作物杂志, 2022, 38(6): 7-13 doi: 10.16035/j.issn.1001-7283.2022.06.002

专题综述

连作对土壤微生物菌群影响及修复研究进展

孙子欣,1,2, 蔡柏岩,1,2

1黑龙江大学农业微生物技术教育部工程研究中心,150500,黑龙江哈尔滨

2黑龙江大学生命科学学院/黑龙江省寒地生态修复与资源利用重点实验室,150080,黑龙江哈尔滨

Research Advances on the Effects of Continuous Cropping on Soil Microbial Community and Restoration Techniques

Sun Zixin,1,2, Cai Baiyan,1,2

1Engineering Research Center of Agricultural Microbiology Technology of Ministry of Education, Heilongjiang University, Harbin 150500, Heilongjiang, China

2School of Life Sciences, Heilongjiang University/Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Harbin 150080, Heilongjiang, China

通讯作者: 蔡柏岩,主要从事修复生态学研究,E-mail:caibaiyan@126.com

收稿日期: 2021-06-16   修回日期: 2022-09-26   网络出版日期: 2022-08-09

基金资助: 国家自然科学基金(31972502)
黑龙江大学2021年研究生创新科研项目(YJSCX2021-203HLJU)

Received: 2021-06-16   Revised: 2022-09-26   Online: 2022-08-09

作者简介 About authors

孙子欣,主要从事修复生态学研究,E-mail:648080208@qq.com

摘要

连作可短时间内带来经济效益,满足日益增长的粮食等农产品需求,但长期连作会加速土壤退化,导致作物减产和病害率增高,破坏土壤微生物结构平衡,不利于土壤生态系统的可持续发展。良好的土壤生态系统中有益微生物、有害微生物及植物间维持着相对平衡。微生物群落结构直接指示整个土壤生态系统的转化方向。通过总结前人在连作对土壤微生物菌群的影响及其修复连作土壤障碍方面的研究结果,探讨修复方式的利弊及其未来的研究方向,旨在为连作障碍土壤修复和植物生长发育创造良好条件,为保持土壤微生物群落结构平衡、保证土壤生态系统的可持续发展提供理论依据。

关键词: 微生物群落失衡; 有益微生物; 有害微生物; 土壤健康; 修复技术叠加

Abstract

Continuous cropping can bring economic benefits and meet the growing food demand in the short run, but it is not conducive to the sustainable development of soil ecosystem. Long term of continuous cropping can cause a lot of problems such as soil degradation, crop yield reduction, disease rate increase and destroy the balance of soil microbial structure. In a healthy soil ecosystem, beneficial microorganisms, harmful microorganisms and plants maintain a relatively balanced interaction. Microbial community structure often directly implies the development of the whole ecosystem. This article summarizes the effects of continuous cropping on soil microbial community and the previous experience of repairing continuous cropping soil obstacles, discuss the advantages and disadvantages of current remediation methods, in order to provide some suggestions for repairing continuous cropping obstacles and ensuring the sustainable development of soil ecosystem.

Keywords: Unbalanced microbial community; Beneficial microorganisms; Harmful microorganisms; Soil health; Superposed restoration techniques

PDF (521KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

孙子欣, 蔡柏岩. 连作对土壤微生物菌群影响及修复研究进展. 作物杂志, 2022, 38(6): 7-13 doi:10.16035/j.issn.1001-7283.2022.06.002

Sun Zixin, Cai Baiyan. Research Advances on the Effects of Continuous Cropping on Soil Microbial Community and Restoration Techniques. Crops, 2022, 38(6): 7-13 doi:10.16035/j.issn.1001-7283.2022.06.002

土壤是生命孕育的重要基础,同时也对生命体间的交流起着重要作用,不但支撑着其内植物和微生物的生存,也将二者紧密联系起来。在健康的土壤生态系统中,植物分泌糖类等营养物质供土壤微生物利用,而微生物也通过改变土壤养分有效性等方式影响植物生长[1]。微生物群落结构在一定程度上决定着土壤内物质循环过程,以及该土壤生态系统的抵抗力和稳定性。例如,解磷细菌的存在有助于土壤内磷营养的释放[2];根际有益微生物可降低病虫害对植物的侵染效果[3],协助植物和土壤生态系统抵抗外来侵害[4];硫杆菌(Thiobacillus)的存在可协助改善植物生长环境[5],维持植物在盐渍土壤中的稳定生长[6]。此外,土壤内各种营养元素或重金属元素通过微生物自身代谢被有效性或固化,真菌与细菌的组成与比值也决定着土壤作物的发病率和产量。微生物菌群结构直接关系到土壤生态系统的发展[7],且对农作物营养及产、质量有直接影响[8-9]

目前普遍的耕作模式有连作、轮作、单作和间作等。此外,凿耕和旋耕等因地制宜的耕作技术也在逐渐发展。不同耕作方式对土壤理化性质及内部微生物群落结构均有重要影响,在一定程度上决定土壤的生物与非生物结构[10-12]。因连作可在短期内满足特种粮食需求,所以许多地区将其作为主要的耕作方式。但随着连作的普遍存在和年限加长,因此引起的各种负面问题也显现出来,包括土壤病虫害增多、抵抗力变弱、土壤出现板结、营养元素不均衡以及土壤性质退化导致作物质量下降等[13]。连作也会引起土壤内微生物群落发生改变[14]。研究表明,连作状态下草莓[15]和菠萝[16]土壤微生物群落发生改变,潜在病原菌增加,有益菌减少,有害病原菌增多[17],土壤性质退化[18]。长此以往,土壤无法维持其原有的良性生态循环,土地健康及作物质量难以得到保证。

为保护土壤生态系统,目前已广泛推广轮作和间作模式,但研究[19]表明,连作对土壤造成的负面影响难以通过简单改变耕作模式来消除。因此,需要探索更加主动有效的修复手段。目前已有大量研究致力于修复连作土壤环境,其中包括添加有机物[20]、土壤熏蒸[21]和土壤微生物修复等[22]。本文总结了连作影响土壤微生物群落的途径及国内外针对土壤连作导致的土壤微生物群落失衡的修复经验,并在此基础上提出叠加技术的修复模式,讨论将不同修复技术合理结合,修复土壤微生物群落结构的可行性,希望能对有效修复连作土壤营养及结构、缓解植株连作障碍提供帮助。

1 连作对土壤微生物生存环境的影响

土壤的形成及利用与土壤内细菌群落密切相关[23],而微生物群落结构也与土壤内pH、磷含量、氮含量、酶活性和植株健康状态等指标显著相关[24-25]

1.1 连作下土壤理化性质对微生物生存环境的影响

连作可能通过影响土壤理化环境影响土壤微生物群落。微生物群落结构受pH、碳氮比[26]、有机质[27]、土壤深度[28]和土壤利用类型[29]等因素的影响。连作可改变土壤含水量和营养成分有效性等营养环境,从而降低有益微生物丰富度[30]。连作可显著降低根际土壤内全氮和有效氮含量[31],而根际土壤全氮含量显著影响细菌群落变化。此外,连作还可改变土壤渗水性和孔隙度等物理环境,从而影响微生物生存[32]

1.2 连作下植株对微生物生存环境的影响

连作可能通过改变土壤理化性质影响植物生长,从而对土壤微生物群落结构进行二次作用。例如,连作下植株代谢途径改变[33],导致植物生长偏离正常方向,根系分布及根系分泌物均发生变化,影响到根际土壤理化性质和酶活性等土壤微生物生存环境[26]

1.3 土壤微生物生存环境的改善

土壤盐分和营养元素在土壤微生物群落生存环境维持中起着重要作用[34]。营养元素的补充可使连作土壤恢复原有营养环境,但直接施用化肥或试剂补充可能对土壤微生物结构起负面影响。例如,硫肥可促进黑麦草生长,但同时降低线虫和有益菌群的丰度,虽然短期内利大于弊,但并不利于土壤生态系统的长期健康维持[35]。目前主要通过有机肥、作物还田或堆肥的方式补充土壤营养元素。例如,通过添加磷泥或其他营养元素过剩的土壤补充相应元素[2];通过堆肥可改善连作引起的土壤退化,提高可利用的氮、磷、钾和有机质含量,同时还可使部分有益微生物增加,抑制连作引起的病原菌活动[17];有机肥的重复适当施用可以改善环境,促进微生物群落活动[36]。生物炭通过改良土壤微生物生存环境及影响细菌群落结构,从而促进作物在连作条件下的生长[37]

2 连作对土壤有益与有害微生物比例的影响

土壤生态系统很大程度上依赖于其内各生物的相互作用,而有益微生物与有害微生物的比例则暗示着该土壤生态系统的演替发展。

2.1 连作下有益与有害微生物比例的变化

连作影响根系有益微生物的相对丰富度[38]及病害拮抗菌属的相对丰度[39],使植物与土壤微生物群落间的相互作用失去原有平衡[40],以及土壤线虫[41]和病原菌等微生物的含量和种类[42]发生变化。连作下根际土壤pH发生变化,土壤微生物群落内真菌与细菌比例遭受干扰[43],植株病害相关微生物生存优势增加[44]。连作还导致土壤内氮硫循环相关细菌减少,病原菌富集[45]。总之,连作打破植物和土壤内微生物之间相互作用的平衡,使生态系统向不健康的方向发展,对植物根际土壤微生物起消极影响,从而降低植物营养,使植物病害率增加。

2.2 土壤有益与有害微生物比例的改善

添加有益真菌或细菌可在不过分改变土壤生态系统的状态下,改善土壤营养及质量[46],也可通过互作效应影响土壤有害微生物的群落结构,防止植株感病[47]。其中菌根真菌能影响土壤结构、含盐量和持水能力等性状,常被利用于缓解土壤连作障碍[48],例如丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)可作为生物肥料,增加根际土壤有益微生物和矿质元素,改善土壤环境,促进人参[22]和花生[49]等作物的生长,抑制根腐病。AMF还可通过调节植物生长激素促进连作中番茄生长及根系发育相关有益基因的表达[50]。此外,很多其他有益微生物也可以缓解连作障碍,例如拟茎点霉属内生菌(Phomopsis liquidambari)的定植可改善根际微环境、养分吸收和病害发生率,促进连作花生生长[51]。根际促生菌(plant growth promoting rhizobacteria,PGPR)可缓解酸性连作土壤中的铝毒和生姜青枯病[52]。硫杆菌可通过降低土壤pH抑制某些病原菌,从而促进植物生长,同时其与硫离子结合有利于植株对酸的耐受性,硫杆菌还可通过促进交换性钠离子的还原改良盐渍土质[5-6]。有益微生物的添加可通过促进植株生长或微生物间互作效应改善土壤内微生物群落结构。

3 连作对土壤微生物菌群结构的影响

连作除影响土壤内有益与有害微生物比例外,也影响土壤内整体的微生物群落结构。其影响的差异主要与连作年限和种植作物种类有关。

3.1 连作年限与作物对土壤微生物菌群结构的影响

连作作物和年限不同,土壤微生物群落结构的变化也存在显著差异,长期连作有利于寄主特异性病原菌发展[53]。土壤真菌群落在棉花连作后发生很大变化,病原菌也随连作年限急速增长,在连作10年左右达到峰值[42]。但同时有研究者[54]发现,长期连作后大豆产量出现先减后增的趋势,推测大豆连作年限在某个节点后的增长可以刺激土壤抗病能力的提高。连作对草莓的影响可按时间变化分为3个阶段,依次是土壤理化性质变化、真菌等土壤生物因子发生显著变化和自毒物质产生抑制生长[13];烟草种植土壤细菌群落结构在时间尺度上有明显的变化,其青枯病的发病率也与连作年限的积累显著相关[55];苎麻连作后期有益微生物减少,且有害微生物积累严重,导致土壤脆弱,植株病害加重[56]

3.2 土壤微生物菌群结构的改善

可通过物理措施或改善耕种管理模式修复连作对土壤微生物群落结构的损害。种植还原性作物可重建土壤微生物群落,并抑制土传病害[57]。高温下,碳酸氢铵或亚硫酸氢钠熏蒸有助于缓解西瓜连作病害,提升果实质量,平衡土壤微生物,改善土壤特性[21]。覆盖植物可改善土壤环境,促进本土有益菌AMF活动[30],但要考虑到土壤的补水需求[58]。施用微生物修复基质也可改良土壤,修复土壤微生物群落,有利于植物健康[59]。土壤小动物(例如蚯蚓)的引入有助于农田生态系统维持良好的土壤微生物结构[60]

随着耕作经验的积累,保护环境和可持续发展意识的增强,人们针对种植及耕作模式进行了许多改善,保护性耕作概念也逐渐发展起来。其中免耕和轮作因操作简单及可改良土壤而广泛应用,免耕和轮作有助于维持豆科植物根际根瘤菌种群结构和多样性[61]。轮作对土壤微生物群落影响显著,可平衡农业生态系统,防止特定土壤资源过度消耗[62]。同时,轮作有利于部分与菠萝产量积极相关菌属的活动,轮作下菠萝产量高于连作[16]。但需注意,不同轮作方式对作物生长及根际土壤微环境的影响也可能不同[63]。适当休耕能帮助土壤微生物恢复,耕作土壤中微生物生物量更低,免耕土壤中基因量更大且恢复更快[64]。不同土地利用类型以及作物生长阶段对土壤微生物的影响也需注意[26,65]。有研究尝试通过种植马铃薯修复豆科连作后的土壤微生物群落[66];轮作苜蓿和葱可修复连作高粱的根际环境[67];广藿香与姜黄、生姜间作可提高土壤优势菌群数量,改善细菌代谢及酶活性[68]。耕翻、深松和旋耕等耕作方式对有机碳积累[69]、氮素分布[12]及土壤微生物[68]的影响正成为研究热点。然而,保护性耕作模式在调节植物营养元素、土壤微生物结构等方面仍存在周期长、效果缓慢等不足。因此,仍需探索更为有效快速的修复手段。

4 修复技术集成的管理模式

相比于不健康的土壤生态系统,健康土壤生态系统的土壤往往存在更丰富的营养条件,有益于植物生长的土壤微生物群落及在合理耕种条件下植株健康生长(图1)。

图1

图1   健康与非健康农业生态系统下植物、微生物与土壤之间的互作关系

Fig.1   Interactions among plants, microorganisms and soil in healthy and unhealthy agroecosystems


连作导致的微生物群落失衡及植物生长障碍来源于方方面面,包括但不限于改变土壤结构、微生物群落、酶活性、营养结构和营养物质含量。同时,修复技术也多种多样,间作可通过植物间互作降低自毒效应[70],促进植物营养分配[71];腐殖酸等有机物的施用可以提高植物营养及抗胁迫相关酶的活性[72];轮作和覆盖植物更替可以改善土壤结构,促进微生物群落恢复[73],微生物可抑制病原菌活动[74]或改善土壤性质[5],等等。因此,可通过叠加补充土壤营养元素、改变微生物群落及调整耕作模式等措施修复土壤。

有研究证明各修复技术在连作土壤修复过程中的综合作用。例如硫杆菌与AMF联合接种在改善土壤结构的同时提高了根际环境中碳、氮、磷和硫等营养物质含量[75];AMF与外源钙联合使用可促进花生连作育苗[49];配合植物特性,结合间作和轮作2种种植方式,对土壤进行复合改良,可抑制植株病害,改善其表型和营养价值[76];无机肥与有机肥配合施用可提高土壤磷有效性[77];种植体系变化加生物炭协助改善系统内碳封存[78]。玉米和大豆轮作结合施肥对土壤肥力和作物产量的提高有显著积极影响[79],通过堆肥与接种功能菌株相结合可调节土壤性质,消除西瓜连作障碍[80]。因此,将连作、轮作、施肥和接菌等技术集成融合,作为土壤修复复合技术,在解决植物连作障碍、改善土壤微生物群落和维持土壤健康方面具有重大意义[81]。适当结合各修复手段,有助于构建健康的可持续发展农业土壤生态系统(图2)。

图2

图2   修复技术叠加的管理模式

Fig.2   Management mode with superposed restoration techniques


5 展望

连作弥补了耕地面积不足和粮食需求高等问题,同时也带来了土壤退化和温室气体排放过量等环境问题[82]。如何在获取利益的同时减少对环境资源的消耗,维持生态平衡,是农业生态所面临的重要问题。因此,如何进行连作障碍土壤的修复、构建健康土壤环境和维持较高的生产力水平是亟需解决的科学问题。

为此,提出3点建议:

第一,利用现代技术手段挖掘与解读土壤微生物群落数据及其代谢信息。基因组学和代谢组学等技术充分分析土壤微生物群落动态[83],充分了解土壤生态系统有益微生物、病原微生物及其他微生物生理生化代谢状况,应用农业生态系统的平衡原理,为健康的耕作模式构建提供理论依据。

第二,持续关注微生物修复技术。生态系统中微生物群落与土壤功能之间存在着密切的相关性[84],探究连作模式下有益微生物的群落功能及其结构变化,并研究施入有益微生物处理后土壤的功能变化,全面解析微生物修复技术缓解连作障碍的机制,形成作物连作条件下构建适宜的微生物群落结构技术。

第三,改良耕作模式,加强综合管理。通过研究不同作物在不同耕作模式下土壤理化性质的变化[85],分析不同作物的生态需求,包括喜好营养元素、生长环境及生长节律等,探寻作物轮作和间套作的地域模式;并探究不同修复技术之间,以及不同耕作模式与不同修复技术之间的叠加集成效应,以期建立修复效益最大化的管理模式,构建可持续发展的农业生态系统。

参考文献

Lugtenberg B J J, Weger L A de, Bennett J W, et al.

Microbial stimulation of plant growth and protection from disease

Current Opinion in Biotechnology, 1991, 2(3):457-464.

DOI:10.1016/S0958-1669(05)80156-9      URL     [本文引用: 1]

Benbrik B, Elabed A, El Modafar C, et al.

Reusing phosphate sludge enriched by phosphate solubilizing bacteria as biofertilizer:growth promotion of Zea mays

Biocatalysis and Agricultural Biotechnology, 2020, 30:101825.

DOI:10.1016/j.bcab.2020.101825      URL     [本文引用: 2]

Jos M R, Timothy C P, Christian S, et al.

The rhizosphere:a playground and battlefield for soilborne pathogens and beneficial microorganisms

Plant and Soil, 2009, 321(1/2):341-361.

DOI:10.1007/s11104-008-9568-6      URL     [本文引用: 1]

Roeland L B, Corné M J P, Peter A H M B.

The rhizosphere microbiome and plant health

Trends in Plant Science, 2012, 17(8):478-486.

DOI:10.1016/j.tplants.2012.04.001      PMID:22564542      [本文引用: 1]

The diversity of microbes associated with plant roots is enormous, in the order of tens of thousands of species. This complex plant-associated microbial community, also referred to as the second genome of the plant, is crucial for plant health. Recent advances in plant-microbe interactions research revealed that plants are able to shape their rhizosphere microbiome, as evidenced by the fact that different plant species host specific microbial communities when grown on the same soil. In this review, we discuss evidence that upon pathogen or insect attack, plants are able to recruit protective microorganisms, and enhance microbial activity to suppress pathogens in the rhizosphere. A comprehensive understanding of the mechanisms that govern selection and activity of microbial communities by plant roots will provide new opportunities to increase crop production.Copyright © 2012 Elsevier Ltd. All rights reserved.

Polumuri S K, Paknikar K M. Reduction of soil pH using Thiobacillus cultures//Amils R,Ballester A. Process Metallurgy. Elsevier, 1999:717-723.

[本文引用: 3]

Stamford N P, Silva A J N, Freitas A D S, et al.

Effect of sulphur inoculated with Thiobacillus on soil salinity and growth of tropical tree legumes

Bioresource Technology, 2002, 81(1):53-59.

PMID:11710345      [本文引用: 2]

A greenhouse experiment was carried out with the objective of evaluating the effects of the elementary sulphur inoculated with Thiobacillus, compared with gypsum, in the amendment of a alluvial sodic saline soil from the Brazilian semiarid region, irrigated with saline water and grown with the tropical legumes leucena and mimosa. The treatments consisted of levels of sulphur (0; 300 and 600 kg/ha) and gypsum (1,200 and 2,400 kg/ha), irrigation using different waters containing the salts NaHCO3, MgCl2, CaCl2, NaCl and KCl, with different electrical conductivities (ECs: 0.2. 6.1 and 8.2 dS/m at 25 degrees C). Based on the results it appears that saline water increased exchangeable Na+, K+, Ca2+, Mg2+, and soil pH. Sulphur inoculated with Thiobacillus was more efficient than gypsum in the reduction of the exchangeable sodium of the soil and promoting leaching of salts, especially sodium. Sulphur inoculated with Thiobacillus reduced the EC of the soil saturation extract to levels below that adopted in soil classification of sodic or saline sodic. Leucena was more tolerant to salinity and mimosa more resistant to acidity promoted by sulphur inoculated with Thiobacillus.

朱永官, 彭静静, 韦中, .

土壤微生物组与土壤健康

中国科学:生命科学, 2021, 51(1):1-11.

[本文引用: 1]

Miner G L, Delgado J A, Ippolito J A, et al.

Assessing manure and inorganic nitrogen fertilization impacts on soil health,crop productivity,and crop quality in a continuous maize agroecosystem

Journal of Soil and Water Conservation, 2020, 75(4):481-498.

DOI:10.2489/jswc.2020.00148      URL     [本文引用: 1]

Shi G Y, Sun H Q, Calderon-Urrea A, et al.

Bacterial communities as indicators of soil health under a continuous cropping system

Land Degradation and Development, 2021, 32(7):2393-2408.

DOI:10.1002/ldr.3919      URL     [本文引用: 1]

吴凤芝, 王学征.

设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系

中国农业科学, 2007, 40(10):2274-2280.

[本文引用: 1]

Daniel B, Cristiane A D S, Jean-Pierre B, et al.

Eucalyptus grandis and Acacia mangium in monoculture and intercropped plantations:Evolution of soil and litter microbial and chemical attributes during early stages of plant development

Applied Soil Ecology, 2013, 63:57-66.

DOI:10.1016/j.apsoil.2012.09.012      URL     [本文引用: 1]

Li Y, Li T, Zhao D, et al.

Different tillage practices change assembly,composition,and co-occurrence patterns of wheat rhizosphere diazotrophs

Science of the Total Environment, 2021, 767:144252.

DOI:10.1016/j.scitotenv.2020.144252      URL     [本文引用: 2]

Chen P, Wang Y, Liu Q, et al.

Phase changes of continuous cropping obstacles in strawberry (Fragaria×ananassa Duch.) production

Applied Soil Ecology, 2020, 155:103626.

DOI:10.1016/j.apsoil.2020.103626      URL     [本文引用: 2]

Wang Q, Liang A, Chen X, et al.

The impact of cropping system,tillage and season on shaping soil fungal community in a long-term field trial

European Journal of Soil Biology, 2021, 102:103253.

DOI:10.1016/j.ejsobi.2020.103253      URL     [本文引用: 1]

Li W, Liu Q, Chen P.

Effect of long-term continuous cropping of strawberry on soil bacterial community structure and diversity

Journal of Integrative Agriculture, 2018, 17(11):2570-2582.

DOI:10.1016/S2095-3119(18)61944-6      URL     [本文引用: 1]

Chen J, Gong J, Xu M.

Implications of continuous and rotational cropping practices on soil bacterial communities in pineapple cultivation

European Journal of Soil Biology, 2020, 97:103172.

DOI:10.1016/j.ejsobi.2020.103172      URL     [本文引用: 2]

Ding S, Zhou D, Wei H, et al.

Alleviating soil degradation caused by watermelon continuous cropping obstacle:Application of urban waste compost

Chemosphere, 2021, 262:128387.

DOI:10.1016/j.chemosphere.2020.128387      URL     [本文引用: 2]

Lal R.

Soil quality changes under continuous cropping for seventeen seasons of an alfisol in western Nigeria

Land Degradation and Development, 1998, 9(3):259-274.

DOI:10.1002/(SICI)1099-145X(199805/06)9:3<259::AID-LDR290>3.0.CO;2-V      URL     [本文引用: 1]

Li C W, Chen G Z, Zhang J L, et al.

The comprehensive changes in soil properties are continuous cropping obstacles associated with American ginseng (Panax quinquefolius) cultivation

Scientific Reports, 2021, 11(1):5068.

DOI:10.1038/s41598-021-84436-x      PMID:33658624      [本文引用: 1]

This study aims to verify the time-variant feature of American ginseng (AG) continuous cropping obstacles and to explore the factors impeding continuous cropping. We verified the feature with a plant-soil feedback pot experiment and then investigated the factors by comparing the properties of control soils that had not been previously used for growing ginseng (CS) with those of soils with a 10-year-crop-rotation cycle following the growth of AG (RS). It's found that the survival rate of AG in RS was lower than that in CS. The RS had lower pH, available potassium content, and urease activity. Additionally, p-coumaric, p-hydroxybenzoic, vanillic, caffeic, and cinnamic acid levels were lower in RS than in CS, but salicylic acid levels showed the opposite pattern. RS had higher Rhodanobacter and lower Acidothermus, Sphingomonas relative abundances in bacterial community. It's also found that many bacteria were substantially correlated with phenolic acids and soil physiochemical properties. Results indicate that even after 10-year crop rotation, the negative effects of prior continuous cropping of AG has not been eliminated. The growth of AG can be affected negatively with deterioration of soil physicochemical properties and with lower levels of phenolic acids which promote pathogen reproduction. Probiotics reduction also weighs. Moreover, biotic factors are interrelated with abiotic ones. Therefore, it can be inferred that the comprehensive change of soil properties is the main obstacle for continuous cropping.

Zhou R, Wang Y, Tian M, et al.

Mixing of biochar,vinegar and mushroom residues regulates soil microbial community and increases cucumber yield under continuous cropping regime

Applied Soil Ecology, 2021, 161:103883.

DOI:10.1016/j.apsoil.2021.103883      URL     [本文引用: 1]

Li H, Yuan G, Zhu C, et al.

Soil fumigation with ammonium bicarbonate or metam sodium under high temperature alleviates continuous cropping-induced Fusarium wilt in watermelon

Scientia Horticulturae, 2019, 246:979-986.

DOI:10.1016/j.scienta.2018.11.090      URL     [本文引用: 2]

Liu N, Shao C, Sun H, et al.

Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime

Geoderma, 2020, 363:114155.

DOI:10.1016/j.geoderma.2019.114155      URL     [本文引用: 2]

Xu L X, Han Y S, Yi M, et al.

Shift of millet rhizosphere bacterial community during the maturation of parent soil revealed by 16S rDNA high-throughput sequencing

Applied Soil Ecology, 2019, 135:157-165.

DOI:10.1016/j.apsoil.2018.12.004      URL     [本文引用: 1]

Li Y, Chi J L, Ao J, et al.

Effects of different continuous cropping years on bacterial community and diversity of cucumber rhizosphere soil in solar-greenhouse

Current Microbiology, 2021, 78:2380-2390.

DOI:10.1007/s00284-021-02485-x      PMID:33871692      [本文引用: 1]

The rhizosphere soils from 1, 3, 5, and 7 years of cucumber continuous cropping in solar-greenhouse were used as the research objects. The region of bacterial 16S rRNA was analyzed by Illumina MiSeq high-throughput sequencing technology. The effect of continuous cropping years on the microbial community structure and diversity in cucumber soil in the greenhouse was investigated. The physical and chemical properties of soil and the activities of urease and catalase were determined. The results showed that cucumber crop succession for different years affected the community composition of the bacteria at the phylum level, and the abundance of Proteobacteria, Chloroflexi, Gemmatimonadetes, Patescibacteria and Firmicutes gradually increased, while Actinobacteria in the soil significantly decreased. Among the top 15 significantly different genera, with the extension of successive years, the relative abundance of most genera in bacteria decreased after a small increase in year 3. The diversity results indicated that soil samples from continuous cropping for 7 years had the lowest community diversity. PICRUSt analysis showed a decreasing trend in soil bacterial function as the cucumber crop succession age increased. In environmental factor clustering analysis, the soil bacterial community was significantly correlated with pH, available nitrogen (AN), soil urease (SUR) and available phosphorus (AP), and the effect on the bacterial community was expressed as SUR > AP > AN > pH.

Xu W M, Wu F Y, Wang H J, et al.

Key soil parameters affecting the survival of Panax notoginseng under continuous cropping

Scientific Reports, 2021, 11(1):5656.

DOI:10.1038/s41598-021-85171-z      URL     [本文引用: 1]

Liu Z, Liu J, Yu Z, et al.

Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance,diversity and community composition

Soil and Tillage Research, 2020, 197:104503.

DOI:10.1016/j.still.2019.104503      URL     [本文引用: 3]

Chamberlain L A, Bolton M L, Cox M S, et al.

Crop rotation,but not cover crops,influenced soil bacterial community composition in a corn-soybean system in southern Wisconsin

Applied Soil Ecology, 2020, 154:103603.

DOI:10.1016/j.apsoil.2020.103603      URL     [本文引用: 1]

Schlatter D C, Kahl K, Carlson B, et al.

Soil acidification modifies soil depth-microbiome relationships in a no-till wheat cropping system

Soil Biology and Biochemistry, 2020, 149:107939.

DOI:10.1016/j.soilbio.2020.107939      URL     [本文引用: 1]

Wang C, Masoudi A, Wang M, et al.

Land-use types shape soil microbial compositions under rapid urbanization in the Xiong'an New Area,China

Science of the Total Environment, 2021, 777:145976.

DOI:10.1016/j.scitotenv.2021.145976      URL     [本文引用: 1]

Hontoria C, García-González I, Quemada M, et al.

The cover crop determines the AMF community composition in soil and in roots of maize after a ten-year continuous crop rotation

Science of the Total Environment, 2019, 660:913-922.

DOI:10.1016/j.scitotenv.2019.01.095      [本文引用: 2]

Intensive agricultural practices are responsible for soil biological degradation. By stimulating indigenous arbuscular mycorrhizal fungi (AMF), cover cropping enhances soil health and promotes agroecosystem sustainability. Still, the legacy effects of cover crops (CCs) and the major factors driving the AM fungal community are not well known; neither is the influence of the specific CC. This work describes a field experiment established in Central Spain to test the effect of replacing winter fallow by barley (Hordeum vulgare L.) or vetch (Vicia sativa L.) during the intercropping of maize (Zea mays L.). We examined the community composition of the AMF in the roots and rhizosphere soil associated with the subsequent cash crop after 10 years of cover cropping, using Illumina technology. The multivariate analysis showed that the AMF communities under the barley treatment differed significantly from those under fallow, whereas no legacy effect of the vetch CC was detected. Soil organic carbon, electrical conductivity, pH, Ca and microbial biomass carbon were identified as major factors shaping soil AMF communities. Specific AMF taxa were found to play a role in plant uptake of P, Fe, Zn, Mn, and Cd, which may shed light on the functionality of these taxa. In our conditions, the use of barley as a winter CC appears to be an appropriate choice with respect to promotion of AMF populations and biological activity in agricultural soils with intercropping systems. However, more research on CC species and their legacy effect on themicrobial community composition and functionality are needed to guide decisions in knowledge-based agriculture. (c) 2019 Elsevier B.V.

Yao Y H, Yao X H, An L K, et al.

Rhizosphere bacterial community response to continuous cropping of Tibetan barley

Frontiers in Microbiology, 2020, 11:3017.

[本文引用: 1]

Aparicio V, Costa J L.

Soil quality indicators under continuous cropping systems in the Argentinean Pampas

Soil and Tillage Research, 2007, 96(1):155-165.

DOI:10.1016/j.still.2007.05.006      URL     [本文引用: 1]

Li J, Chen X, Zhan R, et al.

Transcriptome profiling reveals metabolic alteration in Andrographis paniculata in response to continuous cropping

Industrial Crops and Products, 2019, 137:585-596.

DOI:10.1016/j.indcrop.2019.05.067      URL     [本文引用: 1]

Jiang S, Yu Y, Gao R, et al.

High-throughput absolute quantification sequencing reveals the effect of different fertilizer applications on bacterial community in a tomato cultivated coastal saline soil

Science of the Total Environment, 2019, 687:601-609.

DOI:10.1016/j.scitotenv.2019.06.105      URL     [本文引用: 1]

Ikoyi I, Fowler A, Storey S, et al.

Sulfate fertilization supports growth of ryegrass in soil columns but changes microbial community structures and reduces abundances of nematodes and arbuscular mycorrhiza

Science of the Total Environment, 2020, 704:135315.

DOI:10.1016/j.scitotenv.2019.135315      URL     [本文引用: 1]

Bonanomi G, De Filippis F, Zotti M, et al.

Repeated applications of organic amendments promote beneficial microbiota,improve soil fertility and increase crop yield

Applied Soil Ecology, 2020, 156:103714.

DOI:10.1016/j.apsoil.2020.103714      URL     [本文引用: 1]

Zhao L Y, Guan H L, Wang R, et al.

Effects of tobacco stem-derived biochar on soil properties and bacterial community structure under continuous cropping of Bletilla striata

Journal of Soil Science and Plant Nutrition, 2021, 21:1318-1328.

DOI:10.1007/s42729-021-00442-y      URL     [本文引用: 1]

Wang Y Z, Zhu S Y, Liu T M, et al.

Identification of the rhizospheric microbe and metabolites that led by the continuous cropping of ramie (Boehmeria nivea L. Gaud)

Scientific Reports, 2020, 10(1):20408.

DOI:10.1038/s41598-020-77475-3      URL     [本文引用: 1]

Xiang D, Wu Y, Li H, et al.

Soil fungal diversity and community composition in response to continuous sweet potato cropping practices

Phyton-International Journal of Experimental Botany, 2021, 90(4):1247-1258.

[本文引用: 1]

Petra M, David C, Ching H Y.

Development of specific rhizosphere bacterial communities in relation to plant species,nutrition and soil type

Plant and Soil, 2004, 261(1/2):199-208.

DOI:10.1023/B:PLSO.0000035569.80747.c5      URL     [本文引用: 1]

Tian X, Zhao X, Mao Z, et al.

Variation and dynamics of soil nematode communities in greenhouses with different continuous cropping periods

Horticultural Plant Journal, 2020, 6(5):301-312.

DOI:10.1016/j.hpj.2020.07.002      URL     [本文引用: 1]

Wei Z, Yu D.

Rhizosphere fungal community structure succession of Xinjiang continuously cropped cotton

Fungal Biology, 2019, 123(1):42-50.

DOI:S1878-6146(18)30399-4      PMID:30654956      [本文引用: 2]

The large-scale long-term plantation of cotton in the Xinjiang region has been accompanied by a regular and wide outbreak of soil-borne fungal diseases such as verticillium wilt, which significantly damaged the local cotton industry. High-throughput sequencing data showed that the cotton field cultivation management measures pose a significant influence upon the original ecological soil fungal community structure. During long-term continuous cropping of cotton, a new soil fungal community structure emerges after several repeated adjustments over five years. The number of verticillium wilt pathogens in the soil increased rapidly with prolonged continuous cropping time, reaching a maximum at around the 10th y; moreover, the abundance of the verticillium wilt pathogen only serves as one of numerous essential factors for disease occurrence. The fungal community structure and the abundance of verticillium wilt pathogens in local cotton fields are gradually formed under joint effects of year-long continuous cropping and supporting cultivation management measures.Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Rousk J, Brookes P C, Baath E.

Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil

Soil Biology and Biochemistry, 2010, 42(6):926-934.

DOI:10.1016/j.soilbio.2010.02.009      URL     [本文引用: 1]

Fei X, Wang L N, Chen J Y, et al.

Variations of microbial community in Aconitum carmichaeli Debx. rhizosphere soilin a short-term continuous cropping system

Journal of Microbiology, 2021, 59(5):481-490.

DOI:10.1007/s12275-021-0515-z      URL     [本文引用: 1]

Pang Z Q, Dong F, Liu Q, et al.

Soil metagenomics reveals effects of continuous sugarcane cropping on the structure and functional pathway of rhizospheric microbial community

Frontiers in Microbiology, 2021, 12:627569.

DOI:10.3389/fmicb.2021.627569      URL     [本文引用: 1]

马红梅, 李小兵, 符浩, .

灵芝连作障碍的土壤微生物种群特性及其生物防治初探

河南农业科学, 2014, 43(3):53-58.

[本文引用: 1]

Rodrigo M, Marco K, Irene D B, et al.

Deciphering the rhizosphere microbiome for disease-suppressive bacteria

Science, 2011, 332(6033):1097-1100.

DOI:10.1126/science.1203980      PMID:21551032      [本文引用: 1]

Disease-suppressive soils are exceptional ecosystems in which crop plants suffer less from specific soil-borne pathogens than expected owing to the activities of other soil microorganisms. For most disease-suppressive soils, the microbes and mechanisms involved in pathogen control are unknown. By coupling PhyloChip-based metagenomics of the rhizosphere microbiome with culture-dependent functional analyses, we identified key bacterial taxa and genes involved in suppression of a fungal root pathogen. More than 33,000 bacterial and archaeal species were detected, with Proteobacteria, Firmicutes, and Actinobacteria consistently associated with disease suppression. Members of the γ-Proteobacteria were shown to have disease-suppressive activity governed by nonribosomal peptide synthetases. Our data indicate that upon attack by a fungal root pathogen, plants can exploit microbial consortia from soil for protection against infections.

Rillig M C, Mummey D L.

Mycorrhizas and soil structure

The New Phytologist, 2006, 171(1):41-53.

DOI:10.1111/j.1469-8137.2006.01750.x      URL     [本文引用: 1]

Li C, Feng G, Zhang J L, et al.

Arbuscular mycorrhizal fungi combined with exogenous calcium improves the growth of peanut (Arachis hypogaea L.) seedlings under continuous cropping

Journal of Integrative Agriculture, 2019, 18(2):407-416.

DOI:10.1016/S2095-3119(19)62611-0      URL     [本文引用: 2]

Wang Y, Zhang W Z, Liu W K, et al.

Auxin is involved in arbuscular mycorrhizal fungi-promoted tomato growth and NADP- malic enzymes expression in continuous cropping substrates

BMC Plant Biology, 2021, 21:48.

DOI:10.1186/s12870-020-02817-2      PMID:33461504      [本文引用: 1]

Despite significant limitations of growth medium reuse, a large amount of organic substrate is reused in soilless cultivation of horticultural crops in China. Arbuscular mycorrhizal fungi (AMF) can promote nutrient absorption and improve plant tolerance to biotic and abiotic stresses. However, the mechanisms governing the effects of AMF on crop growth in organic continuous cropping substrates have not been elucidated.In this study, we showed that the inoculation of AMF in continuous cropping substrates promoted growth and root development, and increased the root and NADP-malic enzyme (NADP-ME) activity of tomato seedlings. Root transcriptome analysis demonstrated that the plant hormone signal transduction pathway was highly enriched, and 109 genes that positively correlated with the AMF-inoculated plant phenotype were obtained by gene set enrichment analysis (GSEA), which identified 9 genes related to indole acetic acid (IAA). Importantly, the levels of endogenous IAA in tomato seedlings significantly increased after AMF inoculation. Furthermore, the application of AMF significantly increased the expression levels of NADP-ME1 and NADP-ME2, as well as the activity of NADP-ME, and enhanced the root activity of tomato seedlings in comparison to that observed without inoculation of AMF. However, these effects were blocked in plants treated with 2,3,5-triiodobenzoic acid (TIBA), a polar transport inhibitor of IAA.These results suggest that IAA mediates the AMF-promoted tomato growth and expression of NADP-MEs in continuous cropping substrates. The study provides convincing evidence for the reuse of continuous cropping substrates by adding AMF as an amendment.

Xie X G, Zhang F M, Wang X X, et al.

Phomopsis liquidambari colonization promotes continuous cropping peanut growth by improving the rhizosphere microenvironment,nutrient uptake and disease incidence

Journal of the Science of Food and Agriculture, 2019, 99(4):1898-1907.

DOI:10.1002/jsfa.9385      URL     [本文引用: 1]

Zhang S T, Jiang Q P, Liu X J, et al.

Plant growth promoting rhizobacteria alleviate aluminum toxicity and ginger bacterial wilt in acidic continuous cropping soil

Frontiers in Microbiology, 2020, 11:569512.

DOI:10.3389/fmicb.2020.569512      URL     [本文引用: 1]

Strom N, Hu W, Haarith D, et al.

Interactions between soil properties,fungal communities,the soybean cyst nematode,and crop yield under continuous corn and soybean monoculture

Applied Soil Ecology, 2020, 147:103388.

DOI:10.1016/j.apsoil.2019.103388      URL     [本文引用: 1]

Liu J J, Yao Q, Li Y S, et al.

Continuous cropping of soybean alters the bulk and rhizospheric soil fungal communities in a Mollisol of Northeast PR China

Land Degradation and Development, 2019, 30(14):1725-1738.

DOI:10.1002/ldr.3378      URL     [本文引用: 1]

She S, Niu J, Zhang C, et al.

Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system

Archives of Microbiology, 2017, 199(2):267-275.

DOI:10.1007/s00203-016-1301-x      PMID:27699437      [本文引用: 1]

Soil bacteria are very important in biogeochemical cycles and play significant role in soil-borne disease suppression. Although continuous cropping is responsible for soil-borne disease enrichment, its effect on tobacco plant health and how soil bacterial communities change are yet to be elucidated. In this study, soil bacterial communities across tobacco continuous cropping time-series fields were investigated through high-throughput sequencing of 16S ribosomal RNA genes. The results showed that long-term continuous cropping could significantly alter soil microbial communities. Bacterial diversity indices and evenness indices decreased over the monoculture span and obvious variations for community structures across the three time-scale tobacco fields were detected. Compared with the first year, the abundances of Arthrobacter and Lysobacter showed a significant decrease. Besides, the abundance of the pathogen Ralstonia spp. accumulated over the monoculture span and was significantly correlated with tobacco bacterial wilt disease rate. Moreover, Pearson's correlation demonstrated that the abundance of Arthrobacter and Lysobacter, which are considered to be beneficial bacteria had significant negative correlation with tobacco bacterial wilt disease. Therefore, after long-term continuous cropping, tobacco bacterial wilt disease could be ascribed to the alteration of the composition as well as the structure of the soil microbial community.

Zhu S, Wang Y, Xu X, et al.

Potential use of high-throughput sequencing of soil microbial communities for estimating the adverse effects of continuous cropping on ramie (Boehmeria nivea L. Gaud)

PLoS ONE, 2018, 13(5):e0197095.

[本文引用: 1]

Yang R, Weiner J, Shi X, et al.

Effect of reductive soil disinfestation on the chemical and microbial characteristics of rhizosphere soils associated with Salvia miltiorrhiza production in three cropping systems

Applied Soil Ecology, 2021, 160:103865.

DOI:10.1016/j.apsoil.2020.103865      URL     [本文引用: 1]

Mubvumba P, DeLaune P B, Hons F M.

Soil water dynamics under a warm-season cover crop mixture in continuous wheat

Soil and Tillage Research, 2021, 206:104823.

DOI:10.1016/j.still.2020.104823      URL     [本文引用: 1]

Zheng X F, Wang Z R, Zhu Y J, et al.

Effects of a microbial restoration substrate on plant growth and rhizosphere bacterial community in a continuous tomato cropping greenhouse

Scientific Reports, 2020, 10(1):13729.

DOI:10.1038/s41598-020-70737-0      PMID:32792530      [本文引用: 1]

Continuous cropping of tomato is increasingly practiced in greenhouse cultivation, leading to several soil-related obstacles. In this study, a type of microbial restoration substrate (MRS) was used to amend soils from the re-cropping of tomato for 8 years under greenhouse-cultivated conditions. Two treatments were established: using 1,500 kg hm of MRS to amend soil as treatment (TR), and non-MRS as control (CK). The severity of bacterial wilt (BW), soil properties and rhizobacterial community composition under two different treatments were compared. The application of MRS led to an average 83.75% reduction in the severity of BW, and significantly increased the plant height, root activity and yield. Meanwhile, soil pH, soil organic contents (SOC), total nitrogen (TN) and exchangeable calcium were significantly increased (P < 0.05) by MRS treatment. Illumina-MiSeq sequencing analysis of the 16S rRNA genes revealed that MRS increased the diversity of the tomato rhizobacterial community. The relative abundances of Proteobacteria, Actinobacteria and Bacteroidetes were enhanced, whereas those of Acidobacteria, Chloroflexi, TM7 and Firmicutes were decreased by MRS. The redundancy analysis (RDA) revealed that the severity of tomato BW was negatively correlated with the relative abundances of Actinobacteria, Bacteroidetes and Proteobacteria, but positively correlated with those of Gemmatimonadetes, Firmicutes and Acidobacteria. In addition, the effects of MRS on rhizobacterial metabolic potentials were predicted using a Kyoto Encyclopedia of Genes and Genomes (KEGG) database, implying that MRS could significantly increase nitrogen metabolisms and reduce carbon metabolism. Together, our results indicated that the use of MRS could reestablish soil microbial communities, which was beneficial to plant health compared with the control.

Kliszcz A, Pula J.

The change of pH value and Octolasion cyaneum savigny earthwormsʼ activity under stubble crops after spring triticale continuous cultivation

Soil Systems, 2020, 4(3):39.

DOI:10.3390/soilsystems4030039      URL     [本文引用: 1]

Ferreira M C, Andrade D, Chueire L, et al.

Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean

Soil Biology and Biochemistry, 2000, 32(5):627-637.

DOI:10.1016/S0038-0717(99)00189-3      URL     [本文引用: 1]

Chen J, Guo Q K, Liu D H, et al.

Composition,predicted functions,and co-occurrence networks of fungal and bacterial communities_ Links to soil organic carbon under long-term fertilization in a rice-wheat cropping system

European Journal of Soil Biology, 2020, 100:103226.

DOI:10.1016/j.ejsobi.2020.103226      URL     [本文引用: 1]

王劲松, 樊芳芳, 郭珺, .

不同作物轮作对连作高粱生长及其根际土壤环境的影响

应用生态学报, 2016, 27(7):2283-2291.

DOI:10.13287/j.1001-9332.201607.036      [本文引用: 1]

以高粱连作5年为对照(CK),研究了高粱连作3年轮作苜蓿(T<sub>1</sub>)和葱(T<sub>2</sub>),对下茬高粱生长、根际土壤微生物及土壤酶活性的影响.结果表明:与CK相比,轮作改善了高粱地上部的生长;T<sub>1</sub>增产16.5%,效果明显.轮作也促进了高粱根系的生长,T<sub>1</sub>和T<sub>2</sub>处理的高粱总根长是CK的1.3和1.4倍,根总表面积是CK的1.6和1.5倍,根体积是CK的2.2和1.6倍,根系生物量是CK的2.0和1.3倍,T<sub>1</sub>促进了根系在10 cm以下土层中的分布.借助Biolog法对穗花期根际土壤微生物群落功能多样性分析表明,T<sub>1</sub>和T<sub>2</sub>处理根际土壤微生物活性显著高于CK,且Shannon多样性指数分别是CK的1.2和1.1倍;轮作提高了根际土壤蔗糖酶活性.综上,轮作苜蓿比轮作葱更能改善高粱根际土壤环境,提高土壤微生物活性和酶活性,控制高粱连作障碍,提高高粱产量.

Sengupta A, Dick W A.

Methanotrophic bacterial diversity in two diverse soils under varying land-use practices as determined by high-throughput sequencing of the pmoA gene

Applied Soil Ecology, 2017, 119:35-45.

DOI:10.1016/j.apsoil.2017.05.031      URL     [本文引用: 1]

Li T, Li Y, Shi Z, et al.

Crop development has more influence on shaping rhizobacteria of wheat than tillage practice and crop rotation pattern in an arid agroecosystem

Applied Soil Ecology, 2021, 165:104016.

DOI:10.1016/j.apsoil.2021.104016      URL     [本文引用: 1]

Qin S H, Stephen Y, Cao L, et al.

Breaking continuous potato cropping with legumes improves soil microbial communities,enzyme activities and tuber yield

PLoS ONE, 2017, 12(5):e0175934.

[本文引用: 1]

王劲松, 樊芳芳, 郭珺, .

不同作物轮作对连作高粱生长及其根际土壤环境的影响

应用生态学报, 2016, 27(7):2283-2291.

DOI:10.13287/j.1001-9332.201607.036      [本文引用: 1]

以高粱连作5年为对照(CK),研究了高粱连作3年轮作苜蓿(T<sub>1</sub>)和葱(T<sub>2</sub>),对下茬高粱生长、根际土壤微生物及土壤酶活性的影响.结果表明:与CK相比,轮作改善了高粱地上部的生长;T<sub>1</sub>增产16.5%,效果明显.轮作也促进了高粱根系的生长,T<sub>1</sub>和T<sub>2</sub>处理的高粱总根长是CK的1.3和1.4倍,根总表面积是CK的1.6和1.5倍,根体积是CK的2.2和1.6倍,根系生物量是CK的2.0和1.3倍,T<sub>1</sub>促进了根系在10 cm以下土层中的分布.借助Biolog法对穗花期根际土壤微生物群落功能多样性分析表明,T<sub>1</sub>和T<sub>2</sub>处理根际土壤微生物活性显著高于CK,且Shannon多样性指数分别是CK的1.2和1.1倍;轮作提高了根际土壤蔗糖酶活性.综上,轮作苜蓿比轮作葱更能改善高粱根际土壤环境,提高土壤微生物活性和酶活性,控制高粱连作障碍,提高高粱产量.

Zeng J R, Liu J Z, Lu C H, et al.

Intercropping with turmeric or ginger reduce the continuous cropping obstacles that affect Pogostemon cablin (patchouli)

Frontiers in Microbiology, 2020, 11:2526.

[本文引用: 2]

田慎重, 宁堂原, 王瑜, .

不同耕作方式和秸秆还田对麦田土壤有机碳含量的影响

应用生态学报, 2010, 21(2):373-378.

[本文引用: 1]

Cheng F, Ali M, Liu C, et al.

Garlic allelochemical diallyl disulfide alleviates autotoxicity in the root exudates caused by long-term continuous cropping of tomato

Journal of Agricultural and Food Chemistry, 2020, 68(42):11684-11693.

DOI:10.1021/acs.jafc.0c03894      URL     [本文引用: 1]

Gao H, Li S, Wu F Z.

Impact of intercropping on the diazotrophic community in the soils of continuous cucumber cropping systems

Frontiers in Microbiology, 2021, 12:630302.

DOI:10.3389/fmicb.2021.630302      URL     [本文引用: 1]

Li Y, Fang F, Wei J L, et al.

Physiological effects of humic acid in peanut growing in continuous cropping soil

Agronomy Journal, 2021, 113(1):550-579.

DOI:10.1002/agj2.20482      URL     [本文引用: 1]

Liu S, Wang Z Y, Niu J F, et al.

Changes in physicochemical properties,enzymatic activities,and the microbial community of soil significantly influence the continuous cropping of Panax quinquefolius L. (American ginseng)

Plant Soil, 2021, 463:427-446.

DOI:10.1007/s11104-021-04911-2      URL     [本文引用: 1]

Guo N, Li L, Cui J, et al.

Effects of Funneliformis mosseae on the fungal community in and soil properties of a continuously cropped soybean system

Applied Soil Ecology, 2021, 164:103930.

DOI:10.1016/j.apsoil.2021.103930      URL     [本文引用: 1]

Mohamed A A, Eweda W E E, Heggo A M, et al.

Effect of dual inoculation with arbuscular mycorrhizal fungi and sulphur- oxidising bacteria on onion (Allium cepa L.) and maize (Zea mays L.) grown in sandy soil under green house conditions

Annals of Agricultural Sciences, 2014, 59(1):109-118.

DOI:10.1016/j.aoas.2014.06.015      URL     [本文引用: 1]

Tang L, Hamid Y, Chen Z, et al.

A phytoremediation coupled with agro-production mode suppresses Fusarium wilt disease and alleviates cadmium phytotoxicity of cucumber (Cucumis sativus L.) in continuous cropping greenhouse soil

Chemosphere, 2021, 270:128634.

DOI:10.1016/j.chemosphere.2020.128634      URL     [本文引用: 1]

Li C L, Zhang P, Zhang J J, et al.

Forms,transformations and availability of phosphorus after 32 years of manure and mineral fertilization in a Mollisol under continuous maize cropping

Archives of Agronomy and Soil Science, 2021, 67(9):1256-1271.

DOI:10.1080/03650340.2020.1787385      URL     [本文引用: 1]

Mehmood I, Qiao L, Chen H Q, et al.

Biochar addition leads to more soil organic carbon sequestration under a maize-rice cropping system than continuous flooded rice

Agriculture Ecosystems and Environment, 2020, 298:106965.

DOI:10.1016/j.agee.2020.106965      URL     [本文引用: 1]

Rao D M, Meng F G, Yan X Y, et al.

Changes in soil microbial activity,bacterial community composition and function in a long-term continuous soybean cropping system after corn insertion and fertilization

Frontiers in Microbiology, 2021, 12:638326.

DOI:10.3389/fmicb.2021.638326      URL     [本文引用: 1]

Zhang H, Hua Z W, Liang W Z, et al.

The prevention of bio-organic fertilizer fermented from cow manure compost by Bacillu ssp. XG-1 on watermelon continuous cropping barrier

International Journal of Environmental Research and Public Health, 2020, 17(16):5714.

DOI:10.3390/ijerph17165714      URL     [本文引用: 1]

Pervaiz Z H, Iqbal J, Zhang Q M, et al.

Continuous cropping alters multiple biotic and abiotic indicators of soil health

Soil Systems, 2020, 4(4):59.

DOI:10.3390/soilsystems4040059      URL     [本文引用: 1]

Fatumah N, Munishi L K, Ndakidemi P A.

The effect of land-use systems on greenhouse gas production and crop yields in Wakiso District,Uganda

Environmental Development, 2021, 37:100607.

DOI:10.1016/j.envdev.2020.100607      URL     [本文引用: 1]

Aguilar-Marcelino L, Mendoza-De-Gives P, Al-Ani L, et al.

Using molecular techniques applied to beneficial microorganisms as biotechnological tools for controlling agricultural plant pathogens and pest

Molecular Aspects of Plant Beneficial Microbes in Agriculture, 2020, 26:333-349.

[本文引用: 1]

Fan K K, Delgado-Baquerizo M, Zhu Y G, et al.

Crop production correlates with soil multitrophic communities at the large spatial scale

Soil Biology and Biochemistry, 2020, 151:108047.

DOI:10.1016/j.soilbio.2020.108047      URL     [本文引用: 1]

Zhong S, Mo Y, Guo G, et al.

Effect of continuous cropping on soil chemical properties and crop yield in banana plantation

Journal of Agricultural Science and Technology, 2014, 16(1):239-250.

[本文引用: 1]

/