优异糯高粱不育系吉5535A的创制与应用
Breeding and Application of Elite Waxy Sorghum Male Sterile Line “Ji 5535A”
通讯作者:
收稿日期: 2022-02-11 修回日期: 2022-04-1
基金资助: |
|
Received: 2022-02-11 Revised: 2022-04-1
作者简介 About authors
陈冰嬬,研究方向为高粱种质资源与遗传育种,E-mail:
为选育适合春播早熟区种植的抗病性强、品质优良的糯高粱不育系,以配合力高、抗病性强、品质优良的粳高粱骨干保持系吉2055B为母本,以406B和糯性保持系ICS-34B杂交后代的矮秆糯质中间材料为糯质供体,利用5年时间经过1代杂交、10代自交和5代回交转育培育出品质优良、抗病性强的优异糯质不育系吉5535A。吉5535A籽粒品质优良,含支链淀粉99.17%、粗蛋白14.29%、粗脂肪3.15%、单宁0.01%、赖氨酸0.33%,千粒重达27.2g。其抗病性强,高抗高粱丝黑穗病、抗炭疽病、抗靶斑病、中抗茎基腐病。由分子标记分析可得,吉5535A的Waxy基因等位突变属于wxb类型突变。吉5535A与低单宁恢复系可组配出优质饲用、食用高粱杂交种,与高单宁恢复系又可组配出优质酿酒高粱杂交种,是培育酿造专用、籽粒饲用、食用杂交种的优良不育系。吉5535A拓宽了糯质不育系的遗传基础,为我国高粱不育系改良提供了优异种质,提升了春播早熟区糯高粱杂交种的产量和品质,促进了本生态区酿酒、籽粒饲用和食用杂交种的培育。
关键词:
To breed elite waxy sorghum male sterile lines for early-maturing area in China, Ji 2055B was selected as female parent, a elite non-waxy sorghum maintainer line with strong combining ability, strong disease resistance and excellent grain quality, a dwarf waxy material from the progeny of non-waxy maintainer line 406B and waxy maintainer line ICS-34B was used as waxy donor. Through crossing of one generation, selfing of ten generations and backcrossing of five generations in five years, the elite waxy sorghum male sterile lines Ji 5535A were successfully bred. Ji 5535A had good grain quality, its amylopectin content was 99.17%, crude protein content was 14.29%, crude fat content was 3.15%, tannin content was 0.01%, lysine content was 0.33%, and 1000-grain weight reached 27.2g. Ji 5535A had strong disease resistance, high resistance to sorghum head smut, resistance anthracnose and target leaf spot, moderate resistance to stalk rot. The waxy allele of Ji 5535A was wxb by molecular marker analysis. High-quality forage and edible sorghum hybrids could be bred through Ji 5535A and low tannin restorer lines, and high-quality brewing sorghum hybrids could be bred through Ji 5535A and high tannin restorer lines. The resulted revealed that Ji 5535A was an excellent male sterile line for cultivating brewing, grain forage and edible sorghum hybrids. Ji 5535A expanded the genetic basis of waxy male sterile lines and provided excellent germplasm for the improvement of sorghum male sterile lines in China. Meanwhile, it improved the yield and quality of waxy sorghum hybrids in early maturing area, and promoted the cultivation of brewing, forage and edible sorghum hybrids.
Keywords:
本文引用格式
陈冰嬬, 于淼, 石贵山, 王江红, 唐玉劼, 徐晨, 李海青, 徐宁, 周紫阳, 王鼐.
Chen Bingru, Yu Miao, Shi Guishan, Wang Jianghong, Tang Yujie, Xu Chen, Li Haiqing, Xu Ning, Zhou Ziyang, Wang Nai.
高粱[Sorghum bicolor (L.) Moench]是全球重要的旱粮作物之一,其籽粒被广泛用作口粮、饲料、酿造和生物燃料的原料。高粱籽粒根据其胚乳中直链淀粉和支链淀粉含量不同可分为粳高粱(non-waxy sorghum)和糯高粱(waxy sorghum)。在粳高粱籽粒中直链淀粉含量约占总淀粉含量的20%~30%,支链淀粉含量约占总淀粉含量的70%~80%。而糯高粱籽粒中直链淀粉含量很低或者几乎没有,其淀粉颗粒基本由支链淀粉组成[1]。形成糯性胚乳的主要原因是控制淀粉合成过程中的关键酶——颗粒结合淀粉合成酶(granule-bound starch synthase,GBSS)的基因Waxy发生了突变,导致GBSS缺失或者活性降低,胚乳中只有少量甚至没有直链淀粉的合成,同时大量合成支链淀粉。目前有研究[2-3]表明,Waxy基因存在wxa、wxb、wxc和wxd 4个等位突变位点。wxa是在第3外显子处插入一个4kb的片段,wxb是第8外显子G突变成T,wxc为第8内含子第1个碱基G缺失导致不能正常剪切,wxd为第9内含子最后一个碱基G突变为C导致不能正常剪切。wxa和wxc型是片段插入或单碱基缺失造成的Waxy蛋白功能失活,wxb和wxd型是单碱基变异造成的Waxy功能减弱。糯性胚乳属于隐性遗传[4]。
我国生产的高粱籽粒80%用作酿酒和酿醋等酿造原料,10%用于畜禽饲料,5%用于食粮,5%为其他用途[5]。“好酒离不开红粮”,高粱籽粒作为酿造白酒的原料独具优势,出酒率高、风味醇厚浓郁、香正甘冽,远胜于其他酿酒原料[6]。尤其糯高粱支链淀粉含量高、吸水率快、易于糊化,有利于酿酒有益微生物生长繁殖[7],更容易转化为乙醇和多种风味物质[8],糯高粱酒口感绵长、甘甜、柔和[9]。因此,中国名优白酒的生产原料通常以优质糯高粱为主要原料[10]。糯高粱籽粒磨成高粱米口感软糯,是做粥和米饭的佳品。糯高粱籽粒因其淀粉颗粒与蛋白质结合较为松散,用于饲料也比粳高粱有较高的消化率[11-12]。因此,糯高粱在酿酒、食用和饲用方面具有诸多优势。
春播早熟区是我国高粱重要产区,常年高粱种植面积约40万hm2(600万亩),年产高粱200万t,以种植粳高粱杂交种为主。提高高粱籽粒品质、提高种植户效益、满足市场需要、促进春播早熟区高粱产业进一步发展,培育糯高粱亲本、选育糯高粱杂交种是当前重要的育种目标之一。本文旨在介绍吉林省农业科学院新培育的优异糯高粱不育系吉5535A的选育过程、特征特性及其应用,为糯高粱亲本改良提供思路。
1 材料与方法
1.1 试验材料
在大力推广矮秆耐密适宜机械化收获杂交种的生产背景下,培育矮秆耐密、品质优良糯高粱不育系要求其株高不高于90cm。一般培育糯高粱亲本采用糯质高粱种质资源与粳高粱骨干亲本杂交,在后代中鉴选糯性材料,但是糯质种质资源株高较高,与粳高粱骨干亲本杂交后代很难选出株高适宜的糯性材料。因此,在选择吉5535A的糯质亲本时,选择了一个株高较矮的糯性中间材料提供糯质来源。这个糯质供体是在粳高粱保持系406B与糯高粱保持系ICS-34B[13]的杂交后代中鉴选出来的。406B和ICS-34B均是印度亲缘材料,具有较强的抗逆性、品质优良。利用406B和ICS-34B杂交培育出配合力高、抗逆性强、品质优良的吉521AB[14],选育出优良食用型杂交种吉杂305[15]。吉5535A的另一个亲本选用了粳高粱骨干保持系吉2055B为母本。吉2055B由2个粳高粱保持系314B和V4B杂交选育而来,株高约70cm,配合力高、高抗高粱丝黑穗病、品质优良,其籽粒蛋白质含量13.28%、单宁含量0.07%[16]。
1.2 试验设计
粳高粱保持系406B与糯高粱保持系ICS-34B的杂交分离后代中鉴选糯质保持类型作为父本,以粳型骨干保持系吉2055B为母本进行人工去雄杂交,在F2分离后代中鉴选糯质材料,连续自交至稳定,在每一代中采用0.2% I2-2% KI试剂鉴选糯性种质。为缩短回交转育不育系稳定的时间周期,采用吉2055A为不育源连续回交至稳定,在每一代不育材料中采用0.2% I2-2% KI试剂鉴选糯性不育株。
1.3 测定项目与方法
1.3.1 田间快速鉴选糯性种质
在籽粒灌浆期,用剪刀将籽粒剪开漏出浆液,用移液枪将0.2% I2-2% KI试剂涂抹在浆液上,若浆液颜色变为深蓝色,则该籽粒为粳型,若浆液颜色变为紫红色,则该籽粒为糯型。
1.3.2 糯性种质的进一步确定
取3~5g籽粒粉碎。准确称取0.1g粉碎样品于100mL容量瓶中,再加入1mL无水乙醇,充分湿润样品,使样品分散开来,随后加入9mL 1mol/L NaOH溶液,在沸水浴中加热分散10min,迅速冷却至室温,用蒸馏水定容。吸取碱分散液5.00mL于100mL容量瓶中,加水50mL,随后加入1mL 1mol/L乙酸溶液并加入1mL 0.2% I2-2% KI试剂,用水定容至100mL。显色10min。溶液颜色变为紫红色的种质为糯性,变为深蓝的种质为粳性。
1.3.3 不育系回交转育过程中糯性不育材料的鉴定
在播种之前,将每份不育材料籽粒在远离胚芽端切开,选出蜡质胚乳的籽粒催芽之后种植,以保证每个穗行种植的材料都是糯质材料。
1.3.4 遗传距离估算和Waxy基因等位突变类型分析
在发芽盒中播种吉5535B、吉521B、吉2055B以及5933、吉R105、吉R107、吉R109、吉R117、吉R159、吉R8036、吉R9060、南108、南133、0-30、T180、LR9198、忻粱52等14个骨干恢复系种子,生长至3~4叶。取幼嫩叶片采用CTAB法提取样本基因组DNA[17],在北京诺禾致源科技股份有限公司进行全基因组5×重测序,采用Tassel 5.0估算遗传距离。采用DPS 14.10进行t检验。
采用表1引物进行PCR扩增及Waxy基因等位突变分析,其中Wx-F2和Wx-R2引物由辽宁省农业科学院分子育种团队设计。选用LR9198粳型种质为Wx-WT对照,糯性种质0-01为Wxa对照。
表1 Waxy基因等位突变分析采用的引物
Table 1
引物名称 Primer name | 引物序列 Primer sequence | 扩增产物 Amplification product (bp) | 检测方法 Test method | 功能 Function |
---|---|---|---|---|
Wxa-F | CGTGGCGAGATCAAACTCTA | 615或523 | 电泳 | 用于区分Wxa和野生型及其他3种突变[18-19],当扩增片段为615bp时,为Wxa。当扩增片段为523bp时,为Wx-WT、Wxb、Wxc和Wxd。 |
Wx-F | GGCCTGGATTCAATGTTCTT | |||
Wx-R | CTGGTTGTCCTTGTAG | |||
Wx-F2 | GGCATCTACAAGGACGCAAAG | 990 | 测序 | 通过测序区分Wx-WT、Wxb、Wxc和Wxd。 |
Wx-R2 | CGCGTTGAACTTGACCAC |
1.4 数据处理
利用Excel记录并整理数据。
2 结果与分析
2.1 吉5535A的选育过程
2010年夏季以吉2055B为母本、以406B与ICS-34B杂交分离的后代中鉴选的糯质材料为父本进行人工去雄杂交,获得F1代种子。2010年冬在海南种植F1代,自交获得F2代种子。2011年在吉林省农业科学院公主岭试验地种植F2代,在籽粒灌浆期采用0.2% I2-2% KI试剂染色法在分离群体中鉴选糯性种质。2011年冬季在海南种植F3代,将糯性种质单独种植,在灌浆期复鉴。2012年将鉴选的F4代糯性种质种植在公主岭试验地,在开花期选择株高较矮的材料为父本,以吉2055A为不育源进行杂交,2012年冬至2015年夏连续回交至BC5代,回交过程中采用切粒法鉴定,确保种植的每一粒种子都是糯质材料,2015年遗传性状稳定一致的糯质不育系,定名为吉5535A/B。其选育过程见图1。
图1
2.2 吉5535A特征特性
2.2.1 植物学特性
吉5535A芽鞘绿色、幼苗绿色,腊质叶脉;株高85cm,叶片数18片左右,倒2叶夹角34.35°、倒3叶夹角34.85°,叶片较上冲;茎节数10;穗中紧,纺锤形,穗长23~25cm,平均单穗粒重47.8g;红壳白粒,粒大,平均千粒重27.2g;籽粒容重723.7g/L。
2.2.2 生物学特性
吉5535A生育期118d,为中
早熟不育系。不育性稳定,不育率100%,雌蕊柱头呈羽毛状,白色、外露、发达。柱头生活力强,接受异交授粉时间可达10d。
2.2.3 籽粒品质特性
经农业农村部谷物及制品质量监督检验测试中心(哈尔滨)检测,结果显示,吉5535A籽粒含粗淀粉69.53%、支链淀粉99.17%、直链淀粉0.83%、粗蛋白14.29%、单宁0.01%、赖氨酸0.33%。
2.2.4 抗逆性
经辽宁省农业科学院植物保护研究所鉴定,吉5535A高抗高粱丝黑穗病,抗炭疽病,中抗茎基腐病,抗靶斑病。
2.2.5 吉5535A与骨干恢复系的遗传距离分析
采用Tassel 5.0分别估算吉5535A、吉2055A、吉521A与14个骨干恢复系的遗传距离(图2),吉5535A与14个恢复系的遗传距离变幅为0.6336~ 0.7057,吉2055A与14个恢复系的遗传距离变幅为0.6473~0.7253,吉521A与14个恢复系的遗传距离变幅为0.6660~0.7093。t检验结果显示,吉5535A和14个恢复系的遗传距离与吉521A和14个骨干恢复系的遗传距离相比差异不明显,相比吉2055A与14个恢复系遗传距离差异明显。
图2
图2
吉5535A、吉2055A、吉521A与骨干恢复系遗传距离比较
Fig.2
Comparison of genetic distance between Ji 5535A, Ji 2055A, Ji 521A and backbone restorer lines
2.2.6 Waxy基因突变类型分析
图3
图3
吉5535A、吉2055A和吉521A的Waxy基因测序结果
(a) 利用Wxa-F、Wx-F和Wx-R 3条引物扩增,琼脂糖电泳结果显示吉5535A扩增片段为523bp,不是Wxa类型突变,是Wx-WT、Wxb、Wxc和Wxd 中的一种。(b) 利用引物Wx-F2和Wx-R2 PCR扩增后测序,结果显示吉5535A在CDS区804位G突变成T为Wxb类型突变
Fig.3
The results of Waxy sequencing of Ji 5535A, Ji 2055A and Ji 521A
(a) the agarose electrophoresis result showed that the amplified fragment of Ji 5535A was 523bp by Wxa-F、Wx-F and Wx-R primers, the Waxy allele mutation of Ji 5535A was not Wxa and was one of Wx-WT、Wxb、Wxc and Wxd. (b) Sequenced after PCR amplification using the primers Wx-F2 and Wx-R2, the sequencing result showed that the Waxy allele mutation of Ji 5535A was Wxb type and 804 site G mutated to T in CDS
2.3 吉5535A的比较优势与应用
2.3.1 品质优异
2.3.2 抗病性强
2020-2021年连续2年经辽宁省农业科学院植物保护研究所鉴定,吉5535A的2年平均发病率为3.3%,表现为高抗高粱丝黑穗病。
2.3.3 籽粒大、千粒重高
吉5535A的另一个突出特点是千粒重达到了27.2g,由表2可知,45A千粒重24.1g,13163A千粒重25.3g。吉5535A与45A等其他糯质不育系比较,千粒重比较大。
表2 吉5535A与其他骨干糯质不育系品质性状的比较
Table 2
种质名称 Germplasm name | 总淀粉含量 Starch content (%) | 支链淀粉含量 Amylopectin content (%) | 粗蛋白含量 Protein content (%) | 单宁含量 Tannin content (%) | 千粒重 1000-grain weight (%) |
---|---|---|---|---|---|
吉5535A Ji 5535A | 69.53 | 99.17 | 14.29 | 0.01 | 27.2 |
45A | 75.56 | 98.12 | 8.23 | 0.41 | 24.1 |
13163A | 73.01 | 99.18 | 12.45 | 0.03 | 25.3 |
72A | 73.89 | 96.00 | 9.35 | 0.17 | 22.2 |
张2A Zhang 2A | 73.55 | 96.99 | 9.42 | 0.08 | 21.3 |
永糯2A Yongnuo 2A | 70.88 | 98.85 | 9.30 | 0.13 | 20.6 |
2.3.4 吉5535A的应用
目前吉林省农业科学院利用吉5535A登记了糯高粱杂交种吉杂238和吉糯杂3号,籽粒饲用高粱杂交种吉杂240。正在登记的糯高粱杂交种有吉糯杂5、吉糯杂7、吉糯杂9和吉糯杂10。吉杂238总淀粉含量75.47%、支链淀粉含量99.37%,吉糯杂3号总淀粉含量76.25%、支链淀粉含量98.10%,与目前各个生态区主推的糯高粱杂交种比较,总淀粉和支链淀粉含量占有一定优势(表3)。同时利用吉5535B作为重要种质改良了大量骨干亲本,进而选育优良不育系。
表3 吉5535A组配的糯高粱杂交种与各生态区主推糯质杂交种品质性状比较
Table 3
种质名称 Germplasm name | 总淀粉含量 Starch content (%) | 支链淀粉含量 Amylopectin content (%) | 蛋白含量 Protein content (%) | 单宁含量 Tannin content (%) | 脂肪 Fat content (%) |
---|---|---|---|---|---|
吉杂238 Jiza 238 | 75.47 | 99.37 | 9.91 | 1.10 | 3.21 |
吉糯杂3号Jinuoza 3 | 76.25 | 98.10 | 9.23 | 1.02 | 4.18 |
吉糯杂9号 Jinuoza 9 | 75.80 | 97.44 | 8.69 | 1.09 | 2.29 |
晋糯杂3号Jinnuoza 3 | 74.38 | 97.00 | 9.56 | 1.01 | 3.44 |
辽粘3号Liaonian 3 | 78.09 | 91.29 | 8.14 | 1.47 | 3.54 |
辽糯11 Liaonuo 11 | 76.26 | 93.78 | 8.82 | 1.04 | 3.99 |
金糯粱1号Jinnuoliang 1 | 73.86 | 98.30 | 8.63 | 1.13 | 3.86 |
川糯粱1号Chuannuoliang 1 | 73.29 | 98.64 | 8.57 | 1.54 | 3.75 |
机糯粱2号Jinuoliang 2 | 73.43 | 99.02 | 9.70 | 1.31 | 4.16 |
3 讨论
高粱籽粒的糯性胚乳多出现在地方品种。为获得糯高粱保持系,在育种中常采用粳型骨干亲本与糯性种质资源做人工去雄杂交,在F2代中鉴选糯质材料,但是采用这种方法选育的糯质材料,株高较高、株型披散、丰产性较差,在育种中难以利用。吉林省农业科学院作物资源研究所高粱研究团队采用粳型骨干保持系与矮秆糯质中间材料杂交选育糯高粱不育系的方法有效提升了育种效率,选育出的适宜春播早熟生态区种植的糯高粱不育系吉5535A,对推进高粱早熟区糯高粱产业发展具有重要意义。
吉5535A具有配合力高的优点。吉5535A与高单宁恢复系糯878R组配的糯高粱杂交种吉杂238产量高,新品种区域试验产量达到9385.5kg/hm2,比对照吉杂210平均增产6.25%。吉5535A与高单宁糯高粱恢复系K1781组配出酿酒糯高粱杂交种吉糯杂3号产量9146.1kg/hm2,比对照吉杂210平均增产4.40%,株高较矮、宜机收,具有较好的推广应用潜力。吉5535A与低单宁恢复系0-30组配出籽粒饲用杂交种吉杂240产量高,新品种区域试验产量达到9743.9kg/hm2,比对照吉杂210平均增产9.43%。
吉5535A同时具备品质优良、籽粒大、高抗丝黑穗病等特性,利用其组配的杂交种均品质优良。吉5535A籽粒含蛋白质14.29%、赖氨酸0.33%,是选育食用高粱杂交种的优良亲本。吉5535A千粒重27.2g,为培育高产糯高粱杂交种和大粒类型[22]糯高粱杂交种提供优异亲本。高粱丝黑穗病在糯性种质中发病率较高,但是吉5535A经接种鉴定表现为高抗,为培育高抗丝黑穗病糯性种质提供了重要种质。组配的糯高粱杂交种吉杂238粗淀粉含量75.47%、支链淀粉含量99.37%、蛋白质含量9.91%、单宁含量1.10%。不仅是优质的酿酒原料,作为高粱米具有软糯香甜的特点。吉糯杂3号粗淀粉含量76.25%、支链淀粉含量98.10%、蛋白质含量9.23%、单宁含量1.02%。吉杂240粗淀粉含量78.76%、蛋白质含量9.5%、单宁含量0.13%,是优质的籽粒饲用杂交种。
虽然吉5535A与14个骨干恢复系的遗传距离相对于吉2055A、吉521A与14个骨干恢复系的遗传距离稍小,但具有少量南非亲缘的恢复系吉R105、吉R109、0-30的遗传距离大于吉521A与之的遗传距离,因此在组配杂交种时要重点选择带有南非血缘的恢复系与之组配杂交组合,以期获得杂种优势强的杂交组合。吉5535A Waxy基因的等位突变为Wxb类型,在CDS区域的804位置碱基G突变成T,有利于开发高通量分子标记在杂交后代中鉴选Wxb类型的糯性种质。
4 结论
糯高粱不育系吉5535A的成功创制,拓宽了糯高粱不育系的遗传基础,为我国糯高粱不育系改良提供优异种质,提升了春播早熟区糯高粱杂交种的产量和品质,促进了酿酒、籽粒饲用、食用杂交种的培育。有助于进一步改良春播早熟区糯高粱的种植结构,促进糯高粱杂交种的品种更替,增加国内外糯高粱供给需求,将创造出更大的经济效益和社会效益。
参考文献
The control of amylose synthesis
DOI:10.1078/0176-1617-00360 URL [本文引用: 1]
Characterization of waxy grain sorghum lines in relation to granule-bound starch synthase
DOI:10.1007/s10681-005-5298-5 URL [本文引用: 1]
A novel waxy allele in sorghum landraces in East Asia
DOI:10.1111/pbr.2013.132.issue-3 URL [本文引用: 1]
Inheritance of waxy endosperm in sorghum
DOI:10.1093/oxfordjournals.jhered.a103794 URL [本文引用: 1]
Factors affecting starch digestibility with special emphasis on sorghum and corn
DOI:10.2527/jas1986.6351607x
PMID:3539904
[本文引用: 1]
Starch exists inside the endosperm of cereals enmeshed in a protein matrix, which is particularly strong in sorghum and corn. Starch digestibility is affected by the plant species, the extent of starch-protein interaction, the physical form of the granule, inhibitors such as tannins, and the type of starch. Among the cereals, sorghum generally has the lowest starch digestibility. The resistance to digestive action of the hard peripheral endosperm layer is largely responsible for this effect. Processing methods such as steam-flaking and reconstitution are effective in raising sorghum digestibility to near that of corn. Waxy sorghum shows consistently higher feeding value than normal sorghum. Both the starch granules and the protein matrix around them are more digestible in waxy grain. The development of new heterowaxy or waxy sorghum hybrids may further increase sorghum feed efficiency.
Digestibility of protein and starch from sorghum (Sorghum bicolor) is linked to biochemical and structural features of grain endosperm
DOI:10.1016/j.jcs.2008.07.013 URL [本文引用: 1]
Rapid isolation of high molecular weight plant DNA
DOI:10.1093/nar/8.19.4321
PMID:7433111
[本文引用: 1]
A method is presented for the rapid isolation of high molecular weight plant DNA (50,000 base pairs or more in length) which is free of contaminants which interfere with complete digestion by restriction endonucleases. The procedure yields total cellular DNA (i.e. nuclear, chloroplast, and mitochondrial DNA). The technique is ideal for the rapid isolation of small amounts of DNA from many different species and is also useful for large scale isolations.
Molecular characterization of the waxy locus in sorghum
DOI:10.1139/G08-035
PMID:18545276
[本文引用: 1]
A comparison of approximately 4.5 kb of nucleotide sequence from the waxy locus (the granule-bound starch synthase I [GBSS I] locus) from a waxy line, BTxARG1, and a non-waxy line, QL39, revealed an extremely high level of sequence conservation. Among a total of 24 nucleotide differences and 9 indels, only 2 nucleotide changes resulted in altered amino acid residues. Protein folding prediction software suggested that one of the amino acid changes (Glu to His) may result in an altered protein structure, which may explain the apparently inactive GBSS I present in BTxARG1. This SNP was not found in the second waxy line, RTx2907, which does not produce GBSS I, and no other SNPs or indels were found in the approximately 4 kb of sequence obtained from RTx2907. Using one indel, the waxy locus was mapped to sorghum chromosome SBI-10, which is syntenous to maize chromosome 9; the waxy locus has been mapped to this maize chromosome. The distribution of indels in a diverse set of sorghum germplasm suggested that there are two broad types of non-waxy GBSS I alleles, each type comprising several alleles, and that the two waxy alleles in BTxARG1 and RTx2907 have evolved from one of the non-waxy allele types. The Glu/His polymorphism was found only in BTxARG1 and derived lines and has potential as a perfect marker for the BTxARG1 source of the waxy allele at the GBSS I locus. The indels correctly predicted the non-waxy phenotype in approximately 65% of diverse sorghum germplasm. The indels co-segregated perfectly with phenotype in two sorghum populations derived from crosses between a waxy and a non-waxy sorghum line, correctly identifying heterozygous lines. Thus, these indel markers or sequence-based SNP markers can be used to follow waxy alleles in sorghum breeding programs in selected pedigrees.
Identification of two novel waxy alleles and development of their molecular markers in sorghum
DOI:10.1139/gen-2013-0047
PMID:23789996
[本文引用: 1]
High amylopectin grains of waxy sorghum have a high economic value in the food and bioenergy industries because of their increased starch digestibility and higher ethanol conversion rate compared with wild-type sorghum grains. Mutation in the granule-bound starch synthase (GBSS) gene contributes to the waxy phenotype. Two classes of waxy alleles, wx(a) and wx(b), have been characterized previously. In the present work, we identified two novel types of waxy mutations in the sorghum GBSS gene, designated as wx(c) and wx(d). The wx(c) allele has a G deletion at the 5' splicing site of the ninth intron, causing a shift of the 5' cleavage site; in turn, a reading frame shift occurred and resulted in an early translation termination. The wx(d) allele contained a mutation at the 3' splicing site of the 10th intron, which led to a splicing site shift and resulted in the deletion of five amino acids (GTGKK) in the predicted translation product. Furthermore, cleaved amplified polymorphic sequence (CAPS) markers were developed to detect the wx(c) and wx(d) alleles. With these markers, classification of waxy alleles was performed in nearly 100 sorghum accessions from our breeding program. Most waxy sorghum cultivars in China were either wx(a) or wx(c), implying that these two mutations are preferentially maintained during domestic selection in glutinous sorghum production.
/
〈 |
|
〉 |
