作物杂志, 2023, 39(4): 65-70 doi: 10.16035/j.issn.1001-7283.2023.04.010

遗传育种·种质资源·生物技术

马铃薯种质资源抗病毒分子标记辅助筛选

娄树宝,1,2, 杨梦平1, 邢金月1, 翟玲侠1, 王辉1, 刘春生1, 王立春1, 宋继玲,1

1黑龙江省农业科学院克山分院/国家马铃薯种质资源试管苗库(克山),161005,黑龙江齐齐哈尔

2青海大学农林科学院,810016,青海西宁

Molecular Marker-Assisted Screening of Potato Germplasm Resources for Virus Resistance

Lou Shubao,1,2, Yang Mengping1, Xing Jinyue1, Zhai Lingxia1, Wang Hui1, Liu Chunsheng1, Wang Lichun1, Song Jiling,1

1Keshan Branch of Heilongjiang Academy of Agricultural Sciences/Test-Tube Plantlet Bank of National Potato Germplasm Resources(Keshan), Qiqihar161005, Heilongjiang, China

2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining810016, Qinghai,China

通讯作者: 宋继玲,主要从事马铃薯种质资源保存研究,E-mail:jl_song929@126.com

收稿日期: 2023-03-21   修回日期: 2023-04-21  

基金资助: 齐齐哈尔市科技计划创新激励项目(CNYGG-2022025)
科技部、财政部、国家科技资源共享服务平台项目“国家作物种质资源库马铃薯分库运行服务”(NCGRC-2022-44)
农业农村部物种保护项目“马铃薯种质资源安全保存及普查收集资源鉴定评价与繁殖编目入库”(19221860)
农业农村部“马铃薯种质资源精准鉴定”(19221974)

Received: 2023-03-21   Revised: 2023-04-21  

作者简介 About authors

娄树宝,主要从事马铃薯种质资源保存与创新研究,E-mail:loushubao@163.com

摘要

马铃薯Y病毒(PVY)和马铃薯X病毒(PVX)是对马铃薯产量和品质影响最主要的2种病毒,RyadgRystoRychc是对PVY有极端抗性的基因,Rx是对PVX有极端抗性的重要基因。利用与抗性基因RyadgRystoRychcRx紧密连锁的分子标记,对国内外102个马铃薯品种进行了标记检测。结果表明,含有YES3-3B标记的材料最多,占供试材料99.02%;含有Rxsp标记的材料最少,占10.78%;只含有1个标记的品种有4个,占3.92%;同时含有2个标记的品种有62个,占60.78%;同时含有3个标记的品种有30个,占29.41%;同时含有4个标记的品种有6个,分别是陇薯11号、S.acaule、富金、云薯105、晋薯8号和大西洋,占供试材料的5.88%。

关键词: 马铃薯; 病毒; 分子标记

Abstract

Potato Y virus (PVY) and potato X virus (PVX) are the two most important viruses that affect the yield and quality of potato, Ryadg, Rysto and Rychc are important genes with extreme resistance to PVY, Rx is an important gene with extreme resistance to PVX. Four molecular markersclosely related to the resistance genes Ryadg, Rysto,Rychc and Rx were used to detected 102 potato varieties. The results showed that the most materials contained YES3-3B markers, accounting for 99.02% of the test materials; the least materials contained Rxsp markers, accounting for 10.78% of the test materials; four varieties contained only one marker, accounting for 3.92% of the test materials; the 62 varieties contained two markers, accounting for 60.78% of the test materials; and the 30 varieties contained three markers, accounting for 29.41%. There were six varieties containing four markers, whichwere ‘Longshu11’, ‘S.acaule’, ‘Fujin’, ‘Yunshu105’, ‘Jinshu8’ and ‘Atlantic’, accounting for 5.88% of the test material.

Keywords: Potato; Virus; Molecular marker

PDF (513KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

娄树宝, 杨梦平, 邢金月, 翟玲侠, 王辉, 刘春生, 王立春, 宋继玲. 马铃薯种质资源抗病毒分子标记辅助筛选. 作物杂志, 2023, 39(4): 65-70 doi:10.16035/j.issn.1001-7283.2023.04.010

Lou Shubao, Yang Mengping, Xing Jinyue, Zhai Lingxia, Wang Hui, Liu Chunsheng, Wang Lichun, Song Jiling. Molecular Marker-Assisted Screening of Potato Germplasm Resources for Virus Resistance. Crops, 2023, 39(4): 65-70 doi:10.16035/j.issn.1001-7283.2023.04.010

马铃薯是世界第三大粮食作物,种植面积仅次于小麦和水稻[1]。目前,全球有160多个国家和地区种植马铃薯,中国的马铃薯种植面积和总产量均居世界首位,但单产没有达到世界平均水平[2]。马铃薯是无性繁殖作物,生长过程中会受到病毒的侵染并且不断积累,导致种薯退化减产。病毒病是马铃薯生产上的主要病害之一,其危害程度仅次于晚疫病,是马铃薯生产中极难解决的问题[3]。自1916年第一个马铃薯病毒病被发现以来,目前已发现40多种病毒侵染马铃薯,我国已报道的有16种[4-5]。危害我国马铃薯生产的主要病毒有PVX、PVY、PVS、PVM、PVA和PLRV,其中马铃薯Y病毒(PVY)危害最为严重[6]。PVY是马铃薯生产中最常见的一种病毒,可引起花叶、皱缩、坏死等症状。它是全球分布范围最广、破坏性最大的马铃薯病毒之一,几乎遍布所有的马铃薯种植区[7]。马铃薯感染PVY后一般减产50%,当与其他病毒复合侵染后,最高可减产80%[8]。马铃薯X病毒(PVX)又称普通花叶病毒,一般只产生轻微症状,产量损失可达10%~40%,若与PVY或PVA复合侵染可导致块茎产量损失80%以上[9-10]。目前,针对马铃薯病毒病缺乏有效的防治措施,主要通过茎尖脱毒技术或者选育抗病毒的马铃薯品种,其中培育抗病毒品种是控制病毒最为简便快捷、经济有效的途径[11-12]

筛选高抗马铃薯病毒病的资源,发掘抗病基因对防控马铃薯病毒病具有重大的意义。随着马铃薯病毒病抗性基因的克隆及抗性遗传研究发展,开发分子标记进行辅助选择,筛选出具有抗性基因的马铃薯品种是一个快捷、精准的方法[13-14]。在引起马铃薯病毒病的病毒中,PVY和PVX是危害比较严重的2种病毒。目前已经发现3个PVY抗性基因Ryadg[15]Rysto[16]Rychc[17],对PVY具有极端抗性。Ryadg来源于安第斯亚种(Solanum tuberosum ssp. andigena),1996年被定位在11号染色体的末端[18],根据Ryadg基因开发的标记RYSC3在国外育种中已经成功应用[19-20]Rysto是马铃薯抗PVY的显性基因,来源于S. stoloniferum[21],该基因也定位在11号染色体,开发的STS标记YES3-3B被用于检测Rysto基因[22]Rychc是显性单基因,从日本品种‘Konafubuki’中发现,被定位在9号染色体的末端[23],根据该基因开发的STS标记Ry186用于检测Rychc极端抗性[24]Rx基因对PVX具有极端抗性,可以快速地抑制病毒在最初感染的细胞中的积累[25]Rx1来源于安第斯亚种,定位于12号染色体上。Mori等[26]根据Rx1基因序列开发了STS标记Rxsp,重组率为1.3%,说明其与Rx1紧密连锁。

常规的抗病育种选择周期长、效率低,选育过程需要花费大量的时间、财力和物力,但利用分子标记辅助育种(MAS),可在育种早期进行快速检测,而且不受环境条件的限制,可加速育种进程,提高育种选择效率。本研究利用与抗PVY的基因RyadgRystoRychc紧密连锁的分子标记RYSC3、YES3-3B、Ry186和抗PVX的基因Rx紧密连锁的分子标记Rxsp,对102份主要育成品种进行标记检测,目的是筛选出具有多个病毒抗性基因的马铃薯品种,为马铃薯抗病毒育种提供宝贵资源,同时为马铃薯分子标记聚合育种提供参考依据。

1 材料与方法

1.1 试验材料

供试材料为国家马铃薯种质资源试管苗库(克山)保存的102份马铃薯种质资源的脱毒试管苗,主要选择国内各育种单位近几年登记的品种及部分野生种和原始栽培种。

1.2 马铃薯基因组DNA提取

取试管苗顶部茎叶,使用天根DP-320试剂盒提取基因组DNA。用1%琼脂糖凝胶电泳检测基因组DNA质量,DNA样品保存于-20℃冰箱。

1.3 PCR和电泳

分子标记信息见表1,由上海生工生物工程有限公司合成。PCR反应体系20μL:2×Taq PCR Master Mix 10μL、正反引物各1μL、DNA模板1μL、ddH2O 7μL。PCR扩增程序为95℃预变性5min;95℃变性30s,55℃~59℃退火40s,72℃延伸1min,35个循环;72℃延伸5min,4℃保存。PCR结束后,取4μL扩增产物与2μL 6×Loading Buffer混匀,于1.0%琼脂糖凝胶电泳检测,在紫外灯下观察并拍照。

表1   分子标记信息

Table 1  Information of molecular markers

标记
Marker
基因
Gene
病毒
Virus
标记类型
Marker type
引物序列(5′-3′)
Primer sequence (5′-3′)
片段大小
Fragment length (bp)
温度
Temperature (℃)
参考文献
Reference
RxspRx1PVXSTSF:ATCTTGGTTTGAATACATGG
R:CACAATATTGGAAGGATTCA
123058[26]
RYSC3RyadgPVYSCARF:ATACACTCATCTAAATTTGATGG
R:AGGATATACGGCATCATTTTTCCGA
32159[19]
YES3-3BRystoPVYSTSF:TAACTCAAGCGGAATAACCC
R:CATGAGATTGCCTTTGGTTA
28455[27]
Ry186RychcPVYSTSF:TGGTAGGGATATTTTCCTTAGA
R:GCAAATCCTAGGTTATCAACTCA
58755[28]

新窗口打开| 下载CSV


2 结果与分析

2.1 基因组DNA的提取

对供试的102份材料进行基因组DNA的提取。经1%琼脂糖凝胶电泳检测,DNA主带清晰,无拖尾、降解现象。各样品间DNA浓度均匀一致,纯度高,质量好(图1)。

图1

图1   DNA浓度与质量检测

M:DL2000 DNA marker;1:陇薯6号;2:丽薯2号;3:陇薯5号;4:延薯12号;5:云薯305;6:延薯1号;7:中薯4号;8:中薯16号;9:蒙薯13号;10:川芋85;11:延薯10号;12:岭薯1号;13:丽薯7号;14:丽薯6号;15:大同里外黄;16:韩威1号

Fig.1   Examination of DNA concentration and quality

M: DL2000 DNA marker; 1: Longshu 6; 2: Lishu 2; 3: Longshu 5; 4: Yanshu 12; 5: Yunshu 305; 6: Yanshu 1; 7: Zhongshu 4; 8: Zhongshu 16; 9: Mengshu 13; 10: Chuanyu 85; 11: Yanshu 10; 12: Lingshu 1; 13: Lishu 7; 14: Lishu 6; 15: Datongliwaihuang; 16: Hanwei 1


2.2 PVX抗性基因分子标记Rxsp的检测

根据与马铃薯PVX抗性基因Rx1连锁标记Rxsp的扩增结果(图2)显示,含Rxsp标记的材料可以扩增出约1230bp的特异性片段,102份材料中有11份材料含有Rxsp标记,占供试材料的10.78%。

图2

图2   部分材料Rxsp标记扩增

M:DL2000 DNA marker;1:丽薯1号;2:华颂1号;3:晋薯16号;4:华颂88;5:丽薯15号;6:紫罗兰;7:富金;8:垦加3号;9:云薯105;10:北疆1号;11:同薯29号;12:兴佳2号;13:云薯506;14:华恩1号;15:S.stenotomum;16:希森6号

Fig.2   The PCR of Rxsp marker of part of accessions

M: DL2000 DNA marker; 1: Lishu 1; 2:Huasong 1; 3: Jinshu 16; 4: Huasong 88; 5: Lishu 15; 6: Ziluolan; 7: Fujin; 8: Kenjia 3; 9: Yunshu 105; 10: Beijiang 1; 11: Tongshu 29; 12: Xingjia 2; 13: Yunshu 506; 14: Huaen 1; 15: S.stenotomum; 16: Xisen 6


2.3 PVY抗性基因分子标记RYSC3、YES3-3B、Ry186的检测

根据与马铃薯PVY抗性基因Ryadg连锁标记RYSC3的扩增结果(图3)显示,含RYSC3标记的材料可以扩增出约321bp的特异性片段,102份材料中有95份材料含有RYSC3标记,占供试材料的93.14%。含YES3-3B标记的材料可以扩增出约284bp的特异性片段(图4),102份材料中有101份材料含有YES3-3B标记,占供试材料的99.02%。含Ry186标记的材料可以扩增出2~3条带(图5),能够扩增出587bp的片段记为含有Ry186标记,102份材料中有35份材料含有Ry186标记,占供试材料的34.31%。

图3

图3   部分材料RYSC3标记扩增

编号材料同图1

Fig.3   The PCR of RYSC3 marker of part of accessions

The numbered materials are the same with Fig.1


图4

图4   部分材料YES3-3B标记扩增

M:DL2000;1:土岩2号;2:郑薯5号;3:兴佳3号;4:克新23号;5:费乌瑞它;6:云薯202;7:S.chacoense;8:S.stoloniferum;9:东薯3号;10:晋薯8号;11:云薯305;12:云薯902;13:云薯505;14:云薯107;15:大西洋;16:S.pinnatisecta

Fig.4   The PCR of YES3-3B marker of part of accessions

M: DL2000 DNA marker; 1: Tuyan 2; 2: Zhengshu 5; 3: Xingjia 3; 4: Kexin23; 5: Favorita; 6: Yunshu 202; 7: S.chacoense; 8: S.stoloniferum; 9: Dongshu 3; 10: Jinshu 8; 11: Yunshu 305; 12: Yunshu 902; 13: Yunshu 505; 14: Yunshu 107; 15: Atlantic; 16: S.pinnatisecta


图5

图5   部分材料Ry186标记扩增

M:DL2000 DNA marker;1:闽薯1号;2:鑫科薯1号;3:宁薯3号;4:中薯6号;5:云薯401;6:中薯15号;7:雪育2号

Fig.5   The PCR of Ry186 marker of part of accessions

M: DL2000 DNA marker; 1: Minshu1; 2: Xinkeshu1; 3: Ningshu3; 4: Zhongshu6; 5: Yunshu401; 6: Zhongshu15; 7: Xueyu2


2.4 102份马铃薯品种病毒抗性标记分析

表2列出了不同品种抗性标记的分布情况,其中只含有1个标记的品种有4个,占供试材料的3.92%;同时含有2个标记的品种有62个,占供试材料的60.78%;同时含有3个标记的品种有30个,占供试材料的29.41%;同时含有4个标记的品种有6个,占供试材料的5.88%。

表2   不同品种抗性标记分析

Table 2  Analysis of markers of distinct varieties

品种数量
Variety number
类别
Class
比例
Percentage (%)
品种
Variety
1只含RYSC3标记0.98费乌瑞它
3只含YES3-3B标记2.94蒙薯13号、克新13号、扎列娃
4同时含YES3-3B和Ry186标记3.92华颂88、希森6号、S.chacoense、云薯305
58









同时含RYSC3和YES3-3B标记









56.86









维拉斯、陇薯6号、丽薯2号、陇薯5号、延薯1号、中薯4号、中薯16号、川芋85、延薯10号、岭薯1号、丽薯7号、丽薯6号、韩威1号、中薯2号、滇薯47、韩锦2号、晋薯15号、丽薯11号、云薯205、鄂马铃薯13号、宁蒗5号、菲勒塞纳、丽薯10号、天薯15号、泉云3号、中薯9号、冀张薯5号、华颂34、闽薯1号、鑫科薯1号、宁薯3号、中薯6号、云薯401、中薯15号、新大坪、冀张薯14号、丽薯1号、华颂1号、丽薯15号、紫罗兰、垦加3号、北疆1号、云薯506、土岩2号、郑薯5号、云薯202、陇薯10号、克新33、合作88、庄薯3号、紫花白、天薯9号、垦薯1号、黑森、黑美人、克新19号、天薯10号、Atzimba
5同时含Rxsp、RYSC3和YES3-3B标记4.90大同里外黄、雪育2号、尤金、华恩1号、NS51-5
25



同时含RYSC3、YES3-3B和Ry186标记



24.51



克新25号、内薯7号、克新26号、S.jamesii、延薯12号、东薯1号、华颂11、垦彩薯1号、春秋9号、北薯2号、晋薯16号、同薯29号、兴佳2号、S.stenotomum、兴佳3号、克新23号、S.stoloniferum、东薯3号、云薯902、云薯505、云薯107、S.pinnatisecta、克新34、米拉、克新1号
6同时含Rxsp、RYSC3、YES3-3B和Ry186标记5.88陇薯11号、S.acaule、富金、云薯105、晋薯8号、大西洋

新窗口打开| 下载CSV


3 讨论

马铃薯是我国重要的粮菜兼用作物,但长期以来育种工作因为病毒感染而进展缓慢,很多优异材料在选种的过程中由于病毒侵染没有及时脱毒处理而被淘汰掉,而随着育种圃场规模的增加和病毒变异的加快,育种材料的脱毒工作日益繁重,因此,抗病毒育种在马铃薯育种工作中的重要性就凸显出来。培育马铃薯抗病品种首先就需要扩大遗传背景和丰富遗传多样性,鉴定并筛选出抗病品种是获得抗病亲本材料的最基础有效的手段之一。常规的病毒抗性鉴定方法周期长、效率低,而分子标记辅助选择运用分子标记技术可以快速筛选出具有不同抗性标记的材料。

本研究利用4个与马铃薯病毒病抗性基因连锁的分子标记(Rxsp、RYSC3、YES3-3B和Ry186)对102份马铃薯品种进行检测,结果表明,所有检测的材料至少含有1个抗性标记,其中同时含2个标记的品种最多,同时含4个标记的品种只有6份。

在6份野生种和原始栽培种中都至少含有2个抗性标记,说明野生种和原始栽培种中含有丰富的抗病毒基因,这些资源的利用对马铃薯育种工作起着决定性的作用。生产实践证明,在生产上能够较长期发挥作用的品种,除了品质好、产量高等性状外,抗病性好也是重要的原因,如克新1号自1965年开始推广,由于高抗环腐病、抗PVY和PLRV并且耐旱和高产,到目前为止仍有较大种植面积[29]

本研究表明,所有供试材料中含有YES3-3B标记的品种最多,为101份,占供试材料的99.02%,含有Rxsp标记的品种最少,为11份,占供试材料的10.78%,这与黄鑫华等[30]的研究结果一致,并且检测到陇薯10号、冀张薯5号和云薯401同时含有RYSC3和YES3-3B标记,内薯7号同时含RYSC3、YES3-3B和Ry186标记,大同里外黄同时含Rxsp、RYSC3和YES3-3B标记,这与黄鑫华等[30]研究结果也相符,但与白磊等[11]的研究结果不同。白磊等[11]研究认为,陇薯10号不含RYSC3和Ry186标记、黑美人不含RYSC3和Ry186标记(本研究中黑美人同时含RYSC3和YES3-3B标记)、陇薯11号只含RYSC3标记(本研究中陇薯11号同时含Rxsp、RYSC3、YES3-3B和Ry186标记),造成这一结果差异的原因还不清楚。本研究还检测到克新23号和克新25号均含有RYSC3、YES3-3B和Ry186标记,2个品种是姊妹系,基因来源于同一个父母本。

分子标记技术作为一种辅助选择手段,与人工接种病毒鉴定结果不能100%吻合,所以我们下一步的研究方向是对筛选出的含有多个抗性标记的材料进行人工接种鉴定,以确定其病毒抗性组成,并且依托国家马铃薯种质资源试管苗库(克山)平台,加大对资源库保存资源病毒抗性分子标记的检测,筛选出含有多个不同抗性标记的材料作为亲本用于聚合育种,在育种早代进行分子标记检测,结合产量、品质等性状综合评价,创造出聚合多个抗性基因的优异材料,提高育种效率,缩短育种年限,真正做到分子标记辅助选择与聚合育种有效结合。

4 结论

本研究利用抗PVY和抗PVX基因的分子标记对102份育成品种、野生种和原始栽培种进行标记检测,结果表明,含有YES3-3B标记的材料最多,占比99.02%;含有Rxsp标记的材料最少,占比10.78%;只含有1个标记的品种有4个,占比3.92%;同时含有2个标记的品种有62个,占比60.78%;同时含有3个标记的品种有30个,占比29.41%;同时含有4个标记的品种有6个,分别是陇薯11号、S.acaule、富金、云薯105、晋薯8号和大西洋,占供试材料的5.88%。

参考文献

联合国粮食组织. 粮农组织统计数据库. [2019-10-29]. http://faostat.fao.org/.

URL     [本文引用: 1]

逄学思, 曲峻岭, 郭燕枝.

中国马铃薯主食产业化现状及未来展望

农业展望, 2018, 14(4):28-31.

[本文引用: 1]

Wang B, Ma Y L, Zhang Z B, et al.

Potato viruses in China

Crop Protection, 2011, 30(9):1117-1123.

DOI:10.1016/j.cropro.2011.04.001      URL     [本文引用: 1]

Rashid M O, Li J H, Liu Q, et al.

Molecular detection and identification of eight potato viruses in Gansu province of China

Current Plant Biology, 2020, 25:1-7.

[本文引用: 1]

陈莹, 田艳珍, 王芳, .

浙江省马铃薯病毒病检测分析

植物保护, 2020, 46(5):110-115,121.

[本文引用: 1]

李明福.

马铃薯病毒及其检疫重要性初析

植物检疫, 1997, 19(5):6-9.

[本文引用: 1]

周艳玲, 刘学敏, 孟玉芹.

马铃薯Y病毒的检测技术

中国马铃薯, 2000(2):89-93.

[本文引用: 1]

金黎平, 屈冬玉. 马铃薯优良品种及丰产栽培技术. 北京: 中国劳动社会保障出版社, 2002.

[本文引用: 1]

BanceV B. Replication of potato virus X RNA is altered in coinfections with potato virus Y. Virology, 1991, 182(2):486-494.

[本文引用: 1]

Adams M J, Antoniw J F, Bar J M, et al.

The new plant virus family Flexiviridae and assessment of molecular criteria for species demarcation

Archives of Virology, 2004, 149:1045-1060.

DOI:10.1007/s00705-004-0304-0      PMID:15098118      [本文引用: 1]

The new plant virus family Flexiviridae is described. The family is named because its members have flexuous virions and it includes the existing genera Allexivirus, Capillovirus, Carlavirus, Foveavirus, Potexvirus, Trichovirus and Vitivirus, plus the new genus Mandarivirus together with some related viruses not assigned to any genus. The family is justified from phylogenetic analyses of the polymerase and coat protein (CP) sequences. To help to define suitable molecular criteria for demarcation of species, a complete set of pairwise comparisons was made using the nucleotide (nt) and amino acid (aa) sequences of each fully-sequenced gene from every available accession in the family. Based on the distributions and on inspection of the data, it was concluded that, as a general rule, distinct species have less than ca. 72% identical nt or 80% identical aa between their entire CP or replication protein genes.

白磊, 郭华春.

马铃薯多抗亲本的分子标记辅助筛查

分子植物育种, 2017, 14(1):200-212.

[本文引用: 3]

Solomon-Blackburn R M, Barker H.

Breeding virus resistant potatoes (Solanum tuberosum): a review of traditional and molecular approaches

Heredity, 2001, 86(1):17-35.

DOI:10.1046/j.1365-2540.2001.00799.x      URL     [本文引用: 1]

聂碧华. 马铃薯Y病毒新变异株系的克隆鉴定及马铃薯―病毒互作机制研究. 武汉:华中农业大学, 2010.

[本文引用: 1]

Manoj K, Anil G.

Evaluation of potato germplasms against potato apical leaf curl virus disease

International Journal of Tropical Agriculture, 2015, 33(3):2227-2228.

[本文引用: 1]

Munoz F J, Plaisted R L, Thurston H D.

Resistance to potato virus Y in Solanum tuberosum spp.

andigena. American Potato Journal, 1975, 52(4):107-115.

[本文引用: 1]

Cockerham G.

Potato breeding for virus resistance

Annals of Applied Biology, 1943, 30(1):105-108.

DOI:10.1111/aab.1943.30.issue-1      URL     [本文引用: 1]

Asama K, Ito H, Murakami N, et al.

New potato variety “Konafubuki”

The Bulletin of Hokkaido Prefectural Agricultural Experiment Stations, 1982, 48:75-84.

[本文引用: 1]

Hämäläinen J H, Watanabe K N, Valkonen J P T, et al.

Mapping and marker-assisted selection for a gene for extreme resistance to potato virus Y

Theoretical and Applied Genetics, 1997, 94:192-197.

[本文引用: 1]

Kasai K, Morikawa Y, Sorri V A, et al.

Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes

Genome, 2000, 43(1):1-8.

PMID:10701106      [本文引用: 2]

Sequence-characterized amplified regions (SCARs) were developed, based on nucleotide differences within resistance gene-like fragments isolated from a potato plant carrying the Ryadg gene, which confers extreme resistance to potato Y potyvirus (PVY). It originates from Solanum tuberosum subsp. andigena, and a susceptible potato plant. SCARs were tested using 103 potato breeding lines and cultivars with diverse genetic backgrounds derived from Europe, North America, and Japan. Two markers showed high accuracy for detection of the Ryadg gene. The SCAR marker RYSC3 was generated only in genotypes carrying Ryadg. The SCAR marker RYSC4 was detected in all genotypes carrying Ryadg but also in four PVY-susceptible genotypes. Neither marker was detected in genotypes carrying other Ry genes originating from different species than S. tuberosum subsp. andigena. Therefore, these SCAR markers should be powerful tools in marker-assisted selection for Ryadg in potato breeding programs, and should also be useful for cloning of the Ryadg gene.

Fulladolsa A C, Navarro F M, Kota R, et al.

Application of marker assisted selection for potato virus Y resistance in the University of Wisconsin potato breeding program

American Journal of Potato Research, 2015, 92(3):444-450.

DOI:10.1007/s12230-015-9431-2      URL     [本文引用: 1]

Mestre P, Brigneti G, Baulcombe D C.

An Ry-mediated resistance response in potato requires the intact active site of the NIa proteinase from potato virus Y

Plant Journal, 2000, 23(5):653-661.

DOI:10.1046/j.1365-313x.2000.00834.x      PMID:10972891      [本文引用: 1]

Ry confers extreme resistance to all strains of potato virus Y (PVY). To identify the elicitor of the Ry-mediated resistance against PVY in potato, we expressed each of the PVY-encoded proteins in leaves of PVY-resistant (Ry) and -susceptible (ry) plants. For most of the proteins tested, there was no evident response. However, when the NIa proteinase was expressed in leaves of Ry plants, there was a hypersensitive response (HR). Proteinase active site mutants failed to induce the Ry-mediated response. The HR was also induced by the NIa proteinase from pepper mottle virus (PepMoV), which has the same cleavage specificity as the PVY enzyme, but not by the tobacco etch virus (TEV) or the potato virus A (PVA) proteinases that cleave different peptide motifs. Based on these results, we propose that Ry-mediated resistance requires the intact active site of the NIa proteinase. Although the structure of the active proteinase could have elicitor activity, it is possible that this proteinase releases an elicitor by cleavage of a host-encoded protein. Alternatively, the proteinase could inactivate a negative regulator of the Ry-mediated resistance response.

Song Y S, Hepting L, Schweizer G, et al.

Mapping of extreme resistance to PVY(Rysto)on chromosome XII using anther-culture-derived primary dihaploid potato lines

Theoretical and Applied Genetics, 2005, 111(5):879-887.

DOI:10.1007/s00122-005-0010-7      URL     [本文引用: 1]

储文军. 马铃薯Y病毒极端抗性基因Rychc的精细定位. 武汉:华中农业大学, 2016.

[本文引用: 1]

Mori K, Mukojima N, Nakao T, et al.

Germplasm release: Saikai 35, a male and female fertile breeding line carrying Solanum phureja-derived cytoplasm and potato cyst nematode resistance (H1) and potato virusY resistance(Rychc)genes

American Potato Journal, 2011, 89:63-72.

[本文引用: 1]

Kohm B A, Goulden M G, Gilbert J E, et al.

A potato virus X resistance gene mediates an induced, nonspecific resistance in protoplasts

Plant Cell, 1993, 5(8):913-920.

DOI:10.2307/3869659      URL     [本文引用: 1]

Mori K, Sakamoto Y, Mukojima N, et al.

Development of a multiplex PCR method for simultaneousdetection of diagnostic DNA markers of five disease and pest resistance genes in potato

Euphytica, 2011, 180:347-355.

DOI:10.1007/s10681-011-0381-6      URL     [本文引用: 2]

Joseph C K, Richard G N, Jonathan L W, et al.

Development of molecular markers closely linked to the potato leafroll virus resistance gene, Rlretb, for use in marker-assisted selection

American Journal of Potato Research, 2016, 93:203-212.

DOI:10.1007/s12230-016-9496-6      URL     [本文引用: 1]

Takeuchi T, Sasaki J, Suzuki T, et al.

High-resolution maps and DNA markers of the potato virus Y resistance gene Rychcand the potato cyst nematode resistance gene H1

Breed Research, 2008, 10(S1):148.

[本文引用: 1]

孙慧生. 马铃薯育种学. 北京: 中国农业出版社, 2003.

[本文引用: 1]

黄鑫华, 韩蕾勤, 晋艺丹, .

马铃薯病毒病抗性基因分子标记检测

分子植物育种, 2020, 18(17):5782-5789.

[本文引用: 2]

/