作物杂志,2022, 第6期: 234–240 doi: 10.16035/j.issn.1001-7283.2022.06.034

• 种子科技 • 上一篇    下一篇

种子引发对干旱胁迫下高粱种子发芽及生理特性的影响

张瑞栋(), 梁晓红, 刘静, 南怀林, 王颂宇, 曹雄()   

  1. 山西农业大学经济作物研究所,030031,山西太原
  • 收稿日期:2022-04-19 修回日期:2022-05-05 出版日期:2022-12-15 发布日期:2022-12-21
  • 通讯作者: 曹雄
  • 作者简介:张瑞栋,主要从事高粱栽培育种研究,E-mail:342185880@qq.com
  • 基金资助:
    吕梁市重点研发项目(2019NYZDYF19);山西省高等学校科技创新项目(2021L149);山西旱作高粱优势特色产业集群续建项目(HZGL202103);财政部和农业农村部:国家现代农业产业技术体系(CARS-06-14.5-B10)

Effects of Seed Priming on Germination and Physiological Characteristics of Sorghum Seeds under Drought Stress

Zhang Ruidong(), Liang Xiaohong, Liu Jing, Nan Huailin, Wang Songyu, Cao Xiong()   

  1. Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
  • Received:2022-04-19 Revised:2022-05-05 Online:2022-12-15 Published:2022-12-21
  • Contact: Cao Xiong

摘要:

萌发期的干旱胁迫是限制高粱生产的主要障碍因子,种子引发是提高作物抗逆性的一个重要技术。为了明确不同引发处理对干旱胁迫下高粱萌发及生理特性的影响,以晋杂22和晋早5564为研究材料,分别进行聚乙二醇(PEG)、KCl、CaCl2、水杨酸(SA)引发和未引发(NP)5个处理,研究在正常情况和干旱胁迫下种子发芽情况及生理特性变化。结果表明,干旱胁迫显著降低高粱种子发芽率,抑制胚芽和胚根伸长。干旱胁迫下PEG、KCl、CaCl2和SA引发后,晋杂22的萌发率比NP处理分别提高了18.18%、12.72%、35.45%和31.82%,晋早5564的萌发率比NP处理分别提高了20.18%、10.76%、26.91%和30.04%。干旱胁迫下,引发处理促进了胚根和胚芽的伸长,CaCl2和SA处理在晋杂22抗旱效果最佳,芽长分别比NP处理增加了267.07%和271.95%,根长分别比NP处理增加了231.94%和355.56%。CaCl2处理在晋早5564效果最好,芽长和根长分别比NP处理增加了195.96%和206.60%。种子引发提高了胚芽内抗氧化酶活性,减轻了膜脂过氧化对胚芽的损伤;同时种子引发促进了糖代谢,提高了脯氨酸含量,缓解了干旱胁迫对种子萌发的抑制效应。

关键词: 高粱, 萌发期, 干旱胁迫, 种子引发, 生理特性

Abstract:

Drought stress during germination period is an obstacle limiting sorghum production. Seed priming is an efficient and easy method to regulate plant tolerance against different abiotic stresses. A germination experiment was conducted to examine the different agent priming on germination and physiological parameters of sorghum under normal and drought stress conditions. We quantified the effects of priming with polyethylene glycol (PEG), potassium chloride (KCl), calcium chloride (CaCl2), salicylic acid (SA) and no priming (NP) under normal and drought stress conditions. The results showed that drought stress significantly reduced the germination rate and inhibited the growth of germ and radicle. The germination rates of Jinza 22 with priming by PEG, KCl, CaCl2 and SA were increased by 18.18%, 12.72%, 35.45% and 31.82% compared with NP treatment, respectively. The germination rate of Jinzao 5564 were increased by 20.18%, 10.76%, 26.91% and 30.04% compared with NP treatment, respectively. Under drought stress, priming treatment promoted shoot and root elongation. After CaCl2 and SA treatment, the shoot length of Jinza 22 increased by 267.07% and 271.95%, respectively, and the root length were increased by 231.94% and 355.56%, respectively. The shoot length and root length of Jinzao 5564 increased by 195.96% and 206.60%, respectively, compared with NP after CaCl2 treatment. Seed priming increased the activities of antioxidant enzymes and alleviated the damage of membrane lipid peroxidation to the germ. At the same time, seed priming promoted the metabolism of sugar and increased the content of proline to alleviate the inhibitory effect of drought stress.

Key words: Sorghum, Germination period, Drought stress, Seed priming, Physiological characteristics

图1

不同引发剂处理在正常和干旱胁迫下对高粱发芽率的影响 (a)和(b)为正常情况,(c)和(d)为干旱胁迫

表1

不同引发处理对高粱苗形态指标的影响

品种
Variety
生长环境
Growth condition
处理
Treatment
芽长
Shoot length(cm)
根长
Root length (cm)
芽鲜重
Shoot fresh weight (mg)
根鲜重
Root fresh weight (mg)
晋杂22
Jinza 22
正常 NP 5.30±0.98b 2.68±0.61d 42.16±4.80c 8.78±4.04c
PEG 7.66±0.40a 8.94±1.03ab 65.16±3.99b 13.66±1.33bc
KCl 7.36±0.92a 7.72±1.17b 74.24±10.29a 23.01±3.35ab
CaC12 8.04±0.27a 5.98±0.47c 76.02±4.78ab 22.29±4.48ab
SA 7.54±0.54a 10.10±1.27a 68.00±5.84ab 22.60±4.89a
干旱 NP 1.64±0.24d 1.44±0.30b 14.38±1.27c 7.08±0.29c
PEG 5.22±0.89b 4.96±0.74a 39.72±1.93a 22.80±1.18b
KC1 4.32±0.44c 2.76±0.24b 31.86±1.48b 23.96±1.97ab
CaC12 6.02±0.37a 4.78±0.79a 37.28±2.38a 27.82±4.25a
SA 6.10±0.44a 6.56±2.15a 41.54±3.33a 25.32±2.08ab
晋早5564
Jinzao 5564
正常 NP 4.76±0.46b 5.64±1.16c 50.14±5.32c 14.61±0.92b
PEG 6.52±0.71a 9.90±1.97ab 70.66±3.49ab 25.07±6.40a
KC1 7.32±0.43a 10.76±1.95ab 71.62±8.67ab 26.46±4.22a
CaC12 7.22±0.56a 8.16±1.02bc 73.23±5.20a 28.00±3.83a
SA 6.68±0.76a 12.04±2.90a 61.04±2.75bc 24.18±2.91a
干旱 NP 1.98±0.38d 2.12±0.45b 16.47±1.78c 10.96±2.42b
PEG 3.20±0.62c 3.98±1.52b 25.28±3.35b 17.66±2.21a
KC1 4.78±1.31b 7.00±1.74a 34.58±3.85ab 20.17±1.86a
CaC12 5.86±0.60a 6.50±0.66a 42.88±3.39a 22.75±4.03a
SA 4.10±0.49bc 7.16±1.68a 38.56±4.12a 21.28±1.80a

图2

不同引发处理对高粱芽H2O2和MDA含量的影响 不同小写字母表示差异达0.05水平显著,下同

图3

不同引发处理对高粱抗氧化酶活性的影响

图4

不同引发处理对高粱可溶性糖和Pro含量的影响

[1] Ahluwalia O, Singh P C, Bhatia R. A review on drought stress in plants:implications,mitigation and the role of plant growth promoting rhizobacteria. Resources,Environment and Sustainability, 2021, 5:100032.
doi: 10.1016/j.resenv.2021.100032
[2] 张晗, 王建成, 王东建, 等. 中国高粱地方品种遗传多样性评价及中、外高粱遗传变异水平比较. 作物学报, 2011, 37(2):224-234.
[3] Arouna N, Gabriele M, Pucci L. The impact of germination on sorghum nutraceutical properties. Foods, 2020, 9:1218.
doi: 10.3390/foods9091218
[4] Khoddami A, Messina V, Vadabalija Venkata K, et al. Sorghum in foods:functionality and potential in innovative products. Critical Reviews in Food Science and Nutrition, 2021:1-17.
[5] Chadalavada K, Kumari B D R, Kumar T S. Sorghum mitigates climate variability and change on crop yield and quality. Planta, 2021, 253:113.
doi: 10.1007/s00425-021-03631-2 pmid: 33928417
[6] 李文娆, 张岁岐, 山仑. 水分胁迫下紫花苜蓿和高粱种子萌发特性及幼苗耐旱性. 生态学报, 2009, 29(6):3066-3074.
[7] 吴奇, 周宇飞, 高悦, 等. 不同高粱品种萌发期抗旱性筛选与鉴定. 作物学报, 2016, 42(8):1233-1246.
[8] Heydecker W. Germination of an idea:the priming of seeds. University of Nottingham School of Agriculture Report, 1974:50-67.
[9] Wang W, Peng S, Chen Q, et al. Effects of pre-sowing seed treatments on establishment of dry direct-seeded early rice under chilling stress. AoB Plants, 2016, 8:plw074.
doi: 10.1093/aobpla/plw074
[10] Marthandan V, Geetha R, Kumutha K, et al. Seed priming:a feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Sciences, 2020, 21:8258.
doi: 10.3390/ijms21218258
[11] Patane C, Saita A, Tubeileh A, et al. Modeling seed germination of unprimed and primed seeds of sweet sorghum under PEG-induced water stress through the hydrotime analysis. Acta Physiologiae Plantarum, 2016, 38:115.
doi: 10.1007/s11738-016-2135-5
[12] Bismillah K M, Hussain M, Raza A, et al. Seed priming with CaCl2 and ridge planting for improved drought resistance in maize. Turkish Journal of Agriculture and Forestry, 2015, 39(2):193-203.
doi: 10.3906/tar-1405-39
[13] Jisha K C, Vijayakumari K, Puthur J T. Seed priming for abiotic stress tolerance:an overview. Acta Physiologiae Plantarum, 2013, 35(5):1381-1396.
doi: 10.1007/s11738-012-1186-5
[14] 郝西, 崔亚男, 张俊, 等. 过氧化氢浸种对花生种子发芽及生理代谢的影响. 作物学报, 2021, 47(9):1834-1840.
doi: 10.3724/SP.J.1006.2021.04187
[15] Chen X F, Zhang R D, Xing Y F, et al. The efficacy of different seed priming agents for promoting sorghum germination under salt stress. PLoS ONE, 2021, 16(1):e0245505.
[16] Gong H, Zhu X, Chen K, et al. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 2005, 169(2):313-321.
doi: 10.1016/j.plantsci.2005.02.023
[17] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[18] 张宪政. 作物生理研究法. 北京: 农业出版社, 1992.
[19] Zhang R D, Zhou Y F, Yue Z X, et al. Changes in photosynthesis,chloroplast ultrastructure,and antioxidant metabolism in leaves of sorghum under waterlogging stress. Photosynthetica, 2019, 57(4):1076-1083.
doi: 10.32615/ps.2019.124
[20] Nezhadahmadi A, Prodhan Z H, Faruq G. Drought tolerance in wheat. The Scientific World Journal, 2013:610721.
[21] Rhaman M S, Imran S, Rauf F, et al. Seed priming with phytohormones:an effective approach for the mitigation of abiotic stress. Plants-Basel, 2021, 10(1):37.
[22] del Río L A. ROS and RNS in plant physiology:an overview. Journal of Experimental Botany, 2015, 66(10):2827-2837.
doi: 10.1093/jxb/erv099
[23] Mhamdi A, Van Breusegem F. Reactive oxygen species in plant development. Development, 2018, 145(15):dev164376.
[24] Bai Y, Xiao S, Zhang Z, et al. Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. PeerJ, 2020, 8:e9450.
doi: 10.7717/peerj.9450
[25] Li C, Tan D X, Liang D, et al. Melatonin mediates the regulation of ABA metabolism,free-radical scavenging,and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany, 2015, 66(3):669-680.
doi: 10.1093/jxb/eru476
[26] Sohag A, Tahjib-Ul-Arif M, Brestic M, et al. Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant,Soil and Environment, 2020, 66(1):7-13.
doi: 10.17221/472/2019-PSE
[27] Kanto U, Jutamanee K, Osotsapar Y, et al. Promotive effect of priming with 5-aminolevulinic acid on seed germination capacity,seedling growth and antioxidant enzyme activity in rice subjected to accelerated ageing treatment. Plant Production Science, 2015, 18(4):443-454.
doi: 10.1626/pps.18.443
[28] Farhoudi R, Saeedipour S, MohamMadreza D. The effect of NaCl seed priming on salt tolerance,antioxidant enzyme activity,proline and carbohydrate accumulation of muskmelon (Cucumis melo L.) under saline condition. African Journal of Agricultural Research, 2011, 6(6):1363-1370.
[29] Rosa M, Prado C, Podazza G, et al. Soluble sugars--metabolism,sensing and abiotic stress:a complex network in the life of plants. Plant Signal Behavior, 2009, 4(5):388-393.
doi: 10.4161/psb.4.5.8294
[30] Khan M N, Li Y, Khan Z, et al. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities. Journal of Nanobiotechnology, 2021, 19:276.
doi: 10.1186/s12951-021-01026-9 pmid: 34530815
[31] Baier M, Bittner A, Prescher A, et al. Preparing plants for improved cold tolerance by priming. Plant Cell and Environment, 2018, 42:782-800.
doi: 10.1111/pce.13394
[1] 尹希龙, 石杨, 李王胜, 兴旺. 甜菜幼苗光合生理对干旱胁迫的响应[J]. 作物杂志, 2022, (6): 152–158
[2] 李王胜, 王雪倩, 尹希龙, 石杨, 刘大丽, 谭文勃, 兴旺. 甜菜种质资源苗期耐旱性综合评价[J]. 作物杂志, 2022, (6): 54–60
[3] 张建业, 杜庆志, 刘翔, 邓佳辉, 焦芹, 龚洛, 姜兴印. 盐碱胁迫下S-诱抗素对玉米萌发及生长的影响[J]. 作物杂志, 2022, (5): 167–173
[4] 董扬. 糜子对不同除草剂的生理响应机制研究[J]. 作物杂志, 2022, (5): 255–260
[5] 王玉斌, 牛皓, 吕鑫, 楚建强, 王瑞, 樊芳芳, 巨岚, 李慧明, 平俊爱. 瘠薄胁迫对高粱主要农艺性状的影响及品种耐瘠性评价[J]. 作物杂志, 2022, (5): 78–86
[6] 邹小云, 官梅, 官春云. 甘蓝型油菜氮素高效吸收的植株形态与生理特性研究[J]. 作物杂志, 2022, (5): 97–103
[7] 庞星月, 万林, 李素, 王宇航, 刘晨, 肖晓璐, 李心昊, 马霓. 外源SLs和纳米K2MoO4对干旱胁迫下油菜种子萌发的影响[J]. 作物杂志, 2022, (4): 214–220
[8] 魏晓凯, 景延秋, 何佶弦, 顾会战, 雷强, 俞世康, 张启莉, 李俊举. 外源亚精胺对烤烟幼苗干旱胁迫的缓解效应研究[J]. 作物杂志, 2022, (3): 143–148
[9] 谭秦亮, 程琴, 潘成列, 朱鹏锦, 李佳慧, 宋奇琦, 农泽梅, 周全光, 庞新华, 吕平. 干旱胁迫对甘蔗新品种桂热2号生理指标的影响[J]. 作物杂志, 2022, (3): 161–167
[10] 杨奥军, 常巧玲, 王鹏, 王芳, 高妍婷, 周广阔, 宋小佳, 韦恩成. 外源5-ALA对干旱胁迫下玉米种子萌发及幼苗生长的影响[J]. 作物杂志, 2022, (3): 194–199
[11] 云菲, 任天宝, 殷全玉, 靳双珍, 郑聪, 金磊, 李静静, 刘国顺, 杨喜田. 叶面喷施钙素对光胁迫条件下烤烟光合生理特性的调控效应[J]. 作物杂志, 2022, (2): 143–152
[12] 杜昕, 李博, 毛鲁枭, 陈伟, 张玉先, 曹亮. 褪黑素对干旱胁迫下大豆产量及AsA-GSH循环的影响[J]. 作物杂志, 2022, (1): 174–178
[13] 段雅娟, 曹士亮, 于滔, 李文跃, 杨耿斌, 王成波, 刘宝民, 刘长华. 玉米自交系萌发期耐盐性鉴定[J]. 作物杂志, 2022, (1): 213–219
[14] 梁海燕, 李海, 丁超, 杨芳, 宋晓强, 邓亚蕊, 刘贵山, 林凤仙, 张翔宇, 苏占明, 姜超. 钾肥对糜子茎秆形态、力学、生理特性及抗倒伏能力的影响[J]. 作物杂志, 2021, (6): 177–181
[15] 李安, 舒健虹, 刘晓霞, 蒙正兵, 王小利, 赵德刚. 干旱胁迫下枯草芽孢杆菌对玉米种子抗旱性及生理指标的影响[J]. 作物杂志, 2021, (6): 217–223
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!