作物杂志, 2023, 39(1): 109-114 doi: 10.16035/j.issn.1001-7283.2023.01.016

生理生化·植物营养·栽培耕作

施氮磷肥对小豆产量、根系形态及光合特性的影响

高伟,, 郝青婷, 张泽燕, 王茜, 闫虎斌, 朱慧珺, 赵雪英, 张耀文,

山西农业大学农学院,030031,山西太原

Effects of Nitrogen and Phosphorus Application on Yield, Root Morphology and Photosynthetic Characteristics of Adzuki Bean

Gao Wei,, Hao Qingting, Zhang Zeyan, Wang Qian, Yan Hubin, Zhu Huijun, Zhao Xueying, Zhang Yaowen,

College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China

通讯作者: 张耀文,主要从事食用豆育种及栽培技术研究,E-mail:zyw8118571@126.com

收稿日期: 2021-08-13   修回日期: 2021-10-18   网络出版日期: 2022-10-14

基金资助: 国家重点研发计划:杂粮作物肥水高效利用栽培关键技术研发(2020YFD1000801-2)
国家现代农业产业技术体系:食用豆(CARS-08-G10)
山西省新兴人才领军人才项目:食用豆新品种选育及高产栽培技术示范
山西农业大学农学院育种工程专项:食用豆优异资源创制及新品种选育(YZ2021-07)
山西农业大学生物育种工程项目:高产优质多抗专用食用豆新品种选育(YZGC098)

Received: 2021-08-13   Revised: 2021-10-18   Online: 2022-10-14

作者简介 About authors

高伟,主要从事食用豆育种及栽培技术研究,E-mail:gw3789@126.com

摘要

为优化晋小豆5号品种的高产施肥策略,设置不同田间氮磷肥处理试验(0.00、500.00、1000.00kg/hm2磷肥,300.00、600.00kg/hm2氮磷复合肥,分别以CK、T1、T2、T3和T4表示),研究施肥对小豆产量及光合特性的影响。结果表明,与CK处理相比,T1处理能获得较高的地下部生物量,并促进根系生长;T3处理可以提高百粒重、生物产量和作物产量。与其他处理相比,T3处理的叶绿素含量最高,光合电子传递速率最快,茎秆强度最高。因此,本研究的结果可作为小豆增产的适宜推荐施肥量。

关键词: 小豆; 磷肥; 氮磷复合肥; 产量; 根系形态; 光合特性

Abstract

In order to optimize the high-yield fertilization strategy of Jinxiaodou 5, we focused on the effects of different nitrogen and phosphorus application (0.00, 500.00, 1000.00kg/ha phosphate fertilizer, 300.00, 600.00kg/ha N-P compound fertilizer, denoted as CK, T1, T2, T3 and T4) on yield and photosynthetic characteristics of adzuki bean. The results showed that, compared with CK treatment, T1 treatment had higher biomass and root length. T3 treatment could significantly increase 100-seed weight, biomass and crop yield of adzuki bean. Furthermore, T3 treatment had the higher chlorophyll content, photosynthetic electron transfer rate (ETR) and stem strength than other treatments. Therefore, the results of this study could be used as a suitable recommended fertilizer amount for adzuki bean.

Keywords: Adzuki bean; Phosphate fertilizer; N-P compound fertilizer; Yield; Root morphology; Photosynthetic characteristics

PDF (462KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

高伟, 郝青婷, 张泽燕, 王茜, 闫虎斌, 朱慧珺, 赵雪英, 张耀文. 施氮磷肥对小豆产量、根系形态及光合特性的影响. 作物杂志, 2023, 39(1): 109-114 doi:10.16035/j.issn.1001-7283.2023.01.016

Gao Wei, Hao Qingting, Zhang Zeyan, Wang Qian, Yan Hubin, Zhu Huijun, Zhao Xueying, Zhang Yaowen. Effects of Nitrogen and Phosphorus Application on Yield, Root Morphology and Photosynthetic Characteristics of Adzuki Bean. Crops, 2023, 39(1): 109-114 doi:10.16035/j.issn.1001-7283.2023.01.016

小豆起源于我国,是重要的豆科作物,主要生长在东亚温带地区,包括中国、日本和韩国,在世界上30多个国家和地区均有种植,有药用、食用和饲用等多种用途[1-2]。在我国,小豆是重要的出口产品之一,其种植面积和总产量均占全球种植面积和总产量的1/3以上[3-4]。我国年平均种植面积约25万hm2,年总产量约25万至35万t,出口量约5万至8万t。我国的小豆总产量和出口量在全球排名第一,由于过度依赖化肥,土壤质量显著下降[5]。因此,氮(N)和磷(P)肥料的平衡施用以及N和P肥料的适当组合已经变得十分重要。

作物产量、营养生长和繁殖取决于获得足够的营养物质,在这些营养物质中,N和P是高等植物生长所必需的[6-7]。N和P在小豆的生长过程中起着重要的作用[8-9]。小豆对N有很强的生理需求,在不同生长阶段适当施用N肥可促进养分吸收和植物生长,并提高产量[10-12]。在早期生长期间增加施N量可促进营养生长,提高产量。随着植物的生长,根瘤菌的丰度增加,其固定大气N的能力提高;但是,过量施用N肥会抑制根瘤菌活性,阻碍花芽分化和产量形成[13-14]。此外,P会影响根系的形态和生长,进而影响水分和养分的吸收,可有效地缓解干旱,提高产量[15-17]

肥料是农业生产的必要投入。然而,肥料的不科学使用对可持续农业生产系统构成了严重威胁,过量的肥料残渣扰乱了土壤―养分平衡,抑制了植物的健康生长。通过改变施肥量和施用合适的肥料[18-20],可实现可持续的作物生产。本研究涉及不同N和P肥组合的处理试验,并评估它们对生物量、根系形态、产量、光合指标和茎秆强度的影响,在此基础上选择最佳肥料组合以达到小豆增产的目标。

1 材料与方法

1.1 试验地概况

试验于2020年在山西农业大学东阳试验示范实习实训基地晋中市东阳镇(120°14′ E,29°16′ N)进行,平均海拔799.40m,年均气温9.70℃,年均降水量440.70mm,≥10.00℃有效积温3675.00℃,年均日照时数2662h,无霜期158d,属典型的暖温带半湿润大陆性季风气候。试验田地势平坦,为沙质壤土,种植试验前取耕层土壤,经检测,试验田土壤基本理化性质为有机质13.63g/kg、有效磷5.80mg/kg、速效钾138.00mg/kg、全氮0.07%。

1.2 试验材料

以小豆品种晋小豆5号为供试材料,该品种株型紧凑,有限结荚习性,茎秆直立,春播生育期110d左右。供试肥料为硝酸磷复合肥(含N 26.50%,含P2O5 11.50%)、过磷酸钙(含P2O5 16.00%)。施用农家肥30 000kg/hm2(折合养分N 225.00kg/hm2、P2O5 313.95kg/hm2、K2O 164.60 kg/hm2)作底肥。

1.3 试验设计

试验设置5个处理,分别为CK、T1(500.00kg/hm2磷肥,折合养分P2O5 80.00kg/hm2)、T2(1000.00kg/hm2磷肥,折合养分P2O5 160.00kg/hm2)、T3(300.00kg/hm2氮磷复合肥,折合养分N 79.50kg/hm2、P2O5 34.50kg/hm2)和T4(600.00kg/hm2氮磷复合肥,折合养分N 159.00kg/hm2、P2O5 69.00kg/hm2),具体纯养分施用量见表1。每个处理重复4次,随机区组排列。单个小区面积为20.00m2(4.0m×5.0m),每个小区种植8行,行距50.00cm,株距13.00~14.00cm。

表1   小豆氮磷肥纯养分施用量

Table 1  Different nitrogen and phosphorus application on adzuki bean kg/hm2

处理TreatmentNP2O5
CK
T180.00
T2160.00
T379.5034.50
T4159.0069.00

新窗口打开| 下载CSV


小区间苗、中耕、灌溉及病虫害防治等栽培管理措施一致,采取当地种植习惯,统一管理。5月12日播种,播种前所有处理的肥料均用作基肥施入小区。

分别在苗期、花期和鼓粒期从同一处理小区内取3~5株长势一致的植株,测量株高、植株鲜重和干重、根鲜重和干重。鼓粒期从各处理小区内分别取3个单株,尽量将根部完整取出,使用根系扫描仪进行根系分析。同样在鼓粒期,从各小区选取3株具有代表性的植株,使用CCM-300叶绿素含量测量仪测定叶绿素含量;使用OS-5p+便携式脉冲调制叶绿素荧光分析仪在小豆叶片充分暗适应30min后,测定其初始荧光(Fo)和照射饱和脉冲后的荧光(Fm),然后将小豆叶片进行光适应,得到PSII实际光化学效率[Y(II)]和光合电子传递速率(ETR)。收获前每个小区随机取3株长势一致的植株测定株高、主茎节数、有效分枝数、单株荚数、单荚粒数、荚长及茎秆强度,全区于9月2日收获,收获后测定小区的生物产量、作物产量和百粒重。

1.4 数据处理

使用Excel和SPSS软件进行数据分析。

2 结果与分析

2.1 不同氮磷肥用量对不同生育期小豆株高及生物量的影响

图1可知,不同氮磷肥施用量对不同生育期小豆株高的影响存在差异。CK和T1~T4处理的苗期株高分别为13.33、13.83、12.77、14.67和14.33cm,各处理间差异不显著,表明不同氮磷肥施用量在小豆苗期对株高没有显著影响。花期株高以T4处理最高,为29.03cm,比CK处理提高25.51%,差异显著,表明T4处理可以显著增加小豆花期的株高,T1、T2、T3与CK处理之间差异不显著。鼓粒期株高以T4处理最高,为73.03cm,比CK处理提高19.03%,差异显著,表明T4可以显著增加小豆鼓粒期的株高。结果表明,氮肥是影响小豆株高的主要因素。

图1

图1   不同氮磷肥用量对不同生育期小豆株高的影响

不同小写字母表示处理间差异显著(P < 0.05),下同

Fig.1   The effects of different nitrogen-phosphorus application on plant height in adzuki bean

The different lowercase letters indicate significant difference between treatments at the 0.05 level, the same below


植株的地上部分作为光合作用的主要载体,其干物质量是衡量植株光合能力即物质积累能力的一项重要指标,对最终产量有很大的影响。由图2可知,不同氮磷肥施用量对不同生育期小豆单株地上部鲜重和干重的影响存在差异。苗期地上部鲜重和干重各处理间差异不显著。花期地上部鲜重和干重各处理间存在差异,花期地上部鲜重T1、T3、T4与CK处理相比无显著性差异,T2比CK处理降低41.80%;T3和T4处理的生物量显著高于T1和T2处理。鼓粒期地上部单株鲜重以T3处理最高,为185.21g,比CK处理提高17.01%;T2比CK处理降低17.18%。以上结果表明,氮磷复合肥的施用对小豆鼓粒期地上部生物量的积累有促进作用,而磷肥施用过量降低小豆地上部的生物量。

图2

图2   不同氮磷肥用量对不同生育期小豆地上部生物量的影响

Fig.2   The effects of different nitrogen-phosphorus application on aboveground biomass in adzuki bean


图3可以看出,苗期单株地下部鲜重和干重以T3处理为最佳,显著高于CK和其他处理。花期单株地下部鲜重和干重T3与T2处理之间具有显著性差异,而其余处理之间没有显著性差异。鼓粒期单株地下部鲜重和干重T1处理最佳,T2处理显著低于T1处理。以上结果表明,磷肥可以提高小豆鼓粒期地下部鲜重和干重,但过量施用磷肥也会降低小豆地下部的鲜重和干重。

图3

图3   不同氮磷肥用量对不同生育期小豆地下部生物量的影响

Fig.3   The effects of different nitrogen-phosphorus application on under ground biomass in adzuki bean


2.2 不同氮磷肥用量对小豆根系形态的影响

多元方差分析(表2)表明,不同氮磷肥用量显著影响小豆根系形态相关指标。在T1处理中根系长度、总表面积和总体积显著增加,这3项根系形态指标达到最大值。不同施肥处理时,T1处理的根系长度为968.99cm,显著高于CK及其他处理;T1处理的根系总表面积为169.36cm2,显著高于T2、T3和T4处理;CK、T1和T4处理的根系总体积显著高于T2和T3处理;CK和T4处理的根系平均直径大于T1、T2和T3处理。综上所述,与CK及其他处理相比,T1处理对小豆根系的生长起到最大的促进作用。

表2   不同氮磷肥用量对小豆根系形态的影响

Table 2  The effects of different nitrogen-phosphorus application on root morphology of adzuki bean

处理
Treatment
根系长度
Root length (cm)
根系总表面积
Total surface area of root (cm2)
根系平均直径
Average diameter of root (cm)
根系总体积
Total volume of root (cm3)
CK855.49b151.74ab0.58a2.47a
T1968.99a169.36a0.46b2.52a
T2672.09c130.66b0.47b1.77b
T3609.60c91.07c0.46b1.09c
T4703.56c142.89b0.64a2.33a

同列数据后不同小写字母表示差异显著(P < 0.05),下同

The different lowercase letters in the same columns indicate significant difference at the 0.05 level, the same below

新窗口打开| 下载CSV


2.3 不同氮磷肥用量对小豆产量的影响

表3可知,相比于CK及其他处理,T3处理显著提高百粒重、生物产量和作物产量。施用氮磷复合肥的处理(T3)百粒重、生物产量和作物产量均高于单独施用磷肥处理(T1和T2)及CK处理。而氮磷复合肥并不是施用的量越大越好,当使用量翻倍时(T4),植株百粒重、生物产量和作物产量并没有加倍,反而有所下降,说明大田施肥并不是越多效果越好,而是应遵守科学适量的原则。

表3   不同氮磷肥用量对小豆产量的影响

Table 3  The effects of different nitrogen-phosphorus application on yield of adzuki bean

处理
Treatment
主茎节数
Number of main
stem nodes
有效分枝数
Number of
effective branches
单株荚数
Pod number
per plant
荚长
Pod length
(cm)
单株粒数
Grain number
per plant
百粒重
100-grain
weight (g)
生物产量
Biological
yield (kg/m2)
作物产量
Crop yield
(kg/m2)
CK15.80a2.73a35.53a8.93ab6.73ab16.17b1.05b0.20b
T115.67a2.20a32.64a8.80ab6.13ab15.95b0.96bc0.19bc
T215.80a2.60a33.67a9.43a7.00a15.72b0.90c0.17c
T316.80a2.60a35.07a8.41b5.80b17.15a1.18a0.23a
T416.53a2.53a35.67a9.23a7.07a16.46ab1.04b0.18c

新窗口打开| 下载CSV


2.4 不同氮磷肥用量对小豆植株叶绿素含量及叶绿素荧光参数的影响

叶绿素含量会影响叶片光合作用的能力。T1和T2处理与CK处理之间没有显著性差异,T3和T4处理的叶绿素含量显著高于CK及T1和T2处理(图4)。T3处理叶绿素含量最高,为463.78mg/m2,说明叶片叶绿体能够吸收更多的光能,光合效能最强。结果表明,T3处理能够最大地提升小豆的光合作用能力。

图4

图4   不同氮磷肥用量对小豆叶绿素含量的影响

Fig.4   The effects of different nitrogen-phosphorus application on chlorophyll content of adzuki bean


表4可知,与CK处理相比,T1~T4处理小豆叶片的PS II最大光化学效率(Fv/Fm)、PSII潜在光化学活性(Fv/Fo)和Y(II)均没有显著性差异,但是T3和T4处理的ETR明显提高,并且T3处理的ETR最高,达到124.10。结果表明,施用氮磷复合肥可以提高小豆的光合效率,本研究中T3处理能够最大地提高光合效率。

表4   不同氮磷肥用量对小豆叶绿素荧光参数的影响

Table 4  The effects of different nitrogen-phosphorus application on chlorophyll fluorescence parameters of adzuki bean

处理TreatmentFv/FmFv/FoY(II)ETR
CK0.73a2.86a0.47a70.51c
T10.74a3.02a0.44a72.43c
T20.76a3.23a0.47a54.89c
T30.74a2.91a0.39a124.10a
T40.75a2.99a0.52a96.47b

新窗口打开| 下载CSV


2.5 不同氮磷肥用量对小豆茎秆强度的影响

倒伏对小豆的产量有重要的影响,茎秆强度与抗倒伏能力密切相关。由图5可知,CK、T1和T2处理茎秆强度之间没有显著性差异,T3处理显著高于除CK处理外的其他处理,T4<T3处理,T3处理的茎秆强度最强。结果表明,单独施用磷肥对小豆茎秆强度的影响不大,随着氮磷复合肥施用,小豆茎秆强度增加,但是增加氮磷复合肥的施用量时,茎秆强度显著降低。

图5

图5   不同氮磷肥用量对小豆茎秆强度的影响

Fig.5   The effects of different nitrogen-phosphorus application on stem strength of adzuki bean


3 讨论

氮素是植物体内的必需元素之一,也是需求量最大而土壤供给量较少的元素。氮素积极参与植物体中的各种生命活动,氮素充足时,光合作用的产物能快速转化,合成核酸、酶、蛋白质和叶绿素,为植株的生命活动提供物质基础。氮素缺乏时,磷脂、核酸和蛋白质等的合成受阻,植株矮小,叶片小而薄,花果易脱落[21-25]。而氮素过量时,会降低磷、钾以及微量元素的吸收,导致花芽分化率下降,营养生长过剩,最终导致减产。本研究中,氮磷复合肥的施用增加了株高,对鼓粒期地上部生物量的积累有一定的促进作用,说明株高主要受氮肥的影响,但是株高与生物量并不呈正相关。T3处理能显著提高百粒重、生物产量以及作物产量;当氮磷复合肥用量加倍时,这些产量性状反而会降低,表明氮磷肥过多会影响植物的生长、光合作用和一系列的生长发育过程。叶绿素含量和ETR在T3处理下表现最佳。小豆的茎秆强度在T3处理中表现最强,加倍施用氮磷复合肥时强度减弱,说明氮肥过多会导致茎秆强度降低。

磷是磷脂、核酸和核蛋白等大分子的主要构成元素,它能促进光合作用和CO2的转化,能激活某些酶(如磷酸果糖激酶)的活性,有助于糖的合成。磷参与植株的多种代谢活动,且与氮关系密切,它能促进氮素的吸收和积累,氮磷肥配合施用,能更好地发挥磷肥的效应[26-30]。适当施用磷肥可以增加产量,但过量施磷时农作物产量不会增加,甚至减产[31-32]。本研究发现,施用磷肥可提高小豆鼓粒期地下部生物量,但磷肥施用过量会降低小豆地上部生物量,可能是由于磷肥过量会影响其他元素的吸收,如钙和锌,从而影响小豆生物量的积累。磷肥对根系的形态和生长起至关重要的作用,T1处理的根系长度、总表面积和总体积均高于CK和其他处理,这与前人[15-17]报道的结果一致。施用磷肥后,作物产量有所下降,可能是试验中所用磷肥的量仍旧偏高导致的。磷肥过量会促使作物呼吸作用过于旺盛,消耗的干物质大于积累的干物质,造成生殖器官提前发芽,引起作物过早成熟,籽粒变小,产量降低。

氮磷肥配施对冬小麦品种临抗2号光合特性及产量的影响试验表明,不同氮素间穗粒数和千粒重均存在显著或极显著差异,磷素间则差异不显著,但氮、磷及氮磷互作对产量的影响均达到显著或极显著水平[33]。在对谷子的研究中发现,适宜氮磷施用水平可显著增加谷子的叶面积系数、叶绿素含量和净光合速率,超过适宜用量后,降低作用明显[34]。对大豆施肥研究[35]发现,当氮肥用量超过120.00kg/hm2时,大豆地上部干物质量和产量下降,当磷肥用量超过90.00kg/hm2时,磷肥利用率和增产效益下降。对苦荞的研究[36]表明,在施用有机肥的基础上,通过增施氮磷肥能有效地改善苦荞的农艺性状,提高干物重、籽粒产量和水分利用率,且这些参数基本上呈现出随氮肥施用量增大而增大的趋势;对于磷肥,在低氮水平下,随着施磷量的提升,产量增幅明显,且氮肥利用率提高明显,表明磷肥对氮肥利用有促进作用,而在中氮和高氮水平下,产量和水分利用率随施磷量的提升呈先增加后减少的趋势。本研究的结论与上述报道中所呈现的施肥规律基本一致。

本研究结果表明,小豆高产的最佳施肥推荐T3处理。单独施用磷肥只能促进小豆的根系生长,磷肥过量施用还会降低小豆的产量和生物量。氮磷复合肥的施用明显优于单独施用磷肥,但过量施用氮磷复合肥导致小豆减产,光合特性下降。因此,合理科学的施肥不仅可以增加小豆产量,更减少了肥料浪费,减轻了土壤和环境压力。

4 结论

通过田间设置不同氮磷肥处理试验(0.00、500.00、1000.00kg/hm2磷肥,300.00、600.00kg/hm2氮磷复合肥,分别以CK、T1、T2、T3、T4表示),研究对晋小豆5号品种产量及光合特性的影响。与CK处理相比,T1处理能获得较高的地下部生物量,并促进小豆根系的生长;T3处理可以提高小豆百粒重、生物产量和作物产量。相比于其他处理,T3处理的叶绿素含量最高,ETR最快,茎秆强度高于其他处理。以上结果表明,T3处理的综合表现最佳,可以作为小豆增产的适宜推荐施肥量。

参考文献

孙丽丽, 董银卯, 李丽, .

红豆生物活性成分及其制备工艺研究进展

食品工业科技, 2013, 34(4):390-392,396.

[本文引用: 1]

Yang K, Tian Z X, Chen C H, et al.

Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication

Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (43):13213-13218.

[本文引用: 1]

王丽侠, 程须珍, 王素华.

小豆种质资源研究与利用概述

植物遗传资源学报, 2013, 14(3):440-447.

[本文引用: 1]

章淑艳, 李彩菊, 王素花, .

不同施肥水平对红小豆生长发育及养分利用率的影响

河北农业大学学报, 2016, 39(4):12-17.

[本文引用: 1]

Li L, Yang T, Redden R, et al.

Soil fertility map for food legumes production areas in China

Scientific Reports, 2016, 6:26102.

DOI:10.1038/srep26102      PMID:27212262      [本文引用: 1]

Given the limited resources of fossil energy, and the environmental risks of excess fertilizer on crops, it is time to reappraise the potential role of food legume biological nitrogen fixation (BNF) as sources of nitrogen for cropping systems in China. 150 soil samples across 17 provinces and 2 municipalities of China were collected and analyzed. A distribution map of the soil fertilities and their patterns of distribution was constructed. The pH results indicated that soils were neutral to slightly alkaline overall. The soil organic matter (SOM) and the available nitrogen (AN) content were relatively low, while the available phosphorus (AP) and available potassium (AK) contents were from moderate to high. Production areas of food legumes (faba bean, pea, adzuki bean, mung bean and common bean) were clearly separated into 4 soil fertility type clusters. In addition, regions with SOM, AN, AP and AK deficiency, high acidity and high alkalinity were listed as target areas for further soil improvement. The potential was considered for biological nitrogen fixation to substitute for the application of mineral nitrogen fertiliser.

Hawke M A, Maun M A.

Some aspects of nitrogen, phosphorus,and potassium nutrition of three colonizing beach species

Canadian Journal of Botany, 1988, 66(8):1490-1496.

DOI:10.1139/b88-207      URL     [本文引用: 1]

Zaman M, Kurepin L V, Catto W, et al.

Enhancing crop yield with the use of N-based fertilizers co-applied with plant hormones or growth regulators

Journal of the Science of Food and Agriculture, 2015, 95(9):1777-1785.

DOI:10.1002/jsfa.6938      PMID:25267003      [本文引用: 1]

Crop yield, vegetative or reproductive, depends on access to an adequate supply of essential mineral nutrients. At the same time, a crop plant's growth and development, and thus yield, also depend on in situ production of plant hormones. Thus optimizing mineral nutrition and providing supplemental hormones are two mechanisms for gaining appreciable yield increases. Optimizing the mineral nutrient supply is a common and accepted agricultural practice, but the co-application of nitrogen-based fertilizers with plant hormones or plant growth regulators is relatively uncommon. Our review discusses possible uses of plant hormones (gibberellins, auxins, cytokinins, abscisic acid and ethylene) and specific growth regulators (glycine betaine and polyamines) to enhance and optimize crop yield when co-applied with nitrogen-based fertilizers. We conclude that use of growth-active gibberellins, together with a nitrogen-based fertilizer, can result in appreciable and significant additive increases in shoot dry biomass of crops, including forage crops growing under low-temperature conditions. There may also be a potential for use of an auxin or cytokinin, together with a nitrogen-based fertilizer, for obtaining additive increases in dry shoot biomass and/or reproductive yield. Further research, though, is needed to determine the potential of co-application of nitrogen-based fertilizers with abscisic acid, ethylene and other growth regulators.© 2014 Society of Chemical Industry.

刘振兴, 周桂梅, 陈健.

不同肥料及施肥方式对小豆农艺性状的影响

北京农学院学报, 2012, 27(2):4-6.

[本文引用: 1]

章淑艳, 王素花, 孙志梅, .

不同氮肥施用方式及硝化抑制剂对小豆生长发育及氮素利用的影响

河南农业科学, 2016, 45(10):15-18,28.

[本文引用: 1]

赵双进, 张孟臣, 杨春燕, .

栽培因子对大豆生长发育及群体产量的影响Ⅱ. 肥水、生长调控措施对产量的影响

中国油料作物学报, 2003(2):49-52.

[本文引用: 1]

Kimura S D, Schmidtke K, Tajima R, et al.

Seasonal N uptake and N2 fixation by common and adzuki bean at various spacing

Plant and Soil, 2004, 258:91-101.

DOI:10.1023/B:PLSO.0000016539.73233.ec      URL     [本文引用: 1]

李鑫, 张永清, 王大勇, .

水氮耦合对红小豆根系生理生态及产量的影响

中国生态农业学报, 2015, 23(12):1511-1519.

[本文引用: 1]

Bethlenfalvay G J, Pacovsky R S, Bayne H G, et al.

Interactions between nitrogen fixation,mycorrhizal colonization,and host- plant growth in the phaseolus-rhizobium-glomus symbiosis

Plant Physiology, 1982, 70(2):446-450.

DOI:10.1104/pp.70.2.446      PMID:16662513      [本文引用: 1]

Bean (Phaseolus vulgaris L. cv. Dwarf) roots were inoculated with Rhizobium phaseoli and colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum Gerd. and Trappe or left uncolonized as controls. The symbiotic associations were grown in an inert substrate using 0, 25, 50, 100, or 200 milligrams hydroxyapatite (HAP) (Ca(10)[PO(4)](6)[OH](2)) per pot as a P amendment. Plant and nodule dry weights and nodule activity increased for both VAM and control plants with increasing P availability, but values for VAM plants were significantly lower in all parameters than for controls. Inhibition of growth and of N(2) fixation in VAM plants was greatest at the lowest and highest P regimes. It was smallest at 50 milligrams HAP, where available P at harvest (7 weeks after planting) was 5 micrograms P per gram substrate. At this level of P availability, the association apparently benefited from increased P uptake by the fungal endophyte. Percent P values for shoots, roots, and nodules did not differ significantly (p > 0.05) between VAM and control plants. The extent of colonization, fungal biomass, and the fungus/association dry weight ratio increased several fold as HAP was increased from 0 to 200 milligrams. It is concluded that intersymbiont competition for P and photosynthate was the primary cause for the inhibition of growth, nodulation, and nodule activity in VAM plants. Impaired N(2) fixation resulted in N stress which contributed to inhibition of host plant growth at all levels of P availability.

Yanni Y G, Rizk R Y, Faiza K, et al.

The beneficial plant growth- promoting association of Rhizobium leguminosarum bv. trifolii with rice roots

Functional Plant Biology, 2001, 28(9):845-870.

DOI:10.1071/PP01069      URL     [本文引用: 1]

Zafar Z U, Athar H.

Influence of different phosphorus regimes on disease resistance in two cotton (Gossypium hirsutum L.) cultivars differing in resistance to cotton leaf curl virus (CLCUV)

Pakistan Journal of Botany, 2013, 45(2):617-627.

[本文引用: 2]

Jian J, Lauricella D, Armstrong R, et al.

Phosphorus application and elevated CO2 enhance drought tolerance in field pea grown in a phosphorus-deficient vertisol

Annals of Botany, 2015, 116:975-985.

DOI:10.1093/aob/mcu209      PMID:25429008      [本文引用: 2]

Benefits to crop productivity arising from increasing CO2 fertilization may be offset by detrimental effects of global climate change, such as an increasing frequency of drought. Phosphorus (P) nutrition plays an important role in crop responses to water stress, but how elevated CO2 (eCO2) and P nutrition interact, especially in legumes, is unclear. This study aimed to elucidate whether P supply improves plant drought tolerance under eCO2.A soil-column experiment was conducted in a free air CO2 enrichment (SoilFACE) system. Field pea (Pisum sativum) was grown in a P-deficient vertisol, supplied with 15 mg P kg(-1) (deficient) or 60 mg P kg(-1) (adequate for crop growth) and exposed to ambient CO2 (aCO2; 380-400 ppm) or eCO2 (550-580 ppm). Drought treatments commenced at flowering. Measurements were taken of soil and leaf water content, photosynthesis, stomatal conductance, total soluble sugars and inorganic P content (Pi).Water-use efficiency was greatest under eCO2 when the plants were supplied with adequate P compared with other treatments irrespective of drought treatment. Elevated CO2 decreased stomatal conductance and transpiration rate, and increased the concentration of soluble sugars and relative water contents in leaves. Adequate P supply increased concentrations of soluble sugars and Pi in drought-stressed plants. Adequate P supply but not eCO2 increased root length distribution in deeper soil layers.Phosphorus application and eCO2 interactively enhanced periodic drought tolerance in field pea as a result of decreased stomatal conductance, deeper rooting and high Pi availability for carbon assimilation in leaves.© The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

Hansel F D, Amado T, Diaz D, et al.

Phosphorus fertilizer placement and tillage affect soybean root growth and drought tolerance

Agronomy Journal, 2017, 109(6):2936-2944.

DOI:10.2134/agronj2017.04.0202      URL     [本文引用: 2]

Vanlauwe B, Kihara J, Chivenge P, et al.

Agronomic use efficiency of N fertilizer in maize-based systems in sub-Saharan Africa within the context of integrated soil fertility management

Plant and Soil, 2011, 339(1/2):35-50.

DOI:10.1007/s11104-010-0462-7      URL     [本文引用: 1]

Kumar A, Mishra V N, Srivastav L K, et al.

Evaluations of soil fertility status of available major nutrients (N,P & K) and micro nutrients (Fe,Mn,Cu & Zn) in vertisol of Kabeerdham district of Chhattisgarh,India

International Journal of Interdisciplinary and Multidisciplinary Studies, 2014, 1:72-79.

[本文引用: 1]

Rusinamhodzi L, Corbeels M, Zingore S, et al.

Pushing the envelope? Maize production intensification and the role of cattle manure in recovery of degraded soils in smallholder farming areas of Zimbabwe

Field Crops Research, 2013, 147:40-53.

DOI:10.1016/j.fcr.2013.03.014      URL     [本文引用: 1]

Kamiji Y, Yoshida H, Palata J A, et al.

N application that increase plant N during panicle development are highly effective in increasing spikelet number in rice

Field Crops Research, 2011, 122:242-247.

DOI:10.1016/j.fcr.2011.03.016      URL     [本文引用: 1]

Matsui T, Kagata H.

Correlation of nitrogen concentration with dry-matter portioning to spikes and total husk volume on the panicle in japonica rice

Plant Prod Science, 2002, 5(3):198-202.

DOI:10.1626/pps.5.198      URL     [本文引用: 1]

张继澍. 植物生理学. 北京: 高等教育出版社, 2006.

[本文引用: 1]

马晓明, 朱宝国, 徐显国, .

控释氮肥对寒地水稻植株生长发育及产景的影响

农学学报, 2013, 16(3):1-3.

[本文引用: 1]

叶优良, 王桂良, 朱云集, .

施氮对高产小麦群体动态、产量和土壤氮素变化的影响

应用生态学, 2010, 21(2):351-358.

[本文引用: 1]

Zhang H C, Cao Z H, Shen Q R, et al.

Effect of phosphate fertilizer application on phosphorus (P) losses from paddy soils in Taihu Lake Region. I. Effect of phosphate fertilizer rate on phosphorus (P) losses from paddy soil

Chemosphere, 2003, 50(6):695-701.

PMID:12688478      [本文引用: 1]

A field plot study was conducted on two types of paddy soils in the Taihu Lake Region, during the rice season of year 2000 in order to assess phosphorus (P) losses by runoff and vertical leaching, which are considered the two main pathways of P movement from paddy soil into its surrounding water course. Commercial NPK compound fertilizer and single superphosphate fertilizer were applied to furnish 0, 30, 150, and 300 kg applied P ha m(-2). The experiments consisted of three replicates of each treatment in Changshu site and four replicates in Anzhen site, with a plot size of 5 x 6 m2 in a randomized block. Results revealed that the average concentration range for total P (TP) in runoff was 1.857-7.883, 1.038-5.209, 0.783-1.255 and 0.572-0.691 mg P l(-1) respectively for P300, P150, P30 and P0 in Anzhen, while it was 2.431-2.449, 1.578-1.890, 1.050-1.315 and 0.749-0.941 mg P l(-1) respectively in Changshu. In all treatments, particulate P (PP) represented a major portion of the TP lost in runoff, it was 80% in Anzhen, and it was even more (>90%) in Changshu. Phosphate fertilizer treatments significantly affected P concentrations and P loads in the runoff. The mean concentration and average seasonal TP load from the P150 plots were 1.809 mg P l(-1) and 395 g P ha m(-2) season(-1) respectively, and lower than that from the P300 plots (2.957 mg P l(-1) and 652 g P ha m(-2) season(-1)). These were obviously higher than from the P30 (0.761 mg P l(-1) and 221 g P ha m(-2) season(-1)) and P0 (0.484 mg P l(-1) and 146 g P ha m(-2) season(-1)) respectively. There was no significant difference found between the P30 and the P0 in both sites. Under usual P application rate, there were total 31.7 and 20.6 tones P removed by runoff from permeable (Anzhen site) and waterlogged (Changshu site) paddy soils in the southern Jiangsu region (major part of the TLR) in the rice season of the year 2000. But if the P application rate is unusual high, or the Olsen P in soil accumulates to above a certain level, then this could sharply increase in the future. The average concentration of molybdate reactive phosphorus (MRP) in the vertical leachate from the four different P treatments ranged from 0.058 to 0.304 mg P l(-1) in Anzhen and from 0.048 to 0.394 mg P l(-1) in Changshu. P application rate significantly affected the MRP concentration at each depth in both sites, except for the 90 cm in Anzhen. The average MRP loads during the rice season moved by vertical leaching from the four treatments ranged from 163 to 855 g P ha m(-2) season(-1) in Anzhen and 208-1,825 g P ha m(-2) season(-1) in Changshu. Vertical leachate movement does not necessarily mean that it moves towards surface water and contaminate the watercourses in this flat plain paddy soil region, it does, however, imply that P can move down from surface layers of soil to deeper levels.

Akhmed R, Shafoat N.

Nitrogen-phosphorous fertilizers on the base of concentrated ammonium nitrate solution and Central Kyzylkum phosphate raw material

Polish Journal of Chemical Technology, 2014, 16(3):30-35.

DOI:10.2478/pjct-2014-0046      URL     [本文引用: 1]

Greenwood D J, Karpinets T V, Stone D A.

Dynamic model for the effects of soil P and fertilizer P on crop growth,P uptake and soil P in arable cropping:model description

Annals of Botany, 2001, 88(2):279-291.

DOI:10.1006/anbo.2001.1458      URL     [本文引用: 1]

于钦民, 徐福利, 王渭玲.

氮、磷肥对杉木幼苗生物量及养分分配的影响

植物营养与肥料学报, 2014, 20(1):118-128.

[本文引用: 1]

谢亚萍, 李爱荣, 闫志利, .

不同供磷水平对胡麻磷素养分转运分配及其磷肥效率的影响

草业学报, 2014, 23(1):158-166.

[本文引用: 1]

刘建玲, 李仁岗, 廖文华, .

白菜-辣椒轮作中磷肥的产量效应及土壤磷积累研究

中国农业科学, 2005, 38(8):1616-1620.

[本文引用: 1]

李慧英, 朱永官.

不同磷锌施肥量对大麦产量及其吸收的影响

中国生态农业学报, 2002, 10(4):51-53.

[本文引用: 1]

黄彩霞, 柴守玺, 赵德明, .

氮磷肥配施对冬小麦灌浆期光合参数及产量的影响

植物学报, 2015, 50(1):47-54.

[本文引用: 1]

冯志威, 杨艳君, 郭平毅, .

谷子光合特性及产量最优的氮磷肥水平与细胞分裂素6-BA组合研究

植物营养与肥料学报, 2016, 22(3):634-642.

[本文引用: 1]

司玉坤, 齐欣, 武庆慧, .

氮、磷肥用量对豫中地区大豆产量、干物质及经济效益的影响

中国农学通报, 2019, 35(15):30-34.

[本文引用: 1]

赵鑫, 邓妍, 陈少锋, .

氮磷肥配施对旱地苦荞产量及水肥利用率的影响

华北农学报, 2016, 31(增1):350-355.

[本文引用: 1]

/