E S, Lillemo M, et al. The Lr46 gene conditions partial adult plant resistance to stripe rust, stem rust, and powdery mildew in Thatcher Wheat. Crop Science, 2015, 55(6):2557-2565.
doi: 10.2135/cropsci2015.02.0082
[13] Herrera-Foessel S A, Singh R P, Lillemo M, et al. Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theoretical and Applied Genetics, 2014, 127(4):781-789.
doi: 10.1007/s00122-013-2256-9 pmid: 24408377
[14] Röder M S, Korzun V, Wendehake K, et al. A microsatellite map of wheat. Genetics, 1998, 149(4):2007-2023.
doi: 10.1093/genetics/149.4.2007 pmid: 9691054
[15] 师令智, 朱琳, 任志宽, 等. 小麦品系19HRWSN-76的抗叶锈性研究. 植物遗传资源学报, 2016, 17(4):696-700.
[16] 王佳真, 师令智, 朱琳, 等. 小麦品种潍麦8号成株抗叶锈QTL定位. 植物遗传资源学报, 2015, 16(4):868-871.
[17] Wang C F, Yin G H, Xia X C, et al. Molecular mapping of a new temperature-sensitive gene LrZH22 for leaf rust resistance in Chinese wheat cultivar Zhoumai 22. Molecular Breeding, 2016, 36(2):1-10.
doi: 10.1007/s11032-015-0425-z
[18] Wang Y, Xie J Z, Zhang H Z, et al. Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theoretical and Applied Genetics, 2017, 130:2191-2201.
doi: 10.1007/s00122-017-2950-0
[19] Long D L, Kolmer J A. A North American system of nomenclature for Puccinia triticina. Phytopathology, 1989, 79:525-529.
doi: 10.1094/Phyto-79-525
[20] Li Z F, Xia X C, He Z H, et al. Seedling and slow rusting resistance to leaf rust in Chinese wheat cultivars. Plant Disease, 2010, 94(1):45-53.
doi: 10.1094/PDIS-94-1-0045 pmid: 30754399
[21] Sharp P J, Kreis M, Shewry P R. Location of β-amylase sequence in wheat and its relatives. Theoretical and Applied Genetics, 1988, 75(2):286-290.
doi: 10.1007/BF00303966
[22] Hao Y, Liu A, Wang Y, et al. Pm23:a new allele of Pm4,located on chromosome 2AL in wheat. Theoretical and Applied Genetics, 2008, 117(8):1205-1212.
doi: 10.1007/s00122-008-0827-y
[23] 王佳真, 李在峰, 李星, 等. 小麦品系5R618抗叶锈病基因的初步定位. 植物遗传资源学报, 2014, 15(6):1348-1351.
[24] Li T, Bai G. Lesion mimic associates with adult plant resistance to leaf rust infection in wheat. Theoretical and Applied Genetics, 2009, 119(1):13-21.
doi: 10.1007/s00122-009-1012-7
[25] Ren Y, He Z H, Li J, et al. QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/catbird. Theoretical and Applied Genetics, 2012, 125(6):1211-1221.
doi: 10.1007/s00122-012-1907-6
[26] Singh R P, Mujeeb-Kazi A, Huerta-Espino J. Lr46:a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology, 1988, 88(9):890-894.
doi: 10.1094/PHYTO.1998.88.9.890
[27] Qi A Y, Zhang P P, Zhou Y, et al. Mapping of QTL conferring leaf rust resistance in Chinese wheat lines W014204 and Fuyu 3 at adult plant stage. Journal of Integrative Agriculture, 2015, 15(1):18-28.
doi: 10.1016/S2095-3119(14)60974-6
[28] Seyfarth R, Feuillet C, Schachermayr G, et al. Molecular mapping of the adult-plant leaf rust resistance gene Lr13in wheat (Triticum aestivum L.). Journal of Genetics and Breeding, 2000, 54:193-194.
[29] Mulualem T K, Frank M Y, Colin W H, et al. Highly predictive SNP markers for efficient selection of the wheat leaf rust resistance gene Lr16. BMC Plant Biology, 2017, 17(1):45.
doi: 10.1186/s12870-017-0993-7 pmid: 28202046
[30] Faris J D, Li W L, Liu D J, et al. Candidate gene analysis of quantitative disease resistance in wheat. Theoretical and Applied Genetics, 1999, 98(2):219-225.
doi: 10.1007/s001220051061
[31] Park R F, Mohler V, Nazari K, et al. Characterisation and mapping of gene Lr73 conferring seedling resistance to Puccinia triticina in common wheat. Theoretical and Applied Genetics, 2014, 127(9):2041-2049.
doi: 10.1007/s00122-014-2359-y pmid: 25116148
[32] Zhang P P, Yin G H, Zhou Y, et al. QTL mapping of adult-plant resistance to leaf rust in the wheat cross Zhou 8425B/Chinese Spring using high-density SNP markers. Frontiers in Plant Science, 2017, 8:793.
doi: 10.3389/fpls.2017.00793
[33] Zhang P, Yan X, Gebrewahid T W, et al. Genome-wide association mapping of leaf rust and stripe rust resistance in wheat accessions using the 90K SNP array. Theoretical and Applied Genetics, 2021, 134(4):1233-1251.
doi: 10.1007/s00122-021-03769-3
[1] 王健, 许爱玲, 杨娜, 王珂, 席吉龙, 卫晓东, 张建诚, 席天元. 运城盆地不同播期小麦干热风发生风险评价[J]. 作物杂志, 2022, (2): 104–112
[2] 郝瑞煊, 孙敏, 任爱霞, 林文, 王培如, 韩旭阳, 王强, 高志强. 宽幅条播冬小麦水分利用与干物质积累、品质的关系及播种密度的调控研究[J]. 作物杂志, 2022, (2): 119–126
[3] 周煜庄, 王瑞, 姚照胜, 张伟军, 刘涛, 孙成明. 不同土壤表面结构对小麦生长发育及产量的影响[J]. 作物杂志, 2022, (2): 127–133
[4] 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 追氮量对不同品质类型小麦产量及光合性能的影响[J]. 作物杂志, 2022, (2): 134–142
[5] 罗含敏, 熊发前, 丘立杭, 刘菁, 段维兴, 高轶静, 覃夏燕, 吴建明, 李杨瑞, 刘俊仙. 性状相关的分子标记在甘蔗分子育种中的应用研究[J]. 作物杂志, 2022, (2): 35–43
[6] 赵锴, 晋秀娟, 孙丽丽, 闫荣岳, 卢娟, 郭峰, 史雨刚, 孙黛珍. 小麦脱植基相关基因在春性小麦叶片叶绿素降解过程中的作用分析[J]. 作物杂志, 2022, (2): 81–88
[7] 石雄高, 裴雪霞, 党建友, 张定一. 小麦微喷(滴)灌水肥一体化高产优质高效生态栽培研究进展[J]. 作物杂志, 2022, (1): 1–10
[8] 杨程, 杜思梦, 张德奇, 时艳华, 李向东, 邵运辉, 方保停, 王汉芳. 基于叶绿素荧光的小麦越冬期冻害评价[J]. 作物杂志, 2022, (1): 154–160
[9] 柏军兵, 王艳杰, 王德梅, 杨玉双, 王玉娇, 郭丹丹, 刘哲文, 常旭虹, 石书兵, 赵广才. 强筋小麦产量和品质对不同土壤条件及施氮水平的响应[J]. 作物杂志, 2022, (1): 167–173
[10] 张胜全, 叶志杰, 任立平, 高新欢, 王拯, 杨永利, 穆磊, 董艳华, 陈兆波. “十五”以来我国杂交小麦审定品种分析[J]. 作物杂志, 2022, (1): 38–43
[11] 宋全昊, 金艳, 宋佳静, 白冬, 赵立尚, 陈杰, 朱统泉. 人工合成六倍体小麦在黄淮麦区育种中的利用性评价[J]. 作物杂志, 2022, (1): 56–64
[12] 葛昌斌, 张宏套, 廖平安, 曹燕燕, 黄杰, 乔冀良, 郭春强, 王君, 秦素研, 张兰, 夏明聪, 程斌, 张立异. 贵协3号小麦衍生品种(系)的赤霉病抗性评价及农艺性状分析[J]. 作物杂志, 2022, (1): 96–101
[13] 苏文平, 王欢, 艾木拉姑丽·库尔班, 赵鑫琳, 薛丽华, 章建新, 刘俊, 孙诗仁. 北疆临冬播小麦品种间生育特性及产量比较[J]. 作物杂志, 2021, (6): 108–114
[14] 杨娜, 席吉龙, 王珂, 席天元, 张建诚, 姚景珍, 王健. 春季灌水对晋南晚播冬小麦产量和水分利用的影响[J]. 作物杂志, 2021, (6): 115–121
[15] 郭明明, 王康君, 张广旭, 孙中伟, 李筠, 章跃树, 代丹丹, 陈凤, 樊继伟. 播期和行距互作对小麦籽粒产量和品质的调控[J]. 作物杂志, 2021, (6): 152–158
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!