作物杂志, 2022, 38(3): 9-19 doi: 10.16035/j.issn.1001-7283.2022.03.002

专题综述

MAGIC群体的遗传特征及其在作物耐逆研究上的应用

荣克伟,1,2, 柳波娟2, 卢跃磊1,2, 陈勇2, 罗平1,2, 赵康1, 郝转芳,1,2, 高文伟,1

1新疆农业大学农学院,830052,新疆乌鲁木齐

2中国农业科学院作物科学研究所,100081,北京

Genetic Characteristics of MAGIC Population and Its Application in Crop Stress Tolerance

Rong Kewei,1,2, Liu Bojuan2, Lu Yuelei1,2, Chen Yong2, Luo Ping1,2, Zhao Kang1, Hao Zhuanfang,1,2, Gao Wenwei,1

1College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China

2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

通讯作者: 郝转芳,主要研究方向为玉米遗传育种,E-mail: haozhuanfang@163.com;高文伟为共同通信作者,主要研究方向为棉花遗传育种,E-mail: gww@xjau.edu.cn

收稿日期: 2021-07-30   修回日期: 2021-12-1   网络出版日期: 2022-04-27

基金资助: 国家自然科学基金国际合作项目(31661143010)
国家重点研发计划(2020YFE0202300)
中国农业科学院科技创新工程重大科研任务(CAAS-ZDRW202109)

Received: 2021-07-30   Revised: 2021-12-1   Online: 2022-04-27

作者简介 About authors

荣克伟,研究方向为玉米耐旱研究,E-mail: rongkewei@yeah.net

摘要

多亲本高世代互交(multi-parent advanced generation intercross,MAGIC)群体是近年来发展起来的新一代遗传作图及育种群体。MAGIC群体最初是以研究动物及人类复杂性状遗传基础为目标而构建的基于多亲本的重组近交群体,随后将其构建方法衍生到植物中应用。MAGIC群体应用于作物遗传育种,可以建立包含无限多株系的群体,主要的优势是拥有大量可利用的多样性遗传基因池。亲本可选用育种中性状优异的材料,通过多次重组创造大量的遗传变异。群体中选出的优良株系可用作育种中间材料或直接组配新品种,也可灵活应用于数量性状位点(quantitative trait locus,QTL)的精确遗传定位分析,真正做到育种群体和定位群体的有机整合。作物耐逆性大多是由QTL控制,因此,主要围绕MAGIC群体的定义、构建流程、遗传特征及其在作物耐逆性研究上的应用和发展前景作综合性阐述。

关键词: MAGIC群体; 数量性状位点; 遗传变异; 作物耐逆性

Abstract

Multi-parent advanced generation intercross (MAGIC) is a new generation population for genetic mapping and breeding selection. It was originally derived from an idea for exploring the genetic basis of quantitative traits in animals and humans, which aimed to construct a generically complex recombined selfing population based on multiple parents, and hereafter to popularize its application to plants. Now, the MAGIC population has been applied to crop genetics and breeding, by creating a population that contains a large number of various interrelated lines. The fundamental benefit of the MAGIC population was the diversity of its genetic gene pools, which could give a large amount of germplasm for selection and precise mapping. After numerous generations of recombinations, lines with high performance could be directly or indirectly selected and used in breeding initiatives. Furthermore, it was primarily used for the exact genetic mapping of complex quantitative trait locus (QTL), particularly for qualities like stress tolerance. As the characteristics of MAGIC population were suitable for studying the stress tolerance controlled by QTL quantitative trait loci, in this review, we summarized its origination, construction points, genetic characteristics and recent research applications in stress tolerance, and further to discuss its new prospects.

Keywords: MAGIC population; Quantitative trait locus; Genetic variation; Crops stress tolerance

PDF (755KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

荣克伟, 柳波娟, 卢跃磊, 陈勇, 罗平, 赵康, 郝转芳, 高文伟. MAGIC群体的遗传特征及其在作物耐逆研究上的应用. 作物杂志, 2022, 38(3): 9-19 doi:10.16035/j.issn.1001-7283.2022.03.002

Rong Kewei, Liu Bojuan, Lu Yuelei, Chen Yong, Luo Ping, Zhao Kang, Hao Zhuanfang, Gao Wenwei. Genetic Characteristics of MAGIC Population and Its Application in Crop Stress Tolerance. Crops, 2022, 38(3): 9-19 doi:10.16035/j.issn.1001-7283.2022.03.002

种质资源创新对农作物可持续发展起到决定性的作用,人为定向选择导致种质资源遗传多样性逐渐减少,耐逆性和稳定性减弱,再加上生态环境日趋恶化,农作物生产面临严峻的考验[1]。种质资源是作物遗传改良和相关基础研究的物质基础,积累了大量自然和人为的遗传变异,保证了作物遗传基因的丰富性[2]。因此,在遗传学研究上,积累丰富遗传多样性的种质资源可以发挥其多方面的潜力优势。

作物的重要农艺性状大多是受多基因控制的数量性状,而耐逆性大多属于复杂的数量性状。通过遗传定位可发掘到控制数量性状的位点(quantitative trait locus,QTL),其中构建作图群体是决定数量性状定位准确性的关键因素[3]。目前,作物中用于遗传定位的群体主要可以分为3类:传统双亲作图群体、自然群体及新一代作图群体(图1)。传统双亲作图群体主要包括F2群体、DH(doubled haploid)群体、回交(backcross,BC)群体和重组自交系(recombinant inbred lines,RIL)群体。传统双亲作图群体的局限性是遗传多样性不足、QTL定位准确性较低和推广应用时间较长等[3]。自然群体用于遗传研究还属于较新的研究范围,Thornsberry等[4]首次将关联分析方法应用于植物遗传研究领域,目前仍广泛应用于数量性状的定位分析。随着数量遗传学的发展,促进了作物的新一代作图群体的产生与应用。以巢式关联图谱(nested association mapping,NAM)和多亲本高世代互交(multi-parent advanced qeneration intercross,MAGIC)群体为代表的新一代作图群体是通过多亲本杂交后自交产生,经过多次减数分裂后,它们包含更多的重组事件,可以构建更大的群体以及丰富的遗传多样性。

图1

图1   作物遗传研究中定位群体的发展和改良

Fig.1   Development and improvement of targeted populations in crop genetic research


MAGIC群体更容易获得多个优良NAM群体是按照星型杂交方案将1个中心亲本与多个亲本杂交构建得来的巢式群体[5-7]。有研究团队[8-10]采用单粒传法(single seed descent,SSD)将25个玉米自交系与B73杂交,构建了包含200个RIL的NAM群体。但NAM群体只有1个共同的亲本,无法研究剩余亲本间QTL的相互作用[11]。因此,有研究[12-13]提出了用MAGIC解决目前已有作图群体中所存在的问题,并指出MAGIC群体同时适用于连锁分析和关联分析这2种方法进行QTL定位,并且在构建过程中实现了多亲本的聚合杂交、重组产生的变异多样性、LD衰减更快等目的。在育种上,基因聚合的材料,并聚合了多个亲本的遗传背景,对其育种价值和遗传价值趋近于理想群体[14]。因此,此类群体在作物育种应用有着重要的意义。

1 MAGIC群体的由来及其在遗传研究上的优势

1.1 MAGIC群体的由来

Churchill等[15]以动物及人类复杂性状遗传基础为研究目标,成立了1个复杂性状协作组(complex trait consortium,CTC)。该组织机构在2006年概述了一种称为联合杂交(colla-borative cross,CC)的策略,该策略是从一组遗传多样化的近交系小鼠品系构建大量的重组近交系集合,并且这种策略已经成功地用于小鼠和果蝇中QTL的定位[15-21]

Cavanagh等[12]向植物界引入MAGIC群体,该群体构建过程主要包括3个阶段:亲本选择阶段、互交重组阶段和子代纯合阶段。构建1个MAGIC群体要求所有亲本的遗传因子都要融合到后代中,2n个亲本互交n代才能实现融合,再加上重组和纯合至少需要10世代以上。它的一个重要特征是由多亲本互交后自交而得来的,包含多个亲本的遗传组成,不会出现后代衰退和多态性下降的现象。因此在作物遗传研究中,其最大的优点是可以建立一个包含很多株系的群体,这些株系拥有丰富的遗传多样性基因池。

1.2 MAGIC群体在作物遗传研究上的优势

MAGIC群体既克服了双亲本杂交群体遗传基础狭窄的限制,又弥补了自然群体进行关联分析的不足,逐渐成为一种替代型的作图群体[22]。MAGIC群体在作物上有着自己独特的优势,可以同时定位多个主效基因和QTL,发挥其群体多样性高的优势,并且探讨包含来自不同亲本的多个等位基因及其对某个性状的影响;可以同时评估多个QTL在不同遗传背景下的表现,从而可以间接反映出不同遗传背景的作用;可以用于定位作图,选择优异材料的育种性状作为亲本可以产生大量的遗传变异,直接将优良个体用作育种材料,以达到育种群体和定位群体的相互融合,定位到的QTL可以直接指导育种[23-24]

目前,MAGIC群体主要基于以下2点进行遗传定位,一是利用基因型和表型数据进行关联分析,二是基于标记构建单倍型的连锁分析[25]。关联分析在MAGIC群体中一般进行重要性状的遗传定位。与连锁定位相比,关联分析广度大,主要基于群体中普遍存在连锁不平衡现象,因此可以在同一座位上同时检测多个等位基因,且准确度高,可达到单基因的水平。Kover等[26]培育出了第1套拟南芥MAGIC系,构建了19个拟南芥亲本互交的含1026个株系的MAGIC 群体。利用该群体结合表型数据采用多种模型进行QTL作图,通过模拟发现可以检测到大部分表型变异超过10%的数量性状,证实可以利用MAGIC群体进行遗传定位分析。

2 MAGIC群体在植物遗传研究中的应用

植物开花时间、株高、籽粒产量和环境适应性等重要的农艺性状,以及生物和非生物胁迫抗性等数量性状的表现均取决于多个基因之间相互作用[27]。采用MAGIC群体进行QTL定位,能同时使用连锁作图和关联作图,使QTL定位达到更好的效果。尽管MAGIC群体的构建比较复杂,还需要很多的资源,但不同作物构建的群体数量在不断增加。目前,已经有许多MAGIC群体在不同作物中有报道,包括拟南芥、玉米、小麦、水稻、棉花、大麦和烟草等(表1),主要被用于复杂农艺性状和耐逆性的遗传研究。

表1   MAGIC群体在植物遗传研究中的应用

Table 1  Application of MAGIC group in plant genetics research

作物
Crop
类型
Type
亲本选择
Parental selection
杂交方式
Hybridization
群体规模
Group size
基因型鉴定
Genotyping
研究性状
Research trait
分析方法
Analytical method
参考文献
Reference
拟南芥
Arabidopsis

19亲本
随机杂交
1026 F4
1260 SNPs
抽薹期
QTL
[26]
水稻Rice籼稻4亲本DC1双列杂交495 F66K SNP芯片籽粒产量性状、穗相关性状、分蘖相关性状、抽穗期、苗期和株高
GWAS[23,28-31]
4亲本DC2双列杂交525 F6
8亲本
Funnel杂交
668 F6
55K SNP芯片,
GBS
籼稻8亲本Funnel杂交1328 S7GBS: 17387 SNP产量性状、稻米品质、开花期、株高、粒型、抗旱性、耐涝性、耐盐性、抗病性(稻瘟病、白叶枯病、褐斑病)

QTL,GWAS[32-34]
MAGIC PLUS144 S8
MAGIC PLUS
DH系

76 DH
粳稻8亲本Funnel杂交500 S5
籼―粳GLOBAL MAGIC1402 S7
小麦Wheat



春小麦



4亲本



Funnel杂交



1579 F6



826 DArTs、283SNPs、53SSRs,9K SNP芯片,90K SNP芯片株高、籽粒重、
胚芽鞘长度


LMC,QTL



[13,35-36]



冬小麦
8亲本
Funnel杂交
1091 F7
90K SNP芯片
产量、开花期、
病害和株高
LMC,QTL
[37-38]
全麦粉
4亲本
Funnel杂交
332 F6
SSR
产量性状、
抗白粉病
QTL,LMC
[39]
欧洲
小麦
60亲本
随机杂交
1000 S4
9K SNP芯片
抽穗期
LDA,GWAS
[40]
14个KASPar SNP
大麦
Hordeum
8亲本Funnel杂交5000 DH9K SNP芯片开花期QTL[41]
8亲本Funnel杂交642 F59K SNP芯片黄斑病LMC,QTL[42]
棉花Cotton陆地棉11亲本随机杂交547 F5GBS纤维品质GWAS,QTL[43]
8亲本
随机杂交
960 MLs
SLAF-seq
开花期、株型、
果枝数
GWAS,QTL
[44]
11亲本随机杂交550 RIL47K SNP芯片株高、茎秆质量GWAS,QTL[45]
高粱
Sorghum

29亲本
随机杂交
1000 F6
GBS
株高
GWAS,QTL
[46]
作物
Crop
类型
Type
亲本选择
Parental selection
杂交方式
Hybridization
群体规模
Group size
基因型鉴定
Genotyping
研究性状
Research trait
分析方法
Analytical method
参考文献
Reference
烟草
Tobacco

8亲本
双列杂交
600 F4
430K 芯片
株型、烟叶品质
GWAS
[47]
玉米
Maize

8亲本
Funnel杂交
1636 F6
GBS
开花期、株高、
穗位高
LMC,AM,QTL[48]
4亲本
Funnel杂交
1149 S3
118K SNP 芯片
株高、穗高、散
粉期、吐丝期
QTL,GWAS
[49]
8亲本
Funnel杂交
401 RIL
56K SNP 芯片
苗重、苗长和
黄萎病
QTL,NAM
[50]
8亲本
Funnel杂交
700F6
110K SNP
芯片
镰孢菌穗腐病
LMC,AM,QTL[51]
8亲本
Funnel杂交
406 RIL
100K SNP
芯片,GBS
发芽率、叶绿素
和出苗期
GWAS,QTL
[52]
8亲本
Funnel杂交
368 MLs
1000K SNP芯片,GBS籽粒含油量
GWAS,QTL
[53]
16亲本
Funnel杂交
513 RIL
500K SNP芯片
株高、叶形态、
开花期、穗大小
GWAS
[54]
4亲本
Funnel杂交
1044 F6
50K SNP芯片
产量、吐丝期、
株高
QTL,AM
[55]
油菜
Brassica napus
甘蓝型
8亲本
随机杂交
680 F6

始花期、抗病性
SSD
[56]

Fn表示构建F1的杂交过程和F1自交过程的总代数,Sn表示F1植株自交的代数,DH(doubled haploid)表示双单倍体系,GBS(genotyping by sequencing)表示基于测序的基因分型,QTL(quantitative trait locus)表示QTL定位,LDA(linkage disequilibrium analysis)表示连锁不平衡分析,LMC(linkage map construction)表示连锁图谱构建,AM(association mapping)表示关联作图,GWAS(genome wide association study)表示全基因组关联分析,SNP(single nucleotide polymorphisms)表示单核苷酸多态性,Funnel杂交表示“漏斗”型杂交,SSR(simple sequence repeat)表示简单重复序列,SSD(single seed descent)表示单粒传法,RIL(recombinant inbred lines)表示重组自交系,ML(lines)表示自交系,NAM(nested association map)表示巢式关联图谱

Fn represents the total algebra of the hybridization process and the self-crossing process of F1, Sn represents the self-intersecting algebra of F1 plants, DH (doubled haploid) means double Haploid, GBS (genotyping by sequencing) stands for sequencing based genotyping, QTL (quantitative trait locus) represents QTL localization, LDA (linkage disequilibrium analysis) indicates Linkage Disequilibrium Analysis, LMC (linkage map construction) indicates Linkage Map Construction, AM (association mapping) indicates association mapping, GWAS (genome wide association study) stands for genome-wide association analysis, SNP (single nucleotide polymorphisms) denotes single nucleotide polymorphisms, Funnel cross is a “Funnel” cross, SSR (simple sequence repeat) indicates simple repeating sequence, SSD (single seed descent) indicates single seed transmission; RIL (recombinant inbred lines) represents recombinant inbred lines, ML (lines) represents inbred lines, NAM (nested association map) indicates the nested association map

新窗口打开| 下载CSV


2.1 拟南芥MAGIC群体的遗传研究

拟南芥的MAGIC群体是植物中构建较快的群体。Kover等[26]构建了第1套拟南芥MAGIC系,通过对所有的株系基因分型共得到1260个单核苷酸多态性(single nucleotide polymorphisms,SNP)。对抽薹期进行QTL定位分析分别在1、4和5号染色体上检测到4个控制抽薹期的QTL,其中位于4号染色体上的QTL占表型变异最大,表明该QTL大概率是由与花期相关的FRIGIDA基因(位于0.26Mb)引起的;位于5号染色体上QTL(3.50 Mb)可能是另一个已知的影响开花时间自然变异的基因FLOWERING LOCUSC引起的。研究也发现了与种子萌芽和抽薹相关且未见报道的新QTL。

2.2 水稻MAGIC群体的遗传研究

Meng等[28]构建了5个水稻MAGIC群体,并利用这5个水稻MAGIC群体进行了水稻苗期对铁、锌和铝毒害响应的关联分析,分别检测到21个与铁、铝胁迫相关的QTL和30个与锌胁迫相关的QTL。此外,Meng等[23,29]同时利用这些群体对水稻株高、产量、产量构成因素和抽穗期等14个农艺性状进行全基因组关联分析,得到除第7、9和11号染色体以外的9条染色体上共检测到26个显著的QTL定位。Ponce等[30]分别利用2个4亲本和8亲本的籼稻MAGIC群体,使用55K SNP和GBS(genotyping by sequencing)测序分别进行了基因分型,鉴定与粒长、粒宽、粒长宽比、粒厚和千粒重相关的QTL和SNP。结果显示,5个与粒级相关的性状共鉴定出18个QTL,解释了6.43%~63.35%的总表型方差。其中12个QTL与克隆基因GS3、GW5/qSW5、GW7/GL7/SLG7GW8/OsSPL16定位一致,前2个基因对粒长和粒宽的影响最大。此外,MAGIC群体也被用于对水稻单倍体等位基因挖掘、稻米品质的QTL定位分析和生物强化等研究中。

2.3 小麦MAGIC群体的遗传研究

小麦基因组结构复杂,对于MAGIC群体也进行了深入遗传研究。第1个小麦MAGIC群体是Huang等[35]使用4个澳洲春小麦作为亲本构建了包含1579个 RILs的MAGIC群体。利用1162个DArT(diversity arrays technology)、SNP和SSR(simple sequence repeat)标记鉴定了871个家系的基因型并且构建了遗传图谱,检测到9个株高和8个百粒重的QTL,其中有3个株高QTL和已知基因相邻。Mackay等[37,57]采用8个冬小麦亲本构建了1个包含1091个家系的MAGIC群体。通过使用Illumina平台的90 000 SNP小麦芯片鉴定720个家系和8个亲本的基因型,共获得62 543个SNP标记。他们利用SNP标记通过连锁不平衡分析了基因组重组。小麦MAGIC群体是数据收集中进展最快的群体,推动了小麦遗传分析方法的发展,无论是在连锁图谱构建领域,还是标记和性状的关联定位,都取得了很好的进展。

2.4 大麦MAGIC群体的遗传研究

在大麦中,Sannemann等[41]通过“漏斗”型杂交构建了1个8亲本MAGIC群体。从5000个大麦MAGIC群体的DH系中筛选出533个DH系并且用4550个标记鉴定了基因型。使用二元方法(binary approach,BA)和单倍型方法(haplotype approach,HA)扫描开花期QTL,一共检测到17个QTL。其中BA特异检测到5个,HA特异检测到2个。

2.5 棉花MAGIC群体的遗传研究

在棉花遗传学研究中,Islam等[43]和郭志军等[58]发现陆地棉MAGIC群体通过11个不同品种随机交配5代陆地棉MAGIC群体,利用6071个SNP标记,鉴定到一个影响纤维质量的基因GhRBB1_A07。有的研究[44,59-60]为了探索陆地棉重要农艺性状的遗传基础,从960 MLs的8亲本MAGIC群体中选择1个包含372个株系的MAGIC群体子集。利用60 495个SNP和表型数据进行全基因组关联作图,鉴定出177个 SNP在多个环境下与9个农艺性状显著相关。在117个QTL中有3个QTL在多种环境中是稳定的,11个QTL被证明与多个性状相关联。

2.6 高粱和烟草MAGIC群体的遗传研究

Ongom等[46]利用29个亲本的高粱MAGIC群体进行全基因组关联分析,定位到了2个已知的株高基因DWARFIDWARF3,还检测到一个位于6号染色体上新的株高QTL。刘洪泰[47]利用8个烟草特色种质为亲本构建了一个包含600个株系并且具有丰富多样性的烟草MAGIC群体,充分发挥MAGIC群体高效、高精度和低假阳性的优势,在后代群体选育出株系株型良好、抗病且烟叶品质高的材料,作为育种中间材料或直接选育新品种。

2.7 玉米MAGIC群体的遗传研究

在玉米MAGIC群体遗传研究中,Dell'Acqua等[48]在玉米中构建了一个含1636个家系的8亲本MAGIC群体(图2)。在群体构建过程中包含B96×HP301 F1的四元杂交由于花期不遇而构建失败,所以作者引入第9个亲本(CML91)进行B73×CML91双向杂交以弥补失败的B96×HP301的四元杂交。此研究使用芯片对529个MAGIC家系鉴定基因型得到54 234个SNPs标记。使用连锁分析和关联分析对开花期、株高、穗位高和籽粒产量4个表型进行了QTL扫描。同时考虑亲本的基因组数据和转录组数据分别预测了3个开花期和3个籽粒产量的候选基因。

图2

图2   八亲本玉米MAGIC群体构建设计

""表示在F1 B96×HP301四元杂交构建失败,又引入第9亲本CML91代替B96作为B73×CML91双向杂交

Fig.2   Construction design of eight parents maize MAGIC population

""indicates that the construction of the quaternion hybrid B96×HP301 failed in F1 generation, and the ninth parent CML91 was introduced instead of B96 as a two-way cross of B73×CML91


Anderson等[49]通过增加等位基因的多样性和有效的基因重组,发现MAGIC群体可以提供更好的遗传定位分辨率。作者采用4亲本玉米MAGIC群体和双亲本群体进行5种不同的交配设计,比较了QTL检测能力和遗传分辨率。该群体共有1149个株系,有118 509个遗传标记。并在7个环境中对株高(PH)、穗位高(EH)、散粉期(DTA)和吐丝期(DTS)进行了连续3年的测定。连锁不平衡(LD)分析表明,与双亲群体相比,4个亲本杂交第3代(4way3sib)的遗传分辨率提高了3~4倍(r2 < 0.80),LD衰退程度降低了2.5倍(r2 < 0.20)。群体功能模拟表明,对QTL检测能力的影响更大的是样本量,而不是交配设计。利用关联映射软件分别鉴定出2、5、7和6个PH、EH、DTA和DTS性状的QTL。

3 MAGIC群体在作物耐逆研究上的应用

作物在生长发育过程中非常容易受到逆境胁迫的影响,提高抗逆性可以减少对作物产量的影响。逆境胁迫主要包括高温或低温、干旱、高盐和营养限制等非生物胁迫,还有病原菌和虫害侵入等生物胁迫,这些胁迫会对作物的正常生长发育产生巨大的影响,从而导致作物产量显著下降[61]

3.1 MAGIC群体在水稻抗逆中的应用

水稻MAGIC群体被应用于分析多种表型,其中研究最多的是复杂性状,如产量、耐旱和抗病性等。Bandillo等[32]构建了4个多亲本的群体,包括8亲本的粳稻MAGIC群体,8亲本的籼稻MAGIC群体,8亲本的籼稻MAGIC plus群体和16亲本(8个粳稻亲本和8个籼稻亲本)的Global MAGIC群体,并利用这些群体对水稻的抗稻瘟病、抗白叶枯病、耐盐性和耐涝性的稻米品质进行了全基因组关联分析,成功定位到显著性相关位点,包括与耐涝相关的基因Sub1和与抗白叶枯病相关的基因Xa4Xa5。陈天晓等[33]和Yu等[62]利用8个具有丰富多样性的优良种质为亲本构建了2个8亲本和2个4亲本MAGIC群体。在这3个MAGIC群体分别接种GD-V(强致病菌)和C2(弱致病菌)致病力不同的水稻白叶枯病菌,对水稻抗白叶枯病进行QTL定位研究和群体结构分析,在3个群体917个稳定株系中共得到3128个高质量的SNP位点。

在遗传上相互关联的1个8亲本群体和2个4亲本群体中观察到对白叶枯病弱毒菌系C2和强毒菌系GD-V的抗性超亲分离。共检测到7个QTL影响水稻白叶枯病抗性,大多数QTL表现出数量抗性,并且抗性表达有明显的遗传背景效应。

3.2 MAGIC群体在小麦耐逆研究中的应用

纪耀勇[39]为获得适合生产高筋全麦粉和抗病性高的小麦品种,以4个来自不同育种项目的具有丰富遗传多样性的优良品系为亲本,构建了由332个独立稳定株系组成的小麦MAGIC群体,并对每个株系的小麦产量、小麦白粉病抗性及其全麦粉加工品质进行检测和鉴定,从中筛选出一些适合生产高筋全麦粉的小麦株系。同时构建了高效SSR标记库,对抗小麦白粉病基因Pm21PmV进行精细定位,并开发可用于辅助育种的实用型分子标记。对硬度相关基因PinaPinb进行克隆,并对MAGIC群体株系进行Pinb基因类型鉴定。适合于生产高筋全麦粉的株系167号含有抗小麦白粉病基因PmV,为Pinb-D1b型,具有培育成高筋全麦粉用途小麦的潜在应用价值。

3.3 MAGIC群体在玉米耐逆研究中的应用

Septiani等[50]以玉米为研究对象,利用26个自交系的多样性,先建立了一个高度多样性的NAM群体,然后选择8个不同的玉米自交系构建MAGIC群体。该研究利用Illumina 56 110个SNP标记对MAGIC群体进行基因分型。利用MAGIC群体,用卷巾法(rolled towel assay,RTA)对镰刀菌腐苗(fusarium seedling rot,FSR)抗性进行了高分辨率的QTL定位,测定了401份MAGIC玉米重组自交系的侵染严重程度、苗重和苗长,并对RIL单倍型进行QTL定位,鉴定出10个QTL。对鉴定出的FSR QTL中8个候选基因进行了鉴定,本研究将RTA法用于玉米MAGIC群体,对鉴定玉米黄萎病早期抗性QTL和候选基因提供了一种经济而又快速的方法。

Butrón等[51]利用玉米近交系进行连锁和关联作图的替代方法深入研究与抗镰孢菌穗腐病相关的QTL。通过对玉米MAGIC群体检测与镰孢菌穗腐病抗性相关的QTL适用性的研究,表明MAGIC群体可以作为不同近交系群体的有效补充,并且发现在温带材料中含有抗性相关基因座的基因组区域。同时发现镰孢菌穗腐病抗性的有利等位基因频率一般都较高,这些发现证实了对镰孢菌穗腐病抗性的数量特征,其中许多基因座具有加性效应。证明在关键区域如3号染色体的210~220Mb和7号染色体的166~173Mb含有镰孢菌穗腐病抗性QTL。

环境对耐逆性的鉴定和遗传定位会有很大的影响,因此,在MAGIC群体构建的基础上,进行多年多点的耐逆鉴定非常有必要,同时可以分析环境与基因型之间的互作。Yi等[52]以8亲本的406个MAGIC群体的重组自交系为材料,分别在温室低温、田间早播和正常播种条件下进行耐低温胁迫的鉴定,记录群体播种至出苗天数、叶绿素含量和最大光化学量子产量(Fv/Fm)。与温室和田间寒冷相比,正常播种条件下的发芽率、叶绿素含量、Fv/Fm和干重较高,出苗时间推迟。在所有环境中,MAGIC群体的亲本和RIL之间的幼苗性状均存在显著相关,且大多数是在冷害和早播条件下发现的。关联分析结果显示,858个SNP与所有性状均存在显著相关,且大多数是在冷害和早播条件下发现。这些结果表明,MAGIC群体是进行多环境下耐冷性研究的有效工具。

4 MAGIC群体的发展前景

MAGIC群体不断得到育种家的认可并且用于各种作物中,同时也不断的在证明它在作物中的应用价值和优势。MAGIC群体可以更好地确定复杂性状的基因组区间,模拟复杂环境的相互作用和更好地预测在不同背景下等位基因效应。在一个基因组参考序列不可用的物种中,这些群体可提供用于产生高密度遗传连锁图谱。Giraud等[63]和Consortium[64]认为多亲本群体设计结合亲本密集基因分型,结合连锁不平衡信息和连锁分析方法,可提高QTL定位研究的多样性和分辨率。现在已经证明了MAGIC群体在传统遗传学分析中的价值,可以进行连锁图谱的构建、高精确率的连锁分析和关联分析。但真正考验MAGIC群体的是能否长期使用,并且能否把这些结果扩展到最新的基因组领域进行初步鉴定,进行高通量的遗传研究。下面对MAGIC群体优势领域进行展望和讨论,这将为我们未来理解复杂数量性状特性提供非常有价值的参考(图3)。

图3

图3   MAGIC群体的作用与应用前景

Fig.3   Function and application prospects of MAGIC population


4.1 应用于复杂环境下的多因素分析

在作物遗传研究中,材料通常需要在多个环境中鉴定,并测量多个性状,有的甚至于1个性状在多个时间点测量。MAGIC群体构建以后具有表型多样性,因此每个个体中有许多性状分离,我们把这些复杂的情况称为多因素,在双亲群体及多亲本分析时所需的统计方法也是相对复杂的。复杂性来自遗传和非遗传成分的模型,时间和计算资源的分析成本都是昂贵的。

对于MAGIC,多亲本全基因组QTL分析可以利用全基因组平均区间图谱(whole-genome average interval mapping,WGAIM或MPWGAIM)延伸到多变量的情况[65-66]。MPWGAIM涉及到每个潜在的QTL位点和每个亲本遗传等位基因的概率,允许连锁图谱上的每个区间或每个标记上都有1个QTL,无论在间隔内还是在标记处,都可以对假设QTL大小随机效应进行显著性检验来确定QTL是否存在。而Scutari等[67]采用了另一种贝叶斯网络的方法,利用冬小麦MAGIC群体的数据来探索贝叶斯网络同时建模分析多个数量性状的框架。结果表明,这种方法相当于多元最优线性无偏预测(genetic best liear unbiased prediction,GBLUP),因为MAGIC群体非常低的群体结构和大的样本容量使预测模型具有一个理想的环境,因此,在预测性能上与单性状GBLUP具有竞争性。此外,Malosetti等[38]说他们的双亲群体多变量模型可以很容易地扩展到多亲本群体。虽然MPWGAIM和贝叶斯网络都已应用到小麦MAGIC数据,但双方重点不同,未进行直接比较。对于所有的大数据统计分析方法,由于运用了较复杂的模型,需要耗费大量的时间和计算资源。

4.2 应用于数量遗传解析中的上位性检测

作物耐逆性受环境影响比较大,上位性作用显著。MAGIC群体的主要优点之一是通过一代又一代的混合亲本基因组创造新的等位基因组合。然而,在MAGIC的上位性相互作用,即等位基因的非加性相互作用,迄今为止还很少被人探索。与传统的上位性基于一个给定性状的基因座之间的非独立性基因型值相比,Corbett-Detig等[68]认为上位性也应该是具备一个基因组性能,并以检测基因型比畸变(genotype ratio distortion,GRD)作为上位性的标志,并将这种方法应用于果蝇黑腹重组自交系,和拟南芥的MAGIC群体以及其他多亲本群体双等位基因的相互作用。为了进一步验证这种方法,在拟南芥和玉米的MAGIC群体中筛选GRD,在拟南芥和玉米中分别发现了7个和5个GRD实例。Huang等[69]研究表明,检测到的主效应QTL之间存在相互作用,全基因组扫描对于检测非主效基因座之间的上位性是有效的。事实上,Scutari等[67]表明贝叶斯网络方法的一个缺点是它捕捉更小的上位性效应的能力有限,其中有主效基因控制的位点能够被SNP捕捉。

对MAGIC群体的上位性的研究有3个主要难题。第1个是计算难度增加,由于大多数群体遗传标记的数量增加,从几千到几十万,测试两两相互作用的数量相应增加了4个数量级。随着并行计算应用,穷举搜索(exhaustive search)方法在人类关联研究中应用,可以接受在多个亲本的MAGIC群体中对数量性状进行线性回归或双性状或数量性状的上位性高通量分析[70]。第2个问题实际上是源于亲本等位基因的多样性。在比较2个等位基因谁对性状影响更强时,仍需要测试不同亲本效应之间的差异。第3个问题是分析效率,这个问题取决于前2个问题解决的程度,检测上位性相互作用所需的样本量可能比检测相似大小的主效应所需的样本量大得多[71]。因此,MAGIC群体上位相互作用分析的最佳方法就是对一系列实际数据的建模进行模拟应用,进而决定下一步如何去分析研究。

4.3 应用于多亲本世代轮回选择

MAGIC群体及其衍生物为发展不同背景下优良等位基因的新组合提供种质资源,从而推进育种计划的实施。首先,可以直接将基因组选择的杂交组合后代放在田间实际大环境下进行正向选择。Huang等[69]提出了多亲本世代轮回选择(multi-parent advanced generation recurrent selection,MAGReS)的育种方法(图4)。这个方法结合了MAGIC群体大量重组近交系的优势,利用分子标记辅助轮回选择互交的优良株系,选择培育具有不同亲本优异等位基因的新株系。多亲本世代轮回选择株系高度多样化,可作为不同育种品系的供体,优异品系可直接作为商业栽培的新品种来源。

图4

图4   采用MAGReS方法开发育种品系

Fig.4   MAGReS approach for development of breeding lines


MAGReS最初同样遵循的原则是构建一个多亲本的群体,限制了育种者对感兴趣的性状相关等位基因的选择,以及遗传多样性。一旦构建成大量的MAGIC株系,QTL定位方法可以用来发掘与目标性状关联的位点。反过来,这些关联的位点可用于定向选择具有阳性/优异等位基因数量最多的株系。在选择的株系之间互交的2~3代后通常可以在一个共同的背景下组合所有来自不同亲本的优异目标等位基因,同时考虑理想状态下所有的感兴趣的性状。最后,新培育的具有所有目标等位基因的育种系可以自交,以鉴定目标等位基因纯合的近交系。这些品系通过多环境下鉴选对目标性状进行表型分析和选择表现出优势性状的改良品系,可以直接进入商业化育种流程。

5 展望

本文通过对MAGIC群体遗传特征和遗传特性等方面的研究,发现该群体既有较高的遗传多样性又能保证等位基因以较高频率出现,同时又能控制群体结构,是优良的作图和育种群体。MAGIC群体作为新一代的作图群体,在基础研究如QTL定位、连锁分析和关联分析等都有着独特的优势,并且可以直接与实际应用相结合起来,培育新的品系或者优良育种材料,能真正做到理论与实际相结合,有利于科学研究和育种应用的衔接。目前,作物耐逆性研究越来越受关注,在作物中利用MAGIC群体进行耐逆性数量遗传分析取得很好的进展,相信在不久的将来,MAGIC群体作为一种新的作图群体,统计分析技术越来越成熟完善,并且应用到作物中解决育种中遇到的各种问题,来充分发挥MAGIC群体的功能,培育新一代抗逆性强、产量高和资源节约型的品种。

参考文献

卢宝荣, 朱有勇, 王云月.

农作物遗传多样性农家保护的现状及前景

生物多样性, 2002(4):409-415.

DOI:10.17520/biods.2002056      [本文引用: 1]

农作物地方品种的有效保护是农业生物多样性可持续利用的基础。由于现代农业的集约化生产方式使大量农作物地方品种被少数高产改良品种所取代,造成农作物基因库的严重“基因流失”(genetic erosion)。农家保护是在农业生态系统中进行的动态保护,被保护的生物多样性可在其生境中继续进化而产生新的遗传变异,因而是农业生物多样性就地保护的重要途径。然而,尽管人们对作物品种资源农家保护的兴趣不断增长,也有大量有关农家保护的研究和案例分析,但目前为止还没有比较成功的农家保护实例报道。因此,对农家保护的机制及科学问题进行深入的研究,并寻求一条新的途径来充分发挥农家保护应有的作用,显得格外重要。利用生物多样性布局的水稻混合间栽的生产模式,不仅解决了病害控制的问题,而且也保护了水稻地方品种的多样性。这种混合间栽的生物多样性布局和生产方式可能成为农家保护的一条新途径。

李晓方.

农作物多基因型种群育种及种子生产技术体系

遗传, 2012, 34(3):382.

[本文引用: 1]

罗开, 周永明, 张椿雨, .

甘蓝型油菜MAGIC群体的遗传结构分析及应用

武汉:华中农业大学, 2015.

[本文引用: 2]

Thornsberry J M, Goodman M M, Doebley J, et al.

Dwarf8 polymorphisms associate with variation in flowering time

Nature Genetics, 2001, 28(3):286-289.

PMID:11431702      [本文引用: 1]

Historically, association tests have been used extensively in medical genetics, but have had virtually no application in plant genetics. One obstacle to their application is the structured populations often found in crop plants, which may lead to nonfunctional, spurious associations. In this study, statistical methods to account for population structure were extended for use with quantitative variation and applied to our evaluation of maize flowering time. Mutagenesis and quantitative trait locus (QTL) studies suggested that the maize gene Dwarf8 might affect the quantitative variation of maize flowering time and plant height. The wheat orthologs of this gene contributed to the increased yields seen in the 'Green Revolution' varieties. We used association approaches to evaluate Dwarf8 sequence polymorphisms from 92 maize inbred lines. Population structure was estimated using a Bayesian analysis of 141 simple sequence repeat (SSR) loci. Our results indicate that a suite of polymorphisms associate with differences in flowering time, which include a deletion that may alter a key domain in the coding region. The distribution of nonsynonymous polymorphisms suggests that Dwarf8 has been a target of selection.

Bentsink L, Hanson J, Coltrane C, et al.

Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways

Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(9):4264-4269.

[本文引用: 1]

Ballini E, Morel J B, Droc G, et al.

A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance

Molecular Plant-microbe Interactions:MPMI, 2008, 21(7):859-868.

DOI:10.1094/MPMI-21-7-0859      URL     [本文引用: 1]

Yu J M, Holland J B, McMullen M D, et al.

Genetic design and statistical power of nested association mapping in maize

Genetics, 2008, 178(1):539-551.

DOI:10.1534/genetics.107.074245      URL     [本文引用: 1]

Remington D L, Thornsberry J M, Matsuoka Y, et al.

Structure of linkage disequilibrium and phenotypic associations in the maize genome

Proceedings of the National Academy of Sciences of the United States of America, 2001, 98:11479-11484.

[本文引用: 1]

Bandillo N, Raghavan C, Muyco P A, et al.

Multi-parent advanced generation inter-cross (MAGIC) populations in rice:progress and potential for genetics research and breeding

Rice, 2013, 6(1):1-15.

DOI:10.1186/1939-8433-6-1      URL     [本文引用: 1]

Mason A S, Batley J, Bayer P E, et al.

High-resolution molecular karyotyping uncovers pairing between ancestrally related Brassica chromosomes

The New phytologis, 2014, 202(3):964-974.

DOI:10.1111/nph.12706      URL     [本文引用: 1]

Rakshit S, Rakshit A, Patil J V.

Multiparent intercross populations in analysis of quantitative traits

Journal of Genetics, 2012, 91(1):111-117.

DOI:10.1007/s12041-012-0144-8      PMID:22546834      [本文引用: 1]

Most traits of interest to medical, agricultural and animal scientists show continuous variation and complex mode of inheritance. DNA-based markers are being deployed to analyse such complex traits, that are known as quantitative trait loci (QTL). In conventional QTL analysis, F2, backcross populations, recombinant inbred lines, backcross inbred lines and double haploids from biparental crosses are commonly used. Introgression lines and near isogenic lines are also being used for QTL analysis. However, such populations have major limitations like predominantly relying on the recombination events taking place in the F1 generation and mapping of only the allelic pairs present in the two parents. The second generation mapping resources like association mapping, nested association mapping and multiparent intercross populations potentially address the major limitations of available mapping resources. The potential of multiparent intercross populations in gene mapping has been discussed here. In such populations both linkage and association analysis can be conductted without encountering the limitations of structured populations. In such populations, larger genetic variation in the germplasm is accessed and various allelic and cytoplasmic interactions are assessed. For all practical purposes, across crop species, use of eight founders and a fixed population of 1000 individuals are most appropriate. Limitations with multiparent intercross populations are that they require longer time and more resource to be generated and they are likely to show extensive segregation for developmental traits, limiting their use in the analysis of complex traits. However, multiparent intercross population resources are likely to bring a paradigm shift towards QTL analysis in plant species.

Cavanagh C, Morell M, Macky I, et al.

From mutations to MAGIC:resources for gene discovery,validation and delivery in crop plants

Current Opinion in Plant Biology, 2007, 11(2):2-3.

[本文引用: 2]

Cavanagh C R, Chao S M, Wang S C, et al.

Genome-wide comparative diversity uncovers multiple targets of selection for inprovement in hexaploid wheat landraces and cultivars

Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(20):8057-8062.

[本文引用: 2]

Huang X Q, Paulo M J, Boer M, et al.

Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population

Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(11):4488-4493.

[本文引用: 1]

Churchill G A, Airey D C, Allayee H, et al.

The Collaborative Cross,a community resource for the genetic analysis of complex traits

Nature Genetics. 2004, 36(11):1133-1137.

PMID:15514660      [本文引用: 2]

The goal of the Complex Trait Consortium is to promote the development of resources that can be used to understand, treat and ultimately prevent pervasive human diseases. Existing and proposed mouse resources that are optimized to study the actions of isolated genetic loci on a fixed background are less effective for studying intact polygenic networks and interactions among genes, environments, pathogens and other factors. The Collaborative Cross will provide a common reference panel specifically designed for the integrative analysis of complex systems and will change the way we approach human health and disease.

Huang X H, Wei X H, Zhao Q, et al.

Genome-wide association studies of 14 agronomic traits in rice landraces

Nature Genetics, 2010, 42(11):961-967.

DOI:10.1038/ng.695      URL     [本文引用: 1]

Mott R, Talbot C J, Turri M G, et al.

A method for fine mapping quantitative trait loci in outbredanimal stocks

Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(23):12649-12654.

[本文引用: 1]

Smallwood T L, Gatti D M, Weinstock G M, et al.

High-resolution genetic mapping in the diversity outbred mouse population identifies Apobec1 as a candidate gene for atherosclerosis

G3:Genes, Genomes,Genetics, 2014, 4(12):2353-2363.

[本文引用: 1]

King E G, Merkes C M, McNeil C L, et al.

Genetic dissection of a model complex trait using the Drosophila Synthetic population resource

Cold Spring Harbor Laboratory Press, 2012, 22(8):1558-1566.

[本文引用: 1]

Macdonald S J, Long A D.

Joint estimates of quantitative trait locus effect and frequency using synthetic recombinant populations of Drosophila melanogaster

Genetics, 2007, 176(2):1261-1281.

PMID:17435224      [本文引用: 1]

We develop and implement a strategy to map QTL in two synthetic populations of Drosophila melanogaster each initiated with eight inbred founder strains. These recombinant populations allow simultaneous estimates of QTL location, effect, and frequency. Five X-linked QTL influencing bristle number were resolved to intervals of approximately 1.3 cM. We confirm previous observations of bristle number QTL distal to 4A at the tip of the chromosome and identify two novel QTL in 7F-8C, an interval that does not include any classic bristle number candidate genes. If QTL at the tip of the X are biallelic they appear to be intermediate in frequency, although there is evidence that these QTL may reside in multiallelic haplotypes. Conversely, the two QTL mapping to the middle of the X chromosome are likely rare: in each case the minor allele is observed in only 1 of the 16 founders. Assuming additivity and biallelism we estimate that identified QTL contribute 1.0 and 8.7%, respectively, to total phenotypic variation in male abdominal and sternopleural bristle number in nature. Models that seek to explain the maintenance of genetic variation make different predictions about the population frequency of QTL alleles. Thus, mapping QTL in eight-way recombinant populations can distinguish between these models.

Marriage T N, King E G, Long A D, et al.

Fine-mapping nicotine resistance loci in Drosophila using a multiparent advanced generation inter-cross population

Genetics, 2014, 198(1):45-57.

DOI:10.1534/genetics.114.162107      PMID:25236448      [本文引用: 1]

Animals in nature are frequently challenged by toxic compounds, from those that occur naturally in plants as a defense against herbivory, to pesticides used to protect crops. On exposure to such xenobiotic substances, animals mount a transcriptional response, generating detoxification enzymes and transporters that metabolize and remove the toxin. Genetic variation in this response can lead to variation in the susceptibility of different genotypes to the toxic effects of a given xenobiotic. Here we use Drosophila melanogaster to dissect the genetic basis of larval resistance to nicotine, a common plant defense chemical and widely used addictive drug in humans. We identified quantitative trait loci (QTL) for the trait using the DSPR (Drosophila Synthetic Population Resource), a panel of multiparental advanced intercross lines. Mapped QTL collectively explain 68.4% of the broad-sense heritability for nicotine resistance. The two largest-effect loci-contributing 50.3 and 8.5% to the genetic variation-map to short regions encompassing members of classic detoxification gene families. The largest QTL resides over a cluster of ten UDP-glucuronosyltransferase (UGT) genes, while the next largest QTL harbors a pair of cytochrome P450 genes. Using RNAseq we measured gene expression in a pair of DSPR founders predicted to harbor different alleles at both QTL and showed that Ugt86Dd, Cyp28d1, and Cyp28d2 had significantly higher expression in the founder carrying the allele conferring greater resistance. These genes are very strong candidates to harbor causative, regulatory polymorphisms that explain a large fraction of the genetic variation in larval nicotine resistance in the DSPR.Copyright © 2014 by the Genetics Society of America.

杨媚.

水稻MAGIC群体的分子基础及生态响应的特性

广州:华南师范大学, 2012.

[本文引用: 1]

Meng L J, Zhao X Q, Ponce K, et al.

QTL mapping for agronomic traits using Multi-parent Advanced Generation Inter-Cross (MAGIC) populations derived from diverse elite Indica rice lines

Field Crops Research, 2016, 189:19-42.

DOI:10.1016/j.fcr.2016.02.004      URL     [本文引用: 3]

Broman K W.

Genotype Probabilities at intermediate generations in the construction of recombinant inbred lines

Genetics, 2012, 190(2):403-412.

DOI:10.1534/genetics.111.132647      PMID:22345609      [本文引用: 1]

The mouse Collaborative Cross (CC) is a panel of eight-way recombinant inbred lines: eight diverse parental strains are intermated, followed by repeated sibling mating, many times in parallel, to create a new set of inbred lines whose genomes are random mosaics of the genomes of the original eight strains. Many generations are required to reach inbreeding, and so a number of investigators have sought to make use of phenotype and genotype data on mice from intermediate generations during the formation of the CC lines (so-called pre-CC mice). The development of a hidden Markov model for genotype reconstruction in such pre-CC mice, on the basis of incompletely informative genetic markers (such as single-nucleotide polymorphisms), formally requires the two-locus genotype probabilities at an arbitrary generation along the path to inbreeding. In this article, I describe my efforts to calculate such probabilities. While closed-form solutions for the two-locus genotype probabilities could not be derived, I provide a prescription for calculating such probabilities numerically. In addition, I present a number of useful quantities, including single-locus genotype probabilities, two-locus haplotype probabilities, and the fixation probability and map expansion at each generation along the course to inbreeding.

胡刚.

利用水稻4亲本MAGIC群体进行粒形和株型的遗传分析

武汉:华中农业大学, 2017.

[本文引用: 1]

Kover P X, Valdar W, Trakalo J, et al.

A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana

PLoS Genetics, 2009, 5(7):e1000551.

[本文引用: 3]

Xiao Y J, Jiang S Q, Cheng Q, et al.

The genetic mechanism of heterosis utilization in maize improvement

Genome Biology, 2021, 22(1):148.

DOI:10.1186/s13059-021-02370-7      URL     [本文引用: 1]

Meng L J, Wang B X, Zhao X Q, et al.

Association mapping of ferrous,zinc,and aluminum tolerance at the seeding stage in Indica rice using MAGIC populations

Frontiers in Plant Science, 2017, 8:1822.

DOI:10.3389/fpls.2017.01822      URL     [本文引用: 2]

Meng L J, Guo L B, Ponce K, et al.

Characterization of three Indica rice multiparent advanced generation inter-cross (magic) populations for quantitative trait loci (QTL) identification

The Plant Genome, 2016, 9(2):1-14.

[本文引用: 1]

Ponce K, Zhang Y, Guo L B, et al.

Genome-wide association study of grain size traits in Indica rice multiparent advanced generation intercross (MAGIC) population

Frontiers in Plant Science, 2020, 11:395.

DOI:10.3389/fpls.2020.00395      URL     [本文引用: 1]

Thépot S, Restoux G, Goldringer I, et al.

Effciently tracking selection in a multiparental population:the case of earliness in wheat

Genetics, 2015, 199(2):609-621.

DOI:10.1534/genetics.114.169995      URL     [本文引用: 1]

Bandillo N, Raghavan C, Muyco P A, et al.

Multi-parent advanced generation inter-cross (MAGIC) populations in rice:progress and potential for genetics research and breeding

Rice, 2013, 6(1):1-15.

DOI:10.1186/1939-8433-6-1      URL     [本文引用: 2]

陈天晓, 朱亚军, 密雪飞, .

利用水稻MAGIC群体关联定位白叶枯病抗性QTL和创制抗病新种质

作物学报, 2016, 42(10):1437-1447.

[本文引用: 2]

Raghavan C, Mauleon R, Lacorte V, et al.

Approaches in characterizing genetic structure and mapping in a rice multiparental population

G3:Genes, Genomes,Genetics, 2017, 7(6):1721-1730.

[本文引用: 1]

Huang B E, Georde A W, Forrest K L, et al.

A multiparent advanced generation inter-cross population for genetic analysis in wheat

Plant Biotechnology, 2012, 10(7):826-839.

[本文引用: 2]

Rebetzke G J, Verbyla A P, Verbyla K L, et al.

Use of a large multiparent wheat mapping population in genomic dissection of coleoptile and seedling growth

Plant Biotechnology Journal, 2014, 12(2):219-230.

DOI:10.1111/pbi.12130      PMID:24151921      [本文引用: 1]

Identification of alleles towards the selection for improved seedling vigour is a key objective of many wheat breeding programmes. A multiparent advanced generation intercross (MAGIC) population developed from four commercial spring wheat cultivars (cvv. Baxter, Chara, Westonia and Yitpi) and containing ca. 1000 F(2) -derived, F(6:7) RILs was assessed at two contrasting soil temperatures (12 and 20 °C) for shoot length and coleoptile characteristics length and thickness. Narrow-sense heritabilities were high for coleoptile and shoot length (h(2) = 0.68-0.70), indicating a strong genetic basis for the differences among progeny. Genotypic variation was large, and distributions of genotype means were approximately Gaussian with evidence for transgressive segregation for all traits. A number of significant QTL were identified for all early growth traits, and these were commonly repeatable across the different soil temperatures. The largest negative effects on coleoptile lengths were associated with Rht-B1b (-8.2%) and Rht-D1b (-10.9%) dwarfing genes varying in the population. Reduction in coleoptile length with either gene was particularly large at the warmer soil temperature. Other large QTL for coleoptile length were identified on chromosomes 1A, 2B, 4A, 5A and 6B, but these were relatively smaller than allelic effects at the Rht-B1 and Rht-D1 loci. A large coleoptile length effect allele (a = 5.3 mm at 12 °C) was identified on chromosome 1AS despite the relatively shorter coleoptile length of the donor Yitpi. Strong, positive genetic correlations for coleoptile and shoot lengths (r(g) = 0.85-0.90) support the co-location of QTL for these traits and suggest a common physiological basis for both. The multiparent population has enabled the identification of promising shoot and coleoptile QTL despite the potential for the confounding of large effect dwarfing gene alleles present in the commercial parents. The incidence of these alleles in commercial wheat breeding programmes should facilitate their ready implementation in selection of varieties with improved establishment and early growth.© 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

Mackay I J, Barber T, Bentley A R, et al.

An eight parent multiparent advanced generation inter-cross population for winter-sown wheat:creation,properties,and validation

G3:Genes, Genomes,Genetics, 2014, 4(9):1603-1610.

[本文引用: 2]

Malosetti M, Ribaut J M, Eeuwijk F A.

The statistical analysis of multi-environment data:modelling genotype-by-environment interaction and its genetic basis

Frontiers in Physiology, 2013, 4:44.

DOI:10.3389/fphys.2013.00044      PMID:23487515      [本文引用: 2]

Genotype-by-environment interaction (GEI) is an important phenomenon in plant breeding. This paper presents a series of models for describing, exploring, understanding, and predicting GEI. All models depart from a two-way table of genotype by environment means. First, a series of descriptive and explorative models/approaches are presented: Finlay-Wilkinson model, AMMI model, GGE biplot. All of these approaches have in common that they merely try to group genotypes and environments and do not use other information than the two-way table of means. Next, factorial regression is introduced as an approach to explicitly introduce genotypic and environmental covariates for describing and explaining GEI. Finally, QTL modeling is presented as a natural extension of factorial regression, where marker information is translated into genetic predictors. Tests for regression coefficients corresponding to these genetic predictors are tests for main effect QTL expression and QTL by environment interaction (QEI). QTL models for which QEI depends on environmental covariables form an interesting model class for predicting GEI for new genotypes and new environments. For realistic modeling of genotypic differences across multiple environments, sophisticated mixed models are necessary to allow for heterogeneity of genetic variances and correlations across environments. The use and interpretation of all models is illustrated by an example data set from the CIMMYT maize breeding program, containing environments differing in drought and nitrogen stress. To help readers to carry out the statistical analyses, GenStat® programs, 15th Edition and Discovery® version, are presented as "Appendix."

纪耀勇.

高筋全麦粉用途小麦的MAGIC群体法培育及品质检测

镇江:江苏大学, 2019.

[本文引用: 2]

Thépot S, Restoux G, Goldringer I, et al.

Effciently tracking selection in a multiparental population:the case of earliness in wheat

Genetics, 2015, 199(2):609-621.

DOI:10.1534/genetics.114.169995      URL     [本文引用: 1]

Sannemann W, Huang B E, Mathew B, et al.

Multi-parent advanced generation intercross in barley:high-resolution quantitative trait locus mapping for flowering time as a proof of concept

Molecular Breeding, 2015, 35(3):86.

DOI:10.1007/s11032-015-0284-7      URL     [本文引用: 2]

Cockram J, Scuderi A, Barber T, et al.

Fine-mapping the wheat Snn1 locus conferring sensitivity to the Parastagonospora nodorum necrotrophic effector SnTox 1 using an eight founder multiparent advanced generation inter-cross population

G3:Genes, Genomes,Genetics, 2015, 5(11):2257-2266.

[本文引用: 1]

Islam M S, Thyssen G N, Jenkins J N, et al.

A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton

BMC Genomics, 2016, 17(1):903.

DOI:10.1186/s12864-016-3249-2      URL     [本文引用: 2]

Huang C, Shen C, Wen T W, et al.

Genome-wide association mapping for agronomic traits in an 8-way Upland cotton MAGIC population by SLAF-seq

Theoretical and Applied Genetics, 2021, 134(8):999-1017.

[本文引用: 2]

Abdelraheem A, Thyssen G N, Fang D D, et al.

GWAS reveals consistent QTL for drought and salt tolerance in a MAGIC population of 550 lines derived from intermating of 11 Upland cotton (Gossypium hirsutum) parents

Molecular Genetics and Genomics, 2020, 296(10):119-129.

DOI:10.1007/s00438-020-01733-2      URL     [本文引用: 1]

Ongom P O, Ejeta G.

Mating design and genetic structure of a multi-parent advanced generation intercross (MAGIC) population of Sorghum (Sorghum bicolor (L.) Moench)

G3:Genes, Genomes, Genetics, 2018, 8(1):331-341.

[本文引用: 2]

刘洪泰. 基于MAGIC群体的烟草黑胫病抗性遗传分析. 北京: 中国农业科学院, 2020.

[本文引用: 2]

Dell'Acqua M, Gatti D M, Pea G, et al.

Genetic properties of the MAGIC maize population:a new platform for high definition QTL mapping in Zea mays

Genome Biology, 2015, 16(1):167.

DOI:10.1186/s13059-015-0716-z      URL     [本文引用: 2]

Anderson II S L, Mahan A L, Murray S C, et al.

Four parent maize (FPM) population:effects of mating designs on linkage disequillibrium and mapping quantitative traits

Plant Genome. 2018, 11(2):1-17.

[本文引用: 2]

Septiani P, Lanubile A, Stagnati L, et al.

Unravelling the genetic basis of Fusariom seedling rot resistance in the MAGIC maize population:novel targets for breeding

Scientific Reports, 2019, 9(1):5665.

DOI:10.1038/s41598-019-42248-0      PMID:30952942      [本文引用: 2]

Fungal infection by Fusarium verticillioides is cause of prevalent maize disease leading to substantial reductions in yield and grain quality worldwide. Maize resistance to the fungus may occur at different developmental stages, from seedling to maturity. The breeding of resistant maize genotypes may take advantage of the identification of quantitative trait loci (QTL) responsible for disease resistance already commenced at seedling level. The Multi-parent Advance Generation Intercross (MAGIC) population was used to conduct high-definition QTL mapping for Fusarium seedling rot (FSR) resistance using rolled towel assay. Infection severity level, seedling weight and length were measured on 401 MAGIC maize recombinant inbred lines (RILs). QTL mapping was performed on reconstructed RIL haplotypes. One-fifth of the MAGIC RILs were resistant to FSR and 10 QTL were identified. For FSR, two QTL were detected at 2.8 Mb and 241.8 Mb on chromosome 4, and one QTL at 169.6 Mb on chromosome 5. Transcriptomic and sequencing information generated on the MAGIC founder lines was used to guide the identification of eight candidate genes within the identified FSR QTL. We conclude that the rolled towel assay applied to the MAGIC maize population provides a fast and cost-effective method to identify QTL and candidate genes for early resistance to F. verticillioides in maize.

Butrón A, Santiago R, Cao A, et al.

QTLs for resistance to fusarium ear rot in a multiparent advanced generation intercross (MAGIC) maize population

Plant Disease, 2019, 103(5):897-904.

DOI:10.1094/PDIS-09-18-1669-RE      PMID:30856072      [本文引用: 2]

Alternative approaches to linkage and association mapping using inbred panels may allow further insights into loci involved in resistance to Fusarium ear rot and lead to the discovery of suitable markers for breeding programs. Here, the suitability of a maize multiparent advanced-generation intercross population for detecting quantitative trait loci (QTLs) associated with Fusarium ear rot resistance was evaluated and found to be valuable in uncovering genomic regions containing resistance-associated loci in temperate materials. In total, 13 putative minor QTLs were located over all of the chromosomes, except chromosome 5, and frequencies of favorable alleles for resistance to Fusarium ear rot were, in general, high. These findings corroborated the quantitative characteristic of resistance to Fusarium ear rot in which many loci have small additive effects. Present and previous results indicate that crucial regions such as 210 to 220 Mb in chromosome 3 and 166 to 173 Mb in chromosome 7 (B73-RefGen-v2) contain QTLs for Fusarium ear rot resistance and fumonisin content.

Yi Q, Malvar R A, Álvarez-Iglesias L, et al.

Dissecting the genetics of cold tolerance in a multiparental maize population

Theoretical and Applied Genetics, 2020, 133(2):503-516.

DOI:10.1007/s00122-019-03482-2      PMID:31740990      [本文引用: 2]

We identify the largest amount of QTLs for cold tolerance in maize; mainly associated with photosynthetic efficiency, which opens new possibilities for genomic selection for cold tolerance in maize. Breeding for cold tolerance in maize is an important objective in temperate areas. The objective was to carry out a highly efficient study of quantitative trait loci (QTLs) for cold tolerance in maize. We evaluated 406 recombinant inbred lines from a multi-parent advanced generation intercross (MAGIC) population in a growth chamber under cold and control conditions, and in the field at early and normal sowing. We recorded cold tolerance-related traits, including the number of days from sowing to emergence, chlorophyll content and maximum quantum efficiency of photosystem II (F/F). Association mapping was based on genotyping with near one million single nucleotide polymorphism (SNP) markers. We found 858 SNPs significantly associated with all traits, most of them under cold conditions and early sowing. Most QTLs were associated with chlorophyll and F/F. Many candidate genes coincided between the current research and previous reports. These results suggest that (1) the MAGIC population is an efficient tool for identifying QTLs for cold tolerance; (2) most QTLs for cold tolerance were associated with F/F; (3) most of these QTLs were located in specific genomic regions, particularly bin 10.04; (4) the current study allows genetically improving cold tolerance with genome-wide selection.

Li H, Peng Z, Yang X, et al.

Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels

Nature Genetics, 2013, 45(1):43-50.

DOI:10.1038/ng.2484      URL     [本文引用: 1]

Yang N, Lu Y L, Yang X H, et al.

Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel

PLoS Genetics, 2014, 10(9):e1004573.

[本文引用: 1]

Giraud H, Bauland C, Falque M, et al.

Linkage analysis and association mapping qtl detection models for hybrids between multiparental populations from two heterotic groups:application to biomass production in maize(Zea mays L.)

G3:Genes, Genomes,Genetics, 2017, 7(11):3649-3657.

[本文引用: 1]

赵福永, 赵恒, 王晓玲, .

甘蓝型油菜MAGIC群体构建及其在遗传育种中的应用潜力

中国油料作物学报, 2017, 39(2):145-151.

[本文引用: 1]

Mackay I, Powell W.

Methods for linkage disequilibrium mapping in crops

Trends in Plant Science, 2007, 12(2):57-63.

DOI:10.1016/j.tplants.2006.12.001      PMID:17224302      [本文引用: 1]

Linkage disequilibrium (LD) mapping in plants detects and locates quantitative trait loci (QTL) by the strength of the correlation between a trait and a marker. It offers greater precision in QTL location than family-based linkage analysis and should therefore lead to more efficient marker-assisted selection, facilitate gene discovery and help to meet the challenge of connecting sequence diversity with heritable phenotypic differences. Unlike family-based linkage analysis, LD mapping does not require family or pedigree information and can be applied to a range of experimental and non-experimental populations. However, care must be taken during analysis to control for the increased rate of false positive results arising from population structure and variety interrelationships. In this review, we discuss how suitable the recently developed alternative methods of LD mapping are for crops.

郭志军, 赵云雷, 陈伟, .

陆地棉SSR标记遗传多样性及其与农艺性状的关联分析

棉花学报, 2014, 26(5):420-430.

[本文引用: 1]

石治鹏.

棉花MAGIC群体后代株系对缩节胺的敏感性研究

荆州:长江大学, 2018.

[本文引用: 1]

黄聪.

基于自然群体及MAGIC群体关联分析解析陆地棉重要农艺性状的遗传基础

武汉:华中农业大学, 2018.

[本文引用: 1]

Liang Y M, Liu H J, Yan J B, et al.

Natural variation in crops:realized understanding,continuing promise

Annual Review of Plant Biology, 2021, 72:357-385.

DOI:10.1146/annurev-arplant-080720-090632      URL     [本文引用: 1]

Yu J, Wang J, Lin W, et al.

The genomes of Oryza sativa:a history of duplications

PLoS Biology, 2005, 3(2):266-281.

[本文引用: 1]

Giraud H, Lehermeier C, Bauer E, et al.

Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic QTL for hybrid performance in the flint and dent heterotic groups for maize

Genetics, 2014, 198(4):1717-1734.

DOI:10.1534/genetics.114.169367      URL     [本文引用: 1]

Consortium C C.

The genome architecture of the colaborative cross mouse genetic reference population

Genetics, 2012, 190(2):389-402.

DOI:10.1534/genetics.111.132639      URL     [本文引用: 1]

Verbyla A P, George A W, Cavanagh C R, et al.

Whole-genome QTL analysis for MAGIC

Theoretical and Applied Genetics, 2014, 127(8):1753-1770.

DOI:10.1007/s00122-014-2337-4      PMID:24927820      [本文引用: 1]

An efficient whole genome method of QTL analysis is presented for Multi-parent advanced generation integrated crosses. Multi-parent advanced generation inter-cross (MAGIC) populations have been developed for mice and several plant species and are useful for the genetic dissection of complex traits. The analysis of quantitative trait loci (QTL) in these populations presents some additional challenges compared with traditional mapping approaches. In particular, pedigree and marker information need to be integrated and founder genetic data needs to be incorporated into the analysis. Here, we present a method for QTL analysis that utilizes the probability of inheriting founder alleles across the whole genome simultaneously, either for intervals or markers. The probabilities can be found using three-point or Hidden Markov Model (HMM) methods. This whole-genome approach is evaluated in a simulation study and it is shown to be a powerful method of analysis. The HMM probabilities lead to low rates of false positives and low bias of estimated QTL effect sizes. An implementation of the approach is available as an R package. In addition, we illustrate the approach using a bread wheat MAGIC population.

Zhao Y L, Wang H M, Chen W, et al.

Genetic diversity and population structure of elite cotton(Gossypium hirsutum L.) germplasm revealed by SSR markers

Plant Systematics and Evolution, 2015, 301(1):327-336.

DOI:10.1007/s00606-014-1075-z      URL     [本文引用: 1]

Scutari M, Howell P, Balding D J, et al.

Multiple quantitative trait analysis using bayesian networks

Genetics, 2014, 198(1):129-137.

DOI:10.1534/genetics.114.165704      PMID:25236454      [本文引用: 2]

Models for genome-wide prediction and association studies usually target a single phenotypic trait. However, in animal and plant genetics it is common to record information on multiple phenotypes for each individual that will be genotyped. Modeling traits individually disregards the fact that they are most likely associated due to pleiotropy and shared biological basis, thus providing only a partial, confounded view of genetic effects and phenotypic interactions. In this article we use data from a Multiparent Advanced Generation Inter-Cross (MAGIC) winter wheat population to explore Bayesian networks as a convenient and interpretable framework for the simultaneous modeling of multiple quantitative traits. We show that they are equivalent to multivariate genetic best linear unbiased prediction (GBLUP) and that they are competitive with single-trait elastic net and single-trait GBLUP in predictive performance. Finally, we discuss their relationship with other additive-effects models and their advantages in inference and interpretation. MAGIC populations provide an ideal setting for this kind of investigation because the very low population structure and large sample size result in predictive models with good power and limited confounding due to relatedness.Copyright © 2014 by the Genetics Society of America.

Corbett-Detig R B, Zhou J, Clark A G, et al.

Genetic incompatibilities are widespresd within species

Nature, 2013, 504(7478):135-137.

DOI:10.1038/nature12678      URL     [本文引用: 1]

Huang B E, Verbyla K L, Verbyla A P, et al.

MAGIC populations in crops:current status and future prospects

Theoretical and Applied Genetics, 2015, 128(6):999-1017.

DOI:10.1007/s00122-015-2506-0      PMID:25855139      [本文引用: 2]

MAGIC populations present novel challenges and opportunities in crops due to their complex pedigree structure. They offer great potential both for dissecting genomic structure and for improving breeding populations. The past decade has seen the rise of multiparental populations as a study design offering great advantages for genetic studies in plants. The genetic diversity of multiple parents, recombined over several generations, generates a genetic resource population with large phenotypic diversity suitable for high-resolution trait mapping. While there are many variations on the general design, this review focuses on populations where the parents have all been inter-mated, typically termed Multi-parent Advanced Generation Intercrosses (MAGIC). Such populations have already been created in model animals and plants, and are emerging in many crop species. However, there has been little consideration of the full range of factors which create novel challenges for design and analysis in these populations. We will present brief descriptions of large MAGIC crop studies currently in progress to motivate discussion of population construction, efficient experimental design, and genetic analysis in these populations. In addition, we will highlight some recent achievements and discuss the opportunities and advantages to exploit the unique structure of these resources post-QTL analysis for gene discovery.

Hemani G, Theocharidis A, Wei W H, et al.

EpiGPU:exhaustive pairwise epistasis scans parallelized on consumer level graphics cards

Bioinformatics, 2011, 27(11):1462-1465.

DOI:10.1093/bioinformatics/btr172      URL     [本文引用: 1]

Gyenesei A, Semple CM, Haley C S, et al.

High throughput analysis of epistasis in genome-wide association studies with BiForce

Bioinformatics, 2013, 29(20):1957-1964.

/