作物杂志, 2022, 38(6): 234-240 doi: 10.16035/j.issn.1001-7283.2022.06.034

种子科技

种子引发对干旱胁迫下高粱种子发芽及生理特性的影响

张瑞栋,, 梁晓红, 刘静, 南怀林, 王颂宇, 曹雄,

山西农业大学经济作物研究所,030031,山西太原

Effects of Seed Priming on Germination and Physiological Characteristics of Sorghum Seeds under Drought Stress

Zhang Ruidong,, Liang Xiaohong, Liu Jing, Nan Huailin, Wang Songyu, Cao Xiong,

Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China

通讯作者: 曹雄,主要从事高粱栽培育种研究,E-mail:cxxp1969@163.com

收稿日期: 2022-04-19   修回日期: 2022-05-5   网络出版日期: 2022-07-22

基金资助: 吕梁市重点研发项目(2019NYZDYF19)
山西省高等学校科技创新项目(2021L149)
山西旱作高粱优势特色产业集群续建项目(HZGL202103)
财政部和农业农村部:国家现代农业产业技术体系(CARS-06-14.5-B10)

Received: 2022-04-19   Revised: 2022-05-5   Online: 2022-07-22

作者简介 About authors

张瑞栋,主要从事高粱栽培育种研究,E-mail:342185880@qq.com

摘要

萌发期的干旱胁迫是限制高粱生产的主要障碍因子,种子引发是提高作物抗逆性的一个重要技术。为了明确不同引发处理对干旱胁迫下高粱萌发及生理特性的影响,以晋杂22和晋早5564为研究材料,分别进行聚乙二醇(PEG)、KCl、CaCl2、水杨酸(SA)引发和未引发(NP)5个处理,研究在正常情况和干旱胁迫下种子发芽情况及生理特性变化。结果表明,干旱胁迫显著降低高粱种子发芽率,抑制胚芽和胚根伸长。干旱胁迫下PEG、KCl、CaCl2和SA引发后,晋杂22的萌发率比NP处理分别提高了18.18%、12.72%、35.45%和31.82%,晋早5564的萌发率比NP处理分别提高了20.18%、10.76%、26.91%和30.04%。干旱胁迫下,引发处理促进了胚根和胚芽的伸长,CaCl2和SA处理在晋杂22抗旱效果最佳,芽长分别比NP处理增加了267.07%和271.95%,根长分别比NP处理增加了231.94%和355.56%。CaCl2处理在晋早5564效果最好,芽长和根长分别比NP处理增加了195.96%和206.60%。种子引发提高了胚芽内抗氧化酶活性,减轻了膜脂过氧化对胚芽的损伤;同时种子引发促进了糖代谢,提高了脯氨酸含量,缓解了干旱胁迫对种子萌发的抑制效应。

关键词: 高粱; 萌发期; 干旱胁迫; 种子引发; 生理特性

Abstract

Drought stress during germination period is an obstacle limiting sorghum production. Seed priming is an efficient and easy method to regulate plant tolerance against different abiotic stresses. A germination experiment was conducted to examine the different agent priming on germination and physiological parameters of sorghum under normal and drought stress conditions. We quantified the effects of priming with polyethylene glycol (PEG), potassium chloride (KCl), calcium chloride (CaCl2), salicylic acid (SA) and no priming (NP) under normal and drought stress conditions. The results showed that drought stress significantly reduced the germination rate and inhibited the growth of germ and radicle. The germination rates of Jinza 22 with priming by PEG, KCl, CaCl2 and SA were increased by 18.18%, 12.72%, 35.45% and 31.82% compared with NP treatment, respectively. The germination rate of Jinzao 5564 were increased by 20.18%, 10.76%, 26.91% and 30.04% compared with NP treatment, respectively. Under drought stress, priming treatment promoted shoot and root elongation. After CaCl2 and SA treatment, the shoot length of Jinza 22 increased by 267.07% and 271.95%, respectively, and the root length were increased by 231.94% and 355.56%, respectively. The shoot length and root length of Jinzao 5564 increased by 195.96% and 206.60%, respectively, compared with NP after CaCl2 treatment. Seed priming increased the activities of antioxidant enzymes and alleviated the damage of membrane lipid peroxidation to the germ. At the same time, seed priming promoted the metabolism of sugar and increased the content of proline to alleviate the inhibitory effect of drought stress.

Keywords: Sorghum; Germination period; Drought stress; Seed priming; Physiological characteristics

PDF (466KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张瑞栋, 梁晓红, 刘静, 南怀林, 王颂宇, 曹雄. 种子引发对干旱胁迫下高粱种子发芽及生理特性的影响. 作物杂志, 2022, 38(6): 234-240 doi:10.16035/j.issn.1001-7283.2022.06.034

Zhang Ruidong, Liang Xiaohong, Liu Jing, Nan Huailin, Wang Songyu, Cao Xiong. Effects of Seed Priming on Germination and Physiological Characteristics of Sorghum Seeds under Drought Stress. Crops, 2022, 38(6): 234-240 doi:10.16035/j.issn.1001-7283.2022.06.034

干旱胁迫被认为是全世界最具破坏性的非生物胁迫之一,是限制农作物生产力提高的巨大障碍[1]。作物生长的任何阶段都可能受到干旱胁迫的影响,种子萌发期是作物对干旱最敏感的时期。高粱起源于非洲,具有高光效和耐贫瘠等特点[2],是世界上5亿贫困人口的主食[3-4],同时也是我国优质白酒的酿造原料。经过长期的自然进化和人工选择,高粱具有较强的抗逆性,广泛种植于干旱和半干旱地区[5]。然而,高粱在不同生育阶段对干旱的敏感性不同,萌发期是最敏感的时期[6]。春季土壤墒情不足时,高粱常出现发芽率低、出苗时间长和出苗不整齐等现象,萌发期干旱也是影响高产群体构建和高粱产量提升的重要因素[7]。因此,提高萌发期抗旱能力是保证高粱高产和稳产的重要环节。

种子引发(seed priming)是由Heydecker[8]提出的一项控制种子缓慢吸水和后期回干的技术。该技术主要经过种子前处理,通过调节萌发早期阶段的代谢活动,进而促进种子萌发,并且提高萌发稳定率和整齐率的一种技术,具有经济、方便和高效等特点[9]。不同类型的引发剂处理,如水引发、生长调节剂引发、渗透势引发和化学物质引发等,被广泛用于提高多种作物的耐旱性[10]。Patane等[11]研究发现,聚乙二醇6000(PEG-6000)胁迫会降低种子内部水势,进而影响甜高粱的发芽率和发芽势,但引发处理可改善渗透胁迫对种子发芽的影响。Bismillah等[12]研究发现,干旱胁迫下CaCl2引发的玉米种子具有较长的根和较高的产量。Jisha等[13]研究发现,水杨酸(salicylic acid,SA)引发可增加种子内部渗透势,提高萌发期的抗旱能力。郝西等[14]研究发现,种子引发可促进种子内部淀粉和蛋白活化,进而提高作物的抗逆能力。尽管这些技术都可提高萌发期作物的抗逆萌发能力,但是不同引发剂在不同作物上的引发效果具有较大的差异[15]

本研究以晋杂22和晋早5564为材料,明确高粱种子在不同引发剂处理后对干旱胁迫的响应,通过对形态指标和生理指标的研究,筛选提高高粱抗旱萌发的最佳引发剂,从渗透调节和抗旱氧化代谢角度,初步分析引发处理提高高粱耐旱性的可能机理,为种子引发技术在高粱上的应用提供理论基础和实践依据。

1 材料与方法

1.1 试验材料

以高粱品种晋杂22和晋早5564为研究材料,2个品种均由山西农业大学高粱研究所提供。

1.2 试验设计

试验于2021年在山西农业大学经济作物研究所实验室进行。基于课题组前期试验,设置5个处理,分别为PEG(150mmol/L PEG)、KCl(50mmol/L)、CaCl2(50mmol/L)、SA(0.1mmol/L)引发和未引发(NP),研究了在正常情况和干旱胁迫(PEG浓度为15%)下不同处理对种子发芽的影响。选择颗粒饱满、大小均匀的种子,用0.5%的NaClO消毒5min,然后用蒸馏水冲洗5遍。将消毒过的种子分别进行引发。种子与引发剂进行混合,比例为1:5(W/V),在25℃的黑暗环境中引发10h,期间进行3~4次轻轻搅拌,使种子与引发剂充分混匀。引发后,将种子风干至其原始含水量(13%,W/W),以未引发的种子用作对照(CK)。将不同处理的种子置于带有双层无菌滤纸的培养皿(直径15cm)中,加入10mL处理液(150mmol/L PEG)。将培养皿进行黑暗培养,温度设定为25℃±1℃,相对湿度设定为70%,连续培养10d。为了保持恒定的处理溶液浓度,每天更新培养皿中的PEG溶液。每个处理重复3次,每盘放50粒种子,试验采用完全随机设计。

1.3 测定项目与方法

1.3.1 发芽率

以芽长为种子长度的50%视为发芽,在处理后的0、6、12、24和48h调查发芽率。

1.3.2 形态指标

在处理后的第5天,测定不同处理的芽长、根长、芽鲜重和根鲜重。

1.3.3 过氧化氢(H2O2)、丙二醛(MDA)、可溶性糖、脯氨酸(Pro)含量及抗氧化酶活性

在处理后的第5天,用液氮取样,置于-80℃的冰箱保存,用于测定生理指标。分别称取不同处理的高粱芽0.5g,加入5mL的50mmol/L pH 7.2磷酸缓冲液,在冰浴环境中研磨成匀浆,转移到10mL的离心管中,在15 000转/min下离心15min,取上清液用于测定H2O2、MDA含量及酶活性。按照Gong等[16]的方法测定H2O2含量;参照李合生[17]的方法,用蒽酮法测定可溶性糖含量,用硫代巴比妥酸法测定MDA含量;参照张宪政[18]的方法测定Pro含量;参照Zhang等[19]的方法测定SOD、POD和CAT活性。

1.4 数据处理

用Microsoft Excel和SPSS 10.0处理系统分析数据,采用LSD法进行数据间的多重比较,采用Origin 8.0进行图形的绘制。

2 结果与分析

2.1 种子引发对萌发率的影响

图1可以看出,干旱胁迫48h后,晋杂22和晋早5564的发芽率分别下降了12.00%和10.80%,而在正常和干旱胁迫下引发处理均能提高高粱种子的发芽率。干旱胁迫下PEG、KCl、CaCl2和SA引发后晋杂22的发芽率较NP处理分别提高了18.18%、12.72%、35.45%和31.82%。晋早5564的表现与晋杂22相似,PEG、KCl、CaCl2和SA引发处理的发芽率分别比NP处理提高了20.18%、10.76%、26.91%和30.04%。

图1

图1   不同引发剂处理在正常和干旱胁迫下对高粱发芽率的影响

(a)和(b)为正常情况,(c)和(d)为干旱胁迫

Fig.1   Effects of different priming treatments on the germination rate of sorghum under normal and drought stress conditions

(a) and (b) are normal conditions, (c) and (d) are drought stress


2.2 种子引发对形态指标的影响

表1可以看出,干旱胁迫严重抑制高粱种子生长,干旱胁迫下晋杂22的芽长、根长、芽鲜重和根鲜重分别比正常降低69.69%、46.27%、65.89%和19.33%,晋早5564分别比正常降低58.40%、62.41%、67.15%和24.97%。种子引发可显著提高种子萌发指标,在干旱胁迫下引发效果更加明显。干旱胁迫下,CaCl2和SA引发在晋杂22上效果较好,芽长分别比NP处理增加267.07%和271.95%,根长分别比NP处理增加了231.94%和355.56%。在晋早5564上,CaCl2引发的效果最好,根长和芽长分别比NP处理增加了195.96%和206.60%。

表1   不同引发处理对高粱苗形态指标的影响

Table 1  The effects of different priming treatments on the germination morphological indicators of sorghum seedlings

品种
Variety
生长环境
Growth condition
处理
Treatment
芽长
Shoot length(cm)
根长
Root length (cm)
芽鲜重
Shoot fresh weight (mg)
根鲜重
Root fresh weight (mg)
晋杂22
Jinza 22
正常NP5.30±0.98b2.68±0.61d42.16±4.80c8.78±4.04c
PEG7.66±0.40a8.94±1.03ab65.16±3.99b13.66±1.33bc
KCl7.36±0.92a7.72±1.17b74.24±10.29a23.01±3.35ab
CaC128.04±0.27a5.98±0.47c76.02±4.78ab22.29±4.48ab
SA7.54±0.54a10.10±1.27a68.00±5.84ab22.60±4.89a
干旱NP1.64±0.24d1.44±0.30b14.38±1.27c7.08±0.29c
PEG5.22±0.89b4.96±0.74a39.72±1.93a22.80±1.18b
KC14.32±0.44c2.76±0.24b31.86±1.48b23.96±1.97ab
CaC126.02±0.37a4.78±0.79a37.28±2.38a27.82±4.25a
SA6.10±0.44a6.56±2.15a41.54±3.33a25.32±2.08ab
晋早5564
Jinzao 5564
正常NP4.76±0.46b5.64±1.16c50.14±5.32c14.61±0.92b
PEG6.52±0.71a9.90±1.97ab70.66±3.49ab25.07±6.40a
KC17.32±0.43a10.76±1.95ab71.62±8.67ab26.46±4.22a
CaC127.22±0.56a8.16±1.02bc73.23±5.20a28.00±3.83a
SA6.68±0.76a12.04±2.90a61.04±2.75bc24.18±2.91a
干旱NP1.98±0.38d2.12±0.45b16.47±1.78c10.96±2.42b
PEG3.20±0.62c3.98±1.52b25.28±3.35b17.66±2.21a
KC14.78±1.31b7.00±1.74a34.58±3.85ab20.17±1.86a
CaC125.86±0.60a6.50±0.66a42.88±3.39a22.75±4.03a
SA4.10±0.49bc7.16±1.68a38.56±4.12a21.28±1.80a

同列数据后不同小写字母表示各处理间差异显著(P < 0.05)

Different lowercase letters in each column indicate significant difference (P < 0.05)

新窗口打开| 下载CSV


2.3 种子引发对H2O2和MDA含量的影响

图2可以看出,干旱胁迫后种子芽的H2O2和MDA含量显著升高,晋杂22芽的H2O2和MDA含量分别较正常增加了237.55%和99.91%,晋早5564分别较正常增加了191.23%和117.68%。干旱胁迫下种子引发可显著降低种子芽的H2O2和MDA含量,PEG、KCl、CaCl2和SA引发后,晋杂22的种子芽的H2O2含量分别下降了39.74%、31.82%、51.88%、49.33%,MDA含量分别下降了35.26%、28.57%、40.92%、43.40%;晋早5564也有类似的结果,芽的H2O2含量分别下降了46.41%、36.33%、53.29%、46.29,MDA含量分别下降了36.81%、33.38%、46.08%、44.65%,差异均达到显著水平。

图2

图2   不同引发处理对高粱芽H2O2和MDA含量的影响

不同小写字母表示差异达0.05水平显著,下同

Fig.2   The effects of different priming treatments on H2O2 and MDA contents in sorghum shoots

Lowercase letters indicate significant difference at 0.05 level, the same below


2.4 种子引发对抗氧化酶活性的影响

种子引发可显著提高种子芽的抗氧化酶活性,干旱胁迫下更加明显。干旱胁迫下,PEG、KCl、CaCl2和SA引发处理,晋杂22的SOD活性分别比NP处理提高了21.75%、25.50%、40.95%和37.68%(图3a),POD活性分别比NP处理提高了20.33%、9.02%、16.53%和34.43%(图3c),CAT活性分别比NP处理提高了29.65%、42.42%、56.40%和61.46%(图3e)。种子引发后晋早5564的抗氧化酶活性表现出与晋杂22类似的变化趋势(图3b、d、f)。

图3

图3   不同引发处理对高粱抗氧化酶活性的影响

Fig.3   The effects of different priming treatments on antioxidant enzyme activities in sorghum


2.5 种子引发对可溶性糖和Pro含量的影响

干旱胁迫后,高粱种子芽的可溶性糖含量显著增加,干旱胁迫下晋杂22和晋早5564的可溶性糖含量分别比正常情况增加了48.97%和40.49%。种子引发可显著降低胁迫环境下种子芽的可溶性糖含量,干旱胁迫下PEG、KCl、CaCl2和SA引发处理,晋杂22的可溶性糖含量与NP处理相比分别降低了17.69%、15.44%、22.79%、22.69%,晋早5564与NP处理相比分别降低12.04%、16.50%、12.80%、16.58%(图4a、b)。种子引发显著提高了种子芽的Pro含量,干旱胁迫下,PEG、KCl、CaCl2和SA引发处理,晋杂22的Pro含量分别比NP处理提高了15.01%、13.22%、28.77%、28.85%,晋早5564的Pro含量分别比NP处理提高了17.84%、16.20%、29.24%、28.46%(图4c、d)。

图4

图4   不同引发处理对高粱可溶性糖和Pro含量的影响

Fig.4   The effects of different priming treatments on the soluble sugar and proline contents of sorghum


3 讨论

干旱胁迫是限制作物生产力提高的主要障碍,预计在未来1个世纪内干旱的严重程度和发生频率仍将增加,提高作物的抗旱能力仍是农业发展的重要课题[20]。春季干旱造成高粱出苗困难的现象是制约高粱产业发展的一个重要瓶颈。本研究通过PEG模拟干旱进行胁迫处理,为了使研究结果更有普遍性,选取了山西主栽高粱品种晋杂22和最新审定品种晋早5564作为试验材料。研究结果显示,萌发期干旱显著降低了2个高粱品种的萌发率,而且萌发期干旱显著抑制了高粱芽和根的伸长。前人[10,13,21]研究表明,种子引发技术在植物应对逆境胁迫中发挥着重要作用,种子引发可显著提高作物的抗旱、耐盐及耐低温等能力。本研究也发现,PEG、KCl、CaCl2和SA引发均可提高2个高粱品种在干旱胁迫下的萌发能力,从晋杂22的发芽率上看,引发效果为CaCl2>SA>PEG>KCl,在晋早5564上,引发效果为SA>CaCl2>PEG>KCl。从萌发的形态指标上看,CaCl2和SA引发与其他处理相比,均能显著提高干旱胁迫下2个高粱品种的芽长和根长,但是这2个处理之间许多指标差异不显著。因此,本研究认为,CaCl2和SA引发为较好的处理。

活性氧(ROS)是细胞响应逆境重要的调节分子,而且ROS与种子萌发密切相关[22]。有研究[23]指出,ROS可以松弛细胞壁,活化淀粉层,为胚根突破种皮提供了必要调节。然而,在组织中ROS积累也可加剧脂质过氧化和膜退化,并影响植物中生物分子的功能。干旱胁迫会诱导ROS的产生,例如超氧自由基(·O2-)、羟基自由基(·OH)和H2O2。在本研究中,干旱胁迫造成种子芽的H2O2和MDA含量显著升高,Bai等[24]研究发现,棉花种子在干旱条件下萌发,种子体内的H2O2和MDA也会大量积累,说明干旱胁迫已对高粱种子造成一定的膜脂过氧化损伤,这也可能是干旱胁迫抑制种子生长的一个重要因素。在本研究中,种子引发可显著降低干旱胁迫下种子胚芽内H2O2和MDA含量,而且CaCl2和SA引发效果较好,说明CaCl2和SA引发的高粱种子在干旱胁迫下膜脂过氧化程度最低,这也可能是CaCl2和SA引发在干旱胁迫下具有较高发芽率和较好形态指标的重要原因。正常情况下,植物体内ROS的产生与清除处于一个动态平衡的状态,干旱等逆境胁迫是打破这个平衡的重要因子[25-26]。为了减轻ROS过度积累对膜脂的伤害,植物体内形成了一套ROS的酶清除系统,其中SOD、POD和CAT是重要的活性氧清除酶。本研究发现,引发的种子在干旱胁迫下表现出较强的抗氧化酶活性。Kanto等[27]和Farhoudi等[28]发现了类似的现象。这可能是因为种子引发通过前期吸水,提前完成了种子内部细胞结构的修复和代谢相关酶的活化。同时,也可能是引发剂的化学调控成分能够激发种子内部的调控网络,增强抗氧化酶活性。

种子发芽受多种贮藏产物的调节,可溶性糖为种子发芽提供能量的同时也作为一种渗透调节物质在植物体内起重要作用[29]。本研究发现,引发后的种子在干旱胁迫后具有较高的可溶性糖含量,可溶性糖含量增加有助于降低高粱胚芽组织内的渗透势,提高其在高渗透环境下的耐受力。Khan等[30]研究表明,种子引发可提高种子胚乳内α淀粉酶活性,促使淀粉水解,增加糖的供应。本研究发现,种子引发后可溶性糖含量下降,这可能是种子引发促进了糖的代谢,为种子的抗旱萌发提供了能量。但是,种子引发如何调节糖代谢以及能量代谢还有待进一步研究。Pro也是植物应对渗透胁迫的一种重要的调节物质。本研究发现,种子引发可显著提高干旱胁迫下高粱芽内Pro含量。积累的Pro除了作为植物细胞质内渗透调节物质外,还在稳定生物大分子结构、降低细胞酸性、解除氨毒以及作为能量库调节细胞氧化还原等方面起着重要作用[31]。种子引发引起Pro增加也是高粱种子对干旱胁迫的一种重要适应机制。

4 结论

萌发期干旱胁迫显著降低高粱种子发芽率,抑制种子胚芽和胚根的伸长。种子引发可显著提高高粱种子在干旱胁迫下的萌发率,促进种子萌发,其中CaCl2和SA引发效果较好。其主要原因可能是由于种子引发提高了胚芽内抗氧化酶活性,减轻了膜脂过氧化对胚芽的损伤;同时种子引发促进了胚芽内糖的代谢,提高了Pro含量,缓解了干旱胁迫对种子萌发的抑制效应。

参考文献

Ahluwalia O, Singh P C, Bhatia R.

A review on drought stress in plants:implications,mitigation and the role of plant growth promoting rhizobacteria

Resources,Environment and Sustainability, 2021, 5:100032.

DOI:10.1016/j.resenv.2021.100032      URL     [本文引用: 1]

张晗, 王建成, 王东建, .

中国高粱地方品种遗传多样性评价及中、外高粱遗传变异水平比较

作物学报, 2011, 37(2):224-234.

[本文引用: 1]

Arouna N, Gabriele M, Pucci L.

The impact of germination on sorghum nutraceutical properties

Foods, 2020, 9:1218.

DOI:10.3390/foods9091218      URL     [本文引用: 1]

Khoddami A, Messina V, Vadabalija Venkata K, et al.

Sorghum in foods:functionality and potential in innovative products

Critical Reviews in Food Science and Nutrition, 2021:1-17.

[本文引用: 1]

Chadalavada K, Kumari B D R, Kumar T S.

Sorghum mitigates climate variability and change on crop yield and quality

Planta, 2021, 253:113.

DOI:10.1007/s00425-021-03631-2      PMID:33928417      [本文引用: 1]

Global food insecurity concerns due to climate change, emphasizes the need to focus on the sensitivity of sorghum to climate change and potential crop improvement strategies available, which is discussed in the current review to promote climate-smart agriculture. Climate change effects immensely disturb the global agricultural systems by reducing crop production. Changes in extreme weather and climate events such as high-temperature episodes and extreme rainfalls events, droughts, flooding adversely affect the production of staple food crops, posing threat to ecosystem resilience. The resulting crop losses lead to food insecurity and poverty and question the sustainable livelihoods of small farmer communities, particularly in developing countries. In view of this, it is essential to focus and adapt climate-resilient food crops which need lower inputs and produce sustainable yields through various biotic and abiotic stress-tolerant traits. Sorghum, "the camel of cereals", is one such climate-resilient food crop that is less sensitive to climate change vulnerabilities and also an important staple food in many parts of Asia and Africa. It is a rainfed crop and provides many essential nutrients. Understanding sorghum's sensitivity to climate change provides scope for improvement of the crop both in terms of quantity and quality and alleviates food and feed security in future climate change scenarios. Thus, the current review focused on understanding the sensitivity of sorghum crop to various stress events due to climate change and throws light on different crop improvement strategies available to pave the way for climate-smart agriculture.

李文娆, 张岁岐, 山仑.

水分胁迫下紫花苜蓿和高粱种子萌发特性及幼苗耐旱性

生态学报, 2009, 29(6):3066-3074.

[本文引用: 1]

吴奇, 周宇飞, 高悦, .

不同高粱品种萌发期抗旱性筛选与鉴定

作物学报, 2016, 42(8):1233-1246.

[本文引用: 1]

Heydecker W.

Germination of an idea:the priming of seeds

University of Nottingham School of Agriculture Report, 1974:50-67.

[本文引用: 1]

Wang W, Peng S, Chen Q, et al.

Effects of pre-sowing seed treatments on establishment of dry direct-seeded early rice under chilling stress

AoB Plants, 2016, 8:plw074.

DOI:10.1093/aobpla/plw074      URL     [本文引用: 1]

Marthandan V, Geetha R, Kumutha K, et al.

Seed priming:a feasible strategy to enhance drought tolerance in crop plants

International Journal of Molecular Sciences, 2020, 21:8258.

DOI:10.3390/ijms21218258      URL     [本文引用: 2]

Patane C, Saita A, Tubeileh A, et al.

Modeling seed germination of unprimed and primed seeds of sweet sorghum under PEG-induced water stress through the hydrotime analysis

Acta Physiologiae Plantarum, 2016, 38:115.

DOI:10.1007/s11738-016-2135-5      URL     [本文引用: 1]

Bismillah K M, Hussain M, Raza A, et al.

Seed priming with CaCl2 and ridge planting for improved drought resistance in maize

Turkish Journal of Agriculture and Forestry, 2015, 39(2):193-203.

DOI:10.3906/tar-1405-39      URL     [本文引用: 1]

Jisha K C, Vijayakumari K, Puthur J T.

Seed priming for abiotic stress tolerance:an overview

Acta Physiologiae Plantarum, 2013, 35(5):1381-1396.

DOI:10.1007/s11738-012-1186-5      URL     [本文引用: 2]

郝西, 崔亚男, 张俊, .

过氧化氢浸种对花生种子发芽及生理代谢的影响

作物学报, 2021, 47(9):1834-1840.

DOI:10.3724/SP.J.1006.2021.04187      [本文引用: 1]

为明确过氧化氢浸种对低温条件下花生发芽及种子生理代谢的影响, 以花生品种开农176为材料, 测定了过氧化氢浸种后的种子发芽及相关生理指标。结果表明, 过氧化氢浸种显著提高了花生的发芽能力, 发芽势从0提高到24.45%, 发芽率从39.33%提高到90.99%。过氧化氢提高了花生种子赤霉素含量, 同时降低了脱落酸含量, 发芽0、24、48 h的赤霉素含量分别比对照提高10.82%、5.73%、18.64%, 脱落酸含量分别比对照降低44.98%、36.45%、39.70%。同时, 提高了抗氧化酶SOD、CAT的活性以及可溶性糖、可溶性蛋白的含量, 降低了丙二醛的含量; 促进了大分子贮藏物质脂肪、蛋白质、淀粉的分解代谢, 为种子发芽提供更多的ATP和蛋白质、核酸的合成底物。研究表明, H<sub>2</sub>O<sub>2</sub>通过介导抗氧化酶、ABA和GA以及贮藏物质的分解来促进低温胁迫下花生种子的萌发。

Chen X F, Zhang R D, Xing Y F, et al.

The efficacy of different seed priming agents for promoting sorghum germination under salt stress

PLoS ONE, 2021, 16(1):e0245505.

[本文引用: 1]

Gong H, Zhu X, Chen K, et al.

Silicon alleviates oxidative damage of wheat plants in pots under drought

Plant Science, 2005, 169(2):313-321.

DOI:10.1016/j.plantsci.2005.02.023      URL     [本文引用: 1]

李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.

[本文引用: 1]

张宪政. 作物生理研究法. 北京: 农业出版社, 1992.

[本文引用: 1]

Zhang R D, Zhou Y F, Yue Z X, et al.

Changes in photosynthesis,chloroplast ultrastructure,and antioxidant metabolism in leaves of sorghum under waterlogging stress

Photosynthetica, 2019, 57(4):1076-1083.

DOI:10.32615/ps.2019.124      [本文引用: 1]

Waterlogging limits plant growth and yield. We investigated the effects of waterlogging stress on leaf photosynthesis, chlorophyll fluorescence, antioxidant capacity, chloroplast ultrastructure, and yield of sorghum (Sorghum bicolor L.). Two sorghum cultivars, Jinuoliang01 (JN01, waterlogging-tolerant cultivar) and Jinza31 (JZ31, waterlogging-sensitive cultivar) were subjected to a 12-d waterlogging treatment; the plants of the two cultivars which were not subjected to waterlogging were used as control (CK), respectively. After waterlogging treatment, the yield of JZ31 and JN01 decreased by 72.3 and 52.9%, the net photosynthetic rate of JZ31 and JN01 decreased by 61.8 and 39.0%, respectively, compared with CK. The chlorophyll content was higher, PSII was more stable, and chloroplast structure remained more intact in JN01 than that in JZ31 under waterlogging. This was due to the higher peroxidase and catalase activities and nonphotochemical quenching in JN01 compared to JZ31. Therefore, greater antioxidant capacity and nonphotochemical quenching could alleviate damage to PSII and chloroplast ultrastructure to maintain higher net photosynthetic rate under waterlogging. This may be an important waterlogging-tolerance mechanism of sorghum.

Nezhadahmadi A, Prodhan Z H, Faruq G.

Drought tolerance in wheat

The Scientific World Journal, 2013:610721.

[本文引用: 1]

Rhaman M S, Imran S, Rauf F, et al.

Seed priming with phytohormones:an effective approach for the mitigation of abiotic stress

Plants-Basel, 2021, 10(1):37.

[本文引用: 1]

del Río L A.

ROS and RNS in plant physiology:an overview

Journal of Experimental Botany, 2015, 66(10):2827-2837.

DOI:10.1093/jxb/erv099      URL     [本文引用: 1]

Mhamdi A, Van Breusegem F.

Reactive oxygen species in plant development

Development, 2018, 145(15):dev164376.

[本文引用: 1]

Bai Y, Xiao S, Zhang Z, et al.

Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat

PeerJ, 2020, 8:e9450.

DOI:10.7717/peerj.9450      URL     [本文引用: 1]

Li C, Tan D X, Liang D, et al.

Melatonin mediates the regulation of ABA metabolism,free-radical scavenging,and stomatal behaviour in two Malus species under drought stress

Journal of Experimental Botany, 2015, 66(3):669-680.

DOI:10.1093/jxb/eru476      URL     [本文引用: 1]

Sohag A, Tahjib-Ul-Arif M, Brestic M, et al.

Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice

Plant,Soil and Environment, 2020, 66(1):7-13.

DOI:10.17221/472/2019-PSE      URL     [本文引用: 1]

Kanto U, Jutamanee K, Osotsapar Y, et al.

Promotive effect of priming with 5-aminolevulinic acid on seed germination capacity,seedling growth and antioxidant enzyme activity in rice subjected to accelerated ageing treatment

Plant Production Science, 2015, 18(4):443-454.

DOI:10.1626/pps.18.443      URL     [本文引用: 1]

Farhoudi R, Saeedipour S, MohamMadreza D.

The effect of NaCl seed priming on salt tolerance,antioxidant enzyme activity,proline and carbohydrate accumulation of muskmelon (Cucumis melo L.) under saline condition

African Journal of Agricultural Research, 2011, 6(6):1363-1370.

[本文引用: 1]

Rosa M, Prado C, Podazza G, et al.

Soluble sugars--metabolism,sensing and abiotic stress:a complex network in the life of plants

Plant Signal Behavior, 2009, 4(5):388-393.

DOI:10.4161/psb.4.5.8294      URL     [本文引用: 1]

Khan M N, Li Y, Khan Z, et al.

Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities

Journal of Nanobiotechnology, 2021, 19:276.

DOI:10.1186/s12951-021-01026-9      PMID:34530815      [本文引用: 1]

Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited.Herein, we used cerium oxide nanoparticles (nanoceria) to prime rapeseeds and investigated the possible mechanisms behind nanoceria improved rapeseed salt tolerance. We synthesized and characterized polyacrylic acid coated nanoceria (PNC, 8.5 ± 0.2 nm, -43.3 ± 6.3 mV) and monitored its distribution in different tissues of the seed during the imbibition period (1, 3, 8 h priming). Our results showed that compared with the no nanoparticle control, PNC nanopriming improved germination rate (12%) and biomass (41%) in rapeseeds (Brassica napus) under salt stress (200 mM NaCl). During the priming hours, PNC were located mostly in the seed coat, nevertheless the intensity of PNC in cotyledon and radicle was increased alongside with the increase of priming hours. During the priming hours, the amount of the absorbed water (52%, 14%, 12% increase at 1, 3, 8 h priming, respectively) and the activities of α-amylase were significantly higher (175%, 309%, 295% increase at 1, 3, 8 h priming, respectively) in PNC treatment than the control. PNC primed rapeseeds showed significantly lower content of MDA, HO, and O in both shoot and root than the control under salt stress. Also, under salt stress, PNC nanopriming enabled significantly higher K retention (29%) and significantly lower Na accumulation (18.5%) and Na/K ratio (37%) than the control.Our results suggested that besides the more absorbed water and higher α-amylase activities, PNC nanopriming improves salt tolerance in rapeseeds through alleviating oxidative damage and maintaining Na/K ratio. It adds more knowledge regarding the mechanisms underlying nanopriming improved plant salt tolerance.© 2021. The Author(s).

Baier M, Bittner A, Prescher A, et al.

Preparing plants for improved cold tolerance by priming

Plant Cell and Environment, 2018, 42:782-800.

DOI:10.1111/pce.13394      URL     [本文引用: 1]

/