作物杂志, 2024, 40(2): 242-248 doi: 10.16035/j.issn.1001-7283.2024.02.030

植物保护

马铃薯青枯病拮抗菌的筛选及温室防治效果研究

李盛,, 李翔, 朱美如, 王夏, 李昊阳, 谭欣如, 王海燕,

四川大学生命科学学院/生物资源与生态环境教育部重点实验室,610065,四川成都

Screening of Antagonistic Bacteria against Potato Bacterial Wilt and Study on Its Control Effect in Greenhouse

Li Sheng,, Li Xiang, Zhu Meiru, Wang Xia, Li Haoyang, Tan Xinru, Wang Haiyan,

College of Life Sciences, Sichuan University/Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, Sichuan, China

通讯作者: 王海燕,研究方向为微生物遗传学,E-mail:hayawang@scu.edu.cn

收稿日期: 2023-03-6   修回日期: 2023-03-23   网络出版日期: 2023-03-31

基金资助: 国家自然科学基金(32060720)

Received: 2023-03-6   Revised: 2023-03-23   Online: 2023-03-31

作者简介 About authors

李盛,研究方向为植物细菌病害,E-mail:1798861540@qq.com

摘要

马铃薯青枯病是由青枯雷尔氏菌(Ralstonia solanacearum E.F. Smith)引起的毁灭性土传病害,筛选对马铃薯青枯病有良好防效的生防菌株具有重要意义。本研究从健康马铃薯、番茄、茄子和辣椒植株根际土壤中筛选鉴定出对马铃薯、番茄和烟草青枯病菌均具有较好抑制活性的6株拮抗菌,经分子生物学鉴定为赖氨酸芽胞杆菌(Lysinibacillus sp.)、假单胞菌(Pseudomonas sp.)和科萨克氏菌(Kosakonia sp.),分别具有产蛋白酶、铁载体和生物膜抑菌代谢物的能力。拮抗菌假单胞菌FC-17对“陇薯7号”和“大西洋”马铃薯青枯病的温室防治效果分别达到79.46%和70.83%,具有应用前景。

关键词: 马铃薯青枯病; 拮抗细菌; 抑菌代谢物; 防治效果

Abstract

Bacterial wilt of potato is a destructive soil-borne disease caused by Ralstonia solanacearum. Screening antagonistic bacteria against pathogen is a vital work for the biocontrol of potato bacterial wilt. Six isolates with good inhibitory effect on three R.solanacearum strains of potato, tomato and tobacco were isolated from the rhizosphere soil of healthy potato, tomato, eggplant and pepper plants. They were identified as Lysinibacillus sp., Pseudomonas sp. and Kosakonia sp. through molecular detection, and it had the ability to produce protease, siderophor and biofilm, respectively. In greenhouse, strain FC-17 significantly reduced disease incidence by 79.46% and 70.83% on potato cultivars “Longshu 7” and “Atlantic”, respectively, indicating good potential for biocontrol of potato bacterial wilt.

Keywords: Potato bacterial wilt; Antagonistic bacteria; Antimicrobial metabolites; Control effect

PDF (1015KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李盛, 李翔, 朱美如, 王夏, 李昊阳, 谭欣如, 王海燕. 马铃薯青枯病拮抗菌的筛选及温室防治效果研究. 作物杂志, 2024, 40(2): 242-248 doi:10.16035/j.issn.1001-7283.2024.02.030

Li Sheng, Li Xiang, Zhu Meiru, Wang Xia, Li Haoyang, Tan Xinru, Wang Haiyan. Screening of Antagonistic Bacteria against Potato Bacterial Wilt and Study on Its Control Effect in Greenhouse. Crops, 2024, 40(2): 242-248 doi:10.16035/j.issn.1001-7283.2024.02.030

马铃薯是世界第四大粮食作物,对保障粮食安全具有重要作用。马铃薯青枯病是由青枯雷尔氏菌(Ralstonia solanacearum E. F. Smith,原名Pseudomonas solanacearum)引起的一种严重土传病害,其危害程度仅次于马铃薯晚疫病,主要分布在热带、亚热带和温带地区,在我国南方各省市均有严重发生[1-3]。青枯菌的寄主范围非常广泛,除危害马铃薯外,也可侵染包括烟草、番茄和花生在内的50多个科的数百种植物,其中以茄科植物受害最为严重[4]。部分高发青枯病地区田块的发病率达到100%,每年造成10%~15%的产量损失,发病严重的地块减产可达80%,甚至绝收,严重威胁着各地马铃薯产业的健康发展[5-6]

目前,针对作物青枯病的防治措施主要包括化学防治、物理控制、抗性品种选育和生物防治。化学防治虽然见效快,防效高,但长期使用化学药剂污染环境,不能满足绿色发展需求;物理防治通常费时耗力且防治效果欠佳;培育抗青枯病作物品种被认为是最经济、环保和有效的控制方法,但抗性品种选育困难、周期长、成本高、产量低、品种抗性易退化[7-9]。生物防治利用拮抗菌与病原菌竞争营养和空间位点、诱导植物抗性、分泌抑菌代谢物质等方式,直接或间接地抑制或杀死病原菌,对环境绿色友好。因此,筛选高效的拮抗菌对探索马铃薯土传病害的生物防治具有重要意义。

植物根际是一个独特的土壤区域,包含众多种类的微生物及腐殖质等物质,农作物、根际微环境和根际微生物之间相互依赖,相互影响,共同维持农业生态系统平衡[10]。根际微生物是提供这些生态系统服务的关键因素,在植物抗病过程中起着不可或缺的作用,根际土壤中的有益微生物对植物土传病害的生物防治具有重要意义[11-14]。目前,与植物病害抑制相关的微生物大多为链霉菌属(Streptomyces[15-16]、假单胞菌属(Pseudomonas[17-19]、芽孢杆菌属(Bacillus[20-22]和噬菌体等[23]。目前,国内外报道的防治青枯病的研究主要针对番茄、辣椒和烟草,拮抗菌主要为芽孢杆菌和假单胞菌,针对马铃薯青枯病生物防治的研究相对较少。邱清华等[24]筛选出的假单胞杆菌对马铃薯和烟草青枯病菌都具有较强的拮抗力。Kheirandish等[25]从马铃薯根际土壤中分离出的恶臭假单胞菌Pp17对马铃薯青枯菌表现出了较强的拮抗活性,温室盆栽防治效果可达51.50%。青枯菌生理小种具有复杂的遗传多样性,不同来源青枯菌对不同植物的致病性有较大差异,筛选广谱高效的拮抗菌对于作物青枯病的防治具有重要意义。本研究从多地采集健康马铃薯、番茄、茄子及辣椒根际土壤,分离筛选拮抗马铃薯、番茄和烟草青枯菌的菌株,并用温室盆栽防病试验检测拮抗菌防治马铃薯青枯病的效果,为马铃薯青枯病生物防控提供新的有效拮抗菌株,为防治马铃薯青枯病提供菌种资源及理论依据。

1 材料与方法

1.1 供试材料

供试青枯菌菌种:青枯菌[P.solanacearum (Smith)] M1.12分离自马铃薯;青枯菌(R. solanacearum)TY2和FJAT-91分离自烟草和番茄,菌株均购于宁波明舟生物科技有限公司。

供试马铃薯品种“陇薯7号”和“大西洋”购自甘肃省定西市“钰妹农场”。

供试土壤样品采自海南、宁夏、四川的健康马铃薯、番茄、茄子及辣椒根际土壤。

1.2 拮抗菌的分离与筛选

1.2.1 初筛

将青枯菌接种于液体NA培养基(10 g/L葡萄糖、3 g/L牛肉膏、0.5 g/L酵母粉、5 g/L蛋白胨,pH 7.0)中,30 ℃、200转/min振荡培养48 h,调整菌液OD600nm=5.0,将青枯菌按1:50加入到约50 °C未凝固的NA固体培养基中混合均匀,制成含菌平板,备用。

称取1 g供试土壤倒入装有20 mL无菌水和玻璃珠的三角瓶中,剧烈振荡10 min,静置30 min。取上清液以10倍梯度稀释,取10-3~10-5稀释度的上清液各150 μL涂布至含青枯菌的NA平板上,每个梯度3次重复。30 °C培养48 h,菌落周围出现透明抑菌圈的为拮抗菌株。挑选有抑菌圈的菌落划线纯化培养得到初筛菌株,4 °C保存备用。

1.2.2 复筛

采用1.2.1中相同方法制备含病原菌平板,用牛津杯打孔法(Φ=6 mm)进行平板抑菌试验。每孔分别注入50 μL不同初筛菌株的培养液(OD600nm=5.0),每个处理重复3次,30 °C培养48 h后根据拮抗圈大小得到复筛菌株。

1.3 拮抗菌16S rRNA基因及基因间隔区序列鉴定

采用试剂盒提取拮抗菌基因组DNA,以16S rRNA通用引物27F和1492R,16S rRNA基因间隔区(ITS序列)引物1405f(5′-TGCACACACCGCC CGT-3′)和456r(5′-CCTTTCCCTCACGGTACTG- 3′)进行PCR扩增。扩增程序为95 °C 3 min;95 °C 15 s,55 °C 15 s,72 °C 30 s,30次循环;72 °C5 min。PCR产物经电泳检测后直接测序,或电泳后回收扩增产物连接到pMD19-T载体,转化大肠杆菌,筛选阳性转化子测序,根据测序结果在NCBI核酸数据库上采用Blast软件进行比对确定拮抗菌种属。

1.4 拮抗菌抑菌广谱性

参照1.2.1和1.2.2的方法分别制备番茄青枯菌和烟草青枯菌平板,病原菌平板每孔分别注入不同拮抗菌株的培养液50 μL(OD600nm=5.0),每个处理重复3次,30 °C培养48 h,观察记录抑菌圈,采用十字交叉法测量其大小,每个试验重复3次。

1.5 拮抗菌产相关抑菌物质分析
1.5.1 产蛋白酶能力检测

用直径5 mm的无菌打孔器在含1%牛奶的LB固体平板上打孔,每孔注入20 μL拮抗菌菌液(OD600nm=5.0),30 °C培养48 h,观察菌落周围有无透明圈产生来判断菌株产胞外蛋白酶能力。

1.5.2 产铁载体能力检测

采用熊汉琴[26]报道的方法进行产铁载体检测,将20 μL拮抗菌菌液(OD600nm=5.0)与等体积铬天青显色液混合均匀后室温显色5 min,若颜色由青蓝色变为紫红色,则说明有铁载体产生,同时设置空白试验对照。

1.5.3 生物膜形成能力检测

利用结晶紫染色法测定生物膜,采用Zhou等[27]的方法并简单修改。将待测菌株活化后按10%转种量转接于2 mL液体NA培养基,30 °C或37 °C静置培养48 h,弃菌液后用无菌生理盐水轻洗一遍试管,加入1 mL 1%的结晶紫染色15 min,用无菌水将多余染液洗净,若在管内壁的空气与培养基的接触面上形成一道清楚的紫色环痕,即说明该菌株产生物膜。

1.6 盆栽防效试验
1.6.1 盆栽试验设计

试验菌株为筛选获得的拮抗菌假单胞菌FC-17,马铃薯品种为“陇薯7号”和“大西洋”,试验共设4个处理,分别为CK、R、FR和F(表1)。盆栽试验于2021年秋季在四川大学生命科学学院温室中进行,昼/夜空气温度22 ℃/25 °C,湿度45%~60%。马铃薯种植1 d,F和FR处理灌施FC-17菌液,CK和R处理加等量无菌水作对照;播种15 d马铃薯出苗约1 cm时,对R和FR处理马铃薯伤根接种青枯菌。拮抗菌和青枯菌菌液浓度均为109 cfu/mL,均只施加1次,具体处理及用量参照表1

表1   盆栽防治效果试验设计

Table 1  Experimental design of pot control effect

处理Treatment添加物(盆)Supplement (pot)
R20 mL无菌水+10 mL青枯菌菌液
FR20 mL拮抗菌菌液+10 mL青枯菌菌液
F20 mL拮抗菌菌液
CK30 mL无菌水

新窗口打开| 下载CSV


每盆2~5株马铃薯苗,每个处理设9个(陇薯7号)或5个重复(大西洋)。

1.6.2 防治效果试验判定标准

马铃薯植株在施加青枯菌20~30 d后开始出现青枯病症,待第1株病株出现时每隔5 d观察各处理发病情况,共观察20 d。病情严重度分级如下,0级:健康植株;1级:1%~25%叶片发病;2级:26%~50%叶片发病;3级:51%~75%叶片发病;4级:76%~100%叶片发病。计算公式[28-29]如下:

病情指数(DI)=[∑(每个病级的植株数×级别数)/(调查总植株数×最高级别数)]×100;

防治效果(BE,%)=[(R的病情指数-试验处理的病情指数)/R的病情指数]×100。

1.7 数据处理

采用Microsoft Excel 2010软件进行数据统计处理,釆用SPSS 18.0软件进行数据分析,用Duncan法进行差异显著性多重比较(P<0.05)。

2 结果与分析

2.1 拮抗菌的分离筛选及其抑菌广谱性

采用平板初筛、划线纯化和牛津杯打孔复筛的方法,从海南、宁夏、四川正常马铃薯、番茄、茄子及辣椒的根际土壤中筛选出6株对马铃薯青枯菌M1.12有较好抑菌效果的拮抗菌,分别命名为XC-1、XC-2、FC-11、FC-17、HN-9和NX-18(图1a)。进一步测定6株拮抗菌对分离自番茄和烟草的青枯菌的拮抗活性,结果如图1b~c所示。平板结果显示,6株拮抗菌对马铃薯、番茄和烟草青枯菌均表现出拮抗活性,抑菌圈直径如表2所示,其中抑制能力较强的是NX-18,其次是XC-2、FC-17和HN-9。

图1

图1   拮抗菌对3株青枯菌的抑制作用

(a)~(c) 培养基里依次包埋马铃薯、番茄和烟草青枯菌,样品孔里为不同拮抗菌的菌液50 μL(OD600nm=5.0)。

Fig.1   Inhibitory effect of antagonistic bacteria against three strains of R.solanacearum

Agar medium (a)-(c) were embedded with R. solanacearum strains from potato, tomato and tobacco, respectively. The loading volume of antagonistic bacteria was 50 μL (OD600nm=5.0) per well.


表2   6株拮抗菌对3种青枯菌的抑菌圈直径

Table 2  Inhibition zone diameter of six antagonistic bacterias against three strains of R.solanacearum mm

菌株名称
Strain name
青枯菌来源Source of R. solanacearum
马铃薯Potato番茄Tomato烟草Tobacco
XC-14.40±0.74c3.91±0.30d4.38±0.74d
XC-27.38±0.98b9.41±0.45b9.03±0.59b
FC-116.61±0.34b5.54±0.82c6.64±0.34c
FC-176.90±0.79b8.26±0.62b8.41±0.34b
HN-97.11±0.91b8.83±0.80b8.96±0.81b
NX-1810.14±0.74a11.98±0.80a10.70±0.53a

不同小写字母表示差异显著(P < 0.05)。

Different lowercase letters indicate significant differences (P < 0.05).

新窗口打开| 下载CSV


2.2 拮抗菌的分子鉴定及形态特征

对分离到的6株拮抗菌提取基因组DNA,分别扩增16S rRNA基因序列和基因间隔区(ITS)序列,电泳(图2)显示目的基因片段分别在1450和1000 bp左右。根据16S rRNA基因序列及ITS序列比对结果,判断菌株XC-1为Pseudomonas palleroniana,菌株XC-2和HN-9为Lysinibacillus fusiformis;菌株FC-11为Kosakonia cowanii,菌株FC-17为Pseudomonas frederiksbergensis;菌株NX-18为Lysinibacillus sphaericus,6株菌与各参比菌株的16S rRNA相似性均高于99.5%,ITS序列相似性均高于98.5%。菌株XC-2、HN-9和NX-18为革兰氏阳性菌,菌株XC-1、FC-11和FC-17为革兰氏阴性菌。6株菌在NA平板上的菌落形态如图3所示,菌株XC-2和HN-9菌落具有较强的粘附性;菌株FC-17菌落呈浅黄色;菌株NX-18菌落呈微黄色。

图2

图2   拮抗菌16S rRNA基因及基因间隔区PCR扩增产物电泳图

(a)为16S rRNA基因扩增产物电泳图,M为λ-Eco I T-14 digest;(b)为16S至23S基因间隔区扩增产物电泳图,M为1kb plus DNA Ladder。1~6分别为菌株XC-1、XC-2、FC-11、FC-17、HN-9和NX-18。

Fig.2   Electrophoresis of PCR products amplified from antagonistic bacteria 16S rRNA and internal transcribed spacer

(a): Amplification of 16S rRNA, M represents λ-Eco I T-14 digest marker; (b): Amplification of internal transcribed spacer between 16S and 23S rRNA, M represents 1 kb plus DNA Ladder; 1-6 represent XC-1, XC-2, FC-11, FC-17, HN-9 and NX-18, respectively.


图3

图3   拮抗菌菌落形态

菌株划线后在30 ℃静置培养48 h。

Fig.3   Colony morphology of antagonistic bacteria

Strains were incubated at 30 ℃ for 48 h after streaking.


2.3 拮抗菌产相关抑菌物质分析

拮抗菌可通过分泌次生代谢产物、抗菌肽、铁载体、防御酶、蛋白酶等物质直接作用于病原菌产生拮抗作用。本试验对拮抗菌进行了蛋白酶、铁载体及生物膜形成能力检测,以初步分析不同拮抗菌的可能作用机制。蛋白酶测定(图4a)显示,菌株XC-1、XC-2和HN-9周围出现较大透明水解圈,表明3株菌均产蛋白酶,其中XC-1菌株产蛋白酶能力最强。铁载体试验中,XC-1、FC-11和FC-17菌株均使铬天青染液由蓝色变为紫红色,表明能产生铁载体,其中FC-17菌株产铁载体能力最强(图4b);产生物膜试验中,菌株XC-1和FC-11的试管壁上出现紫色环痕,表明其具有形成生物膜的能力(图4c)。6株拮抗菌中,菌株XC-1同时具有产蛋白酶、铁载体和生物膜的3种能力;菌株FC-11具有产铁载体及生物膜的2种能力;菌株XC-2和HN-9只产蛋白酶;菌株FC-17只具有产铁载体的能力。菌株NX-18不具有试验所检测的3种拮抗物质,可能通过其他机制发挥拮抗作用。

图4

图4   拮抗菌抑菌物质的测定

(a) 蛋白酶;(b) 铁载体;(c) 生物膜;“+”:短小芽孢杆菌SCU11,“-”:大肠杆菌MG1655,CK:空白对照。

Fig.4   Determination of antibacterial substances of antagonistic bacteria

(a) protease; (b) siderophore; (c) biofilm.“+”: Bacillus pumilus SCU11,“-”: Escherichia coli MG1655, CK: blank control.


2.4 温室盆栽防效试验

马铃薯青枯菌拮抗试验结果显示,拮抗活性较好的菌株为XC-2、FC-17、HN-9和NX-18;其中XC-2和HN-9菌株具有产蛋白酶能力,FC-17具有较好的产铁载体能力,NX-18菌株的抑菌物质暂不明确。综合考虑拮抗效果及拮抗机制,选用XC-2和FC-17进行盆栽防效预试验,预试验中FC-17表现出更好的生防效果,因此进行盆栽试验。

马铃薯播种1 d后灌施FC-17菌液,出苗约1 cm时伤根接种马铃薯青枯菌M1.12。室内光照不足导致马铃薯植株较为纤细,各处理植物生长状况无明显差异。R处理马铃薯植株在播种30~35 d后开始出现青枯病症,下部叶片先失水萎蔫,上部叶片失水萎蔫后全株萎蔫下垂,发病严重植株出现倒伏,FR处理少数植株出现叶片萎蔫,播种45 d后所有植株生长状况如图5所示。对防治效果进行统计,FC-17对“陇薯7号”和“大西洋”马铃薯的生物防治效果分别为79.46%和70.83%(表3),表明FC-17菌株能有效防治马铃薯青枯病。

图5

图5   拮抗菌FC-17对马铃薯青枯病的防治作用

(a)和(b)分别为“陇薯7号”和“大西洋”马铃薯,均拍摄于播种后45 d,最右侧为患病叶特写。

Fig.5   Effects of FC-17 on the suppression of potato bacterial wilt

(a) and (b) were Longshu 7 and Atlantic, respectively, pictures were taken at 45 days after seeding, and the enlargement of infected leaf is shown on the right of the picture.


表3   盆栽试验FC-17对马铃薯青枯病的防治效果统计

Table 3  Statistics for the suppression of FC-17 on potato bacterial wilt in pots

马铃薯品种
Potato cultivar
处理
Treatment
病情指数
Disease index
防治效果
Control effect (%)
陇薯7号
Longshu 7
R45.37±18.49
FR9.52±16.49*79.46
F
CK
大西洋
Atlantic
R52.68±16.04
FR15.18±15.64*70.83
F
CK

*”表示同一品种FR和R处理的发病率在P < 0.05水平有显著差异。

*” indicates significant differences between FR and R treatments at P < 0.05 level.

新窗口打开| 下载CSV


3 讨论

青枯病是世界范围内的毁灭性细菌病害,其预防和控制一直是研究的热点和难点,生物防治菌株的应用为其防治提供了一条重要的解决途径。各国学者一直在从事针对马铃薯青枯病生防菌的研究,虽取得了一定的进展,但马铃薯青枯病生物防治菌种资源仍相对较少。

假单胞菌是一类根际有益菌,在植物根围繁殖能力强,具有杀虫、改善植物营养、降解有毒物质、产生抗生素和植物生长调节物质、改善植物微环境和诱导系统抗性等生物防治作用。相关研究[30-33]发现,P. frederiksbergensis还具有解磷作用,该菌能够将土壤中的不溶性磷源溶解成为可溶性磷,并显著促进植物生长。Weller[34]认为,假单胞菌能够作为生防微生物,主要有以下几个优点:(1)生长速度快,适合大量发酵生产;(2)能迅速利用种子和根系分泌物;(3)不管是土壤习居还是植物内生假单胞菌,都有很强的定殖和繁殖能力;(4)多数假单胞菌能合成有益次生代谢物,如抗生素、铁载体及其他促生物质;(5)适应环境压力能力强,假单胞菌可优先利用根分泌物和根际土壤中的养料,获得竞争优势,占据根际生态位,减少病原菌生长所必需的营养物质,从而抑制病原菌生长[35]。国内外报道的用于防治青枯病的假单胞菌较多,Anuratha等[36]利用荧光假单胞菌进行烟草盆栽试验取得了良好的防治效果,推测假单胞菌产生的抗生素和噬铁素对烟草青枯病有较好的抑制作用。Ramesh等[37]从稻谷、茄子和秋葵等多种作物的根际土壤中分离筛选出18株对茄子青枯菌有较好拮抗活性的假单胞菌。魏春妹等[38]报道在温室条件下,假单胞菌B4-2-2对番茄青枯病的生物防治效果可达70%以上。除假单胞菌可用于马铃薯青枯病的防治外,芽孢杆菌对青枯病也具有良好的防治效果。徐进等[39]用筛选的2株枯草芽孢杆菌制成生物防治菌剂不仅可以控制马铃薯青枯病的发生,而且对马铃薯有促生增产作用。丁传雨[40]从健康植株根际土壤中分离出的解淀粉芽孢杆菌LH23和枯草芽孢杆菌LH36对马铃薯青枯菌也有较好拮抗作用,温室盆栽防治效果分别可达53.9%和50.0%。郑新艳[41]将分离得到的芽孢杆菌T3制备生物有机肥,温室防控效果高达79.44%。

假单胞菌是一种重要的生防菌,本试验中拮抗菌FC-17是从土壤中分离筛选出的假单胞菌,温室防效可达70.83%和79.46%,有效地控制了青枯病的发生。本试验仅在温室条件下对拮抗菌进行了防治效果验证,拮抗菌的田间应用会受降水、气温和土壤酸碱度等诸多因素影响,因此与室内防治效果可能存在差异。后续要应用于田间试验,需要进一步优化菌株发酵条件,确定其营养载体、配施药剂、田间控病效果、最佳施用次数和时期等。假单胞菌FC-17在马铃薯土传病害防控中的应用潜力还需要通过研发微生物制剂并开展大田防治效果试验加以验证。

4 结论

本研究共筛选得到6株对马铃薯青枯菌有抑制效果的拮抗菌,它们对分离自番茄和烟草的青枯菌也具有较好的抑制活性。采用拮抗菌假单胞菌FC-17进行马铃薯青枯病的生物防治效果试验,结果表明其对“陇薯7号”和“大西洋”的青枯病生防效率分别达到79.46%和70.83%。

参考文献

Hayward A C.

Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum

Annual Review of Phytopathology, 1991, 29(1):65-87.

DOI:10.1146/phyto.1991.29.issue-1      URL     [本文引用: 1]

Coll N S, Valls M.

Current knowledge on the Ralstonia solanacearum type III secretion system

Microbial Biotechnology, 2013, 6(6):614-620.

DOI:10.1111/mbt.2013.6.issue-6      URL     [本文引用: 1]

华静月, 张长龄, 何礼远.

我国马铃薯青枯菌菌系的初步研究

植物病理学报, 1985, 15(3):181-184.

[本文引用: 1]

Xavier A D, de Almeida J C F, de Melo A G, et al.

Characterization of CRISPR-Cas systems in the Ralstonia solanacearum species complex

Molecular Plant Pathology, 2019, 20(2):223-239.

DOI:10.1111/mpp.12750      PMID:30251378      [本文引用: 1]

Clustered regularly interspaced short palindromic repeats (CRISPRs) are composed of an array of short DNA repeat sequences separated by unique spacer sequences that are flanked by associated (Cas) genes. CRISPR-Cas systems are found in the genomes of several microbes and can act as an adaptive immune mechanism against invading foreign nucleic acids, such as phage genomes. Here, we studied the CRISPR-Cas systems in plant-pathogenic bacteria of the Ralstonia solanacearum species complex (RSSC). A CRISPR-Cas system was found in 31% of RSSC genomes present in public databases. Specifically, CRISPR-Cas types I-E and II-C were found, with I-E being the most common. The presence of the same CRISPR-Cas types in distinct Ralstonia phylotypes and species suggests the acquisition of the system by a common ancestor before Ralstonia species segregation. In addition, a Cas1 phylogeny (I-E type) showed a perfect geographical segregation of phylotypes, supporting an ancient acquisition. Ralstoniasolanacearum strains CFBP2957 and K60 were challenged with a virulent phage, and the CRISPR arrays of bacteriophage-insensitive mutants (BIMs) were analysed. No new spacer acquisition was detected in the analysed BIMs. The functionality of the CRISPR-Cas interference step was also tested in R. solanacearum CFBP2957 using a spacer-protospacer adjacent motif (PAM) delivery system, and no resistance was observed against phage phiAP1. Our results show that the CRISPR-Cas system in R. solanacearum CFBP2957 is not its primary antiviral strategy.© 2018 BSPP and John Wiley & Sons Ltd.

陈永芳, 何礼远, 徐进.

马铃薯青枯病的PCR检测

植物保护学报, 2005, 32(2):129-132.

[本文引用: 1]

李广存, 李成彤.

马铃薯青枯病菌的PE-ELISA检测

中国马铃薯, 2002(1):18-20.

[本文引用: 1]

邵凤成, 兰洪侠, 张雪梅, .

辣椒青枯病的发生与防治

中国农技推广, 2001(2):43.

[本文引用: 1]

赵从新, 郑宇峰, 王顺党.

番茄青枯病的发生与防治

云南农业科技, 2009(增2):96-97.

[本文引用: 1]

黄明媛, 顾文杰, 张发宝, .

番茄青枯病拮抗菌筛选鉴定及其发酵条件初探

微生物学通报, 2011, 38(2):214-220.

[本文引用: 1]

Philippot L, Raaijmakers J M, Lemanceau P, et al.

Going back to the roots: the microbial ecology of the rhizosphere

Nature Reviews Microbiology, 2013, 11(11):789-799.

DOI:10.1038/nrmicro3109      PMID:24056930      [本文引用: 1]

The rhizosphere is the interface between plant roots and soil where interactions among a myriad of microorganisms and invertebrates affect biogeochemical cycling, plant growth and tolerance to biotic and abiotic stress. The rhizosphere is intriguingly complex and dynamic, and understanding its ecology and evolution is key to enhancing plant productivity and ecosystem functioning. Novel insights into key factors and evolutionary processes shaping the rhizosphere microbiome will greatly benefit from integrating reductionist and systems-based approaches in both agricultural and natural ecosystems. Here, we discuss recent developments in rhizosphere research in relation to assessing the contribution of the micro- and macroflora to sustainable agriculture, nature conservation, the development of bio-energy crops and the mitigation of climate change.

Bender S F, Wagg C, van der Heijden M G A.

An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability

Trends in Ecology & Evolution, 2016, 31(6):440-452.

DOI:10.1016/j.tree.2016.02.016      URL     [本文引用: 1]

Bakker P, Pieterse C, Jonge R D, et al.

The soil-borne legacy

Cell, 2018, 172(6):1178-1180.

DOI:S0092-8674(18)30168-5      PMID:29522740      [本文引用: 1]

Plants greatly rely on their root microbiome for uptake of nutrients and protection against stresses. Recent studies have uncovered the involvement of plant stress responses in the assembly of plant-beneficial microbiomes. To facilitate durable crop production, deciphering the driving forces that shape the microbiome is crucial.Copyright © 2018 Elsevier Inc. All rights reserved.

Barrios E.

Soil biota, ecosystem services and land productivity

Ecological Economics, 2007, 64(2):269-285.

DOI:10.1016/j.ecolecon.2007.03.004      URL     [本文引用: 1]

曾庆伟, 温心怡, 吴小芹.

1株Pseudomonas frederiksbergensis JW-SD2的解磷特性及解磷条件研究

微生物学杂志, 2016, 36(1):11-16.

[本文引用: 1]

Lu Z Z, Peng L J, Ding H X.

Screening and identifying of Antagonistic actinomycetes against Ralstonia solancearum

Chinese Tobacco Chinese, 2013, 34(2):54-58.

[本文引用: 1]

熊仕俊, 孙成龙, 施闯, .

番茄青枯病菌拮抗放线菌的筛选及鉴定

北方园艺, 2014, 38(5):114-117.

[本文引用: 1]

Ran L X, Liu C Y, Wu G J, et al.

Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China

Biological Control, 2005, 32(1):111-120.

DOI:10.1016/j.biocontrol.2004.08.007      URL     [本文引用: 1]

雷娟, 段静波, 马寒, .

一株抗青枯假单胞菌放线菌的筛选、鉴定及发酵条件优化

应用与环境生物学报, 2010, 16(1):79-83.

[本文引用: 1]

Hu J, Wei Z, Friman V P, et al.

Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression

MBIO, 2016, 7(6):e01790.

[本文引用: 1]

Wei Z, Yang X M, Yin S X, et al.

Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field

Applied Soil Ecology, 2011, 48(2):152-159.

DOI:10.1016/j.apsoil.2011.03.013      URL     [本文引用: 1]

王迪, 申红妙, 冉隆贤.

内生枯草芽孢杆菌CN181防治桉树青枯病及促生作用研究

河北林果研究, 2015, 30(4):331-334.

[本文引用: 1]

乔俊卿, 陈志谊, 梁雪杰, .

枯草芽孢杆菌Bs916在番茄根部的定殖

江苏农业学报, 2015, 31(6):1278-1283.

[本文引用: 1]

Wang X F, Wei Z, Li M, et al.

Parasites and competitors suppress bacterial pathogen synergistically due to evolutionary trade-offs

Evolution, 2017, 71(3):733-746.

DOI:10.1111/evo.13143      PMID:27925169      [本文引用: 1]

Parasites and competitors are important for regulating pathogen densities and subsequent disease dynamics. It is, however, unclear to what extent this is driven by ecological and evolutionary processes. Here, we used experimental evolution to study the eco-evolutionary feedbacks among Ralstonia solanacearum bacterial pathogen, Ralstonia-specific phage parasite, and Bacillus amyloliquefaciens competitor bacterium in the laboratory and plant rhizosphere. We found that while the phage had a small effect on pathogen densities on its own, it considerably increased the R. solanacearum sensitivity to antibiotics produced by B. amyloliquefaciens. Instead of density effects, this synergy was due to phage-driven increase in phage resistance that led to trade-off with the resistance to B. amyloliquefaciens antibiotics. While no evidence was found for pathogen resistance evolution to B. amyloliquefaciens antibiotics, the fitness cost of adaptation (reduced growth) was highest when the pathogen had evolved in the presence of both parasite and competitor. Qualitatively similar patterns were found between laboratory and greenhouse experiments even though the evolution of phage resistance was considerably attenuated in the tomato rhizosphere. These results suggest that evolutionary trade-offs can impose strong constraints on disease dynamics and that combining phages and antibiotic-producing bacteria could be an efficient way to control agricultural pathogens.© 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

邱清华, 姬广海, 魏兰芳, .

马铃薯青枯病拮抗菌株的筛选

云南农业大学学报, 2002, 17(3):228-231.

[本文引用: 1]

Kheirandish Z, Harighi B.

Evaluation of bacterial antagonists of Ralstonia solanacearum,causal agent of bacterial wilt of potato

Biological Control, 2015, 86(7):14-19.

DOI:10.1016/j.biocontrol.2015.03.007      URL     [本文引用: 1]

熊汉琴. 番茄青枯病拮抗菌的筛选及其生防机制研究. 广州: 华南农业大学, 2016.

[本文引用: 1]

Zhou T T, Chen D, Li C Y, et al.

Isolation and characterization of Pseudomonas brassicacearum J 12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components

Microbiological Research, 2012, 167(7):388-394.

DOI:10.1016/j.micres.2012.01.003      URL     [本文引用: 1]

Tans-Kersten J, Brown D, Allen C.

Swimming motility, a virulence trait of Ralstonia solanacearum,is regulated by FlhDC and the plant host environment

Molecular Plant-Microbe Interactions, 2004, 17(6):686-695.

DOI:10.1094/MPMI.2004.17.6.686      PMID:15195951      [本文引用: 1]

Swimming motility allows the bacterial wilt pathogen Ralstonia solanacearum to efficiently invade and colonize host plants. However, the bacteria are essentially nonmotile once inside plant xylem vessels. To determine how and when motility genes are expressed, we cloned and mutated flhDC, which encodes a major regulator of flagellar biosynthesis and bacterial motility. An flhDC mutant was nonmotile and less virulent than its wild-type parent on both tomato and Arabidopsis; on Arabidopsis, the flhDC mutant also was less virulent than a nonmotile fliC flagellin mutant. Genes in the R. solanacearum motility regulon had strikingly different expression patterns in culture and in the plant. In culture, as expected, flhDC expression depended on PehSR, a regulator of early virulence factors; and, in turn, FlhDC was required for fliC (flagellin) expression. However, when bacteria grew in tomato plants, flhDC was expressed in both wild-type and pehR mutant backgrounds, although PehSR is necessary for motility both in culture and in planta. Both flhDC and pehSR were significantly induced in planta relative to expression levels in culture. Unexpectedly, the fliC gene was expressed in planta at cell densities where motile bacteria were not observed, as well as in a nonmotile flhDC mutant. Thus, expression of flhDC and flagellin itself are uncoupled from bacterial motility in the host environment, indicating that additional signals and regulatory circuits repress motility during plant pathogenesis.

Guo J H, Qi H Y, Guo Y H, et al.

Biocontrol of tomato wilt by plant growth-promoting rhizobacteria

Biological Control, 2004, 29(1):66-72.

DOI:10.1016/S1049-9644(03)00124-5      URL     [本文引用: 1]

金术超, 杜春梅, 平文祥, .

解磷微生物的研究进展

微生物学杂志, 2006, 26(2):73-78.

[本文引用: 1]

Selvakumar G, Mohan M, Kundu S, et al.

Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo)

Letters in Applied Microbiology, 2008, 46(2):171-175.

PMID:18028329      [本文引用: 1]

To determine the cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708).Serratia marcescens strain SRM was isolated from the flowers of summer squash plants, showing no apparent symptoms of yellow vine disease. It was evaluated for growth and plant growth promotion attributes at 15 and 4 degrees C. At 15 degrees C, the isolate was able to solubilize 76.6 microg ml(-1) of P and produce Indole Acetic Acid, IAA (11.1 microg ml(-1)). HCN and siderophore production were also detected at 15 degrees C. The isolate retained all the plant growth promotion traits at 4 degrees C. Seed bacterization with the isolate significantly enhanced plant biomass and nutrient uptake of wheat seedlings grown in cold temperatures.Serratia marcescens strain SRM is a promising cold-tolerant isolate that can significantly influence wheat seedling growth at cold temperatures.This strain can be employed as a bioinoculant in cold temperature conditions.

Ahemad M, Khan M S.

Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere

Chemosphere, 2012, 86(9):945-950.

DOI:10.1016/j.chemosphere.2011.11.013      URL     [本文引用: 1]

Pieterse C M J, de Jonge R, Berendsen R L.

The soil-borne supremacy

Trends in Plant Science, 2016, 21(3):171-173.

DOI:S1360-1385(16)00034-0      PMID:26853594      [本文引用: 1]

The rhizosphere microbiome plays an important role in plant growth, nutrition and health. Recent research unearthed that plant genotype-dependent navigation of microbial community composition in the rhizosphere is associated with fitness consequences for the host plant, providing great promise for breeding soil-borne supremacy traits into future crops. Copyright © 2016 Elsevier Ltd. All rights reserved.

Weller D M.

Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years

Phytopathology, 2007, 97(2):250-256.

DOI:10.1094/PHYTO-97-2-0250      PMID:18944383      [本文引用: 1]

Pseudomonas spp. are ubiquitous bacteria in agricultural soils and have many traits that make them well suited as biocontrol agents of soilborne pathogens. Tremendous progress has been made in characterizing the process of root colonization by pseudomonads, the biotic and abiotic factors affecting colonization, bacterial traits and genes contributing to rhizosphere competence, and the mechanisms of pathogen suppression. This review looks back over the last 30 years of Pseudomonas biocontrol research and highlights key studies, strains, and findings that have had significant impact on shaping our current understanding of biological control by bacteria and the direction of future research.

O'sullivan D J, O'Gara F.

Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens

Microbiological Reviews, 1992, 56(4):662-676.

DOI:10.1128/mr.56.4.662-676.1992      URL     [本文引用: 1]

Certain members of the fluorescent pseudomonad group have been shown to be potential agents for the biocontrol of plant root diseases. The major problems with the commercialization of these beneficial strains are that few wild-type strains contain all the desired characteristics for this process and the performance of strains in different soil and climatic conditions is not reproducible. Consequently, prior to selection and/or improvement of suitable strains for biocontrol purposes, it is necessary to understand the important traits required for this purpose. The production of fluorescent siderophores (iron-binding compounds) and antibiotic compounds has been recognized as important for the inhibition of plant root pathogens. Efficient root colonization is also a prerequisite for successful biocontrol strains. This review discusses some of the characteristics of fluorescent pseudomonads that have been suggested to be important for biocontrol. The genetic organization and regulation of these processes is also examined. This information is necessary for attempts aimed at the improvement of strains based on deregulating pathways or introducing traits from one strain to another. The release of genetically engineered organisms into the environment is governed by regulations, and this aspect is summarized. The commercialization of fluorescent pseudomonads for the biological control of plant root diseases remains an exciting possibility. The understanding of the relevant characteristics will facilitate this process by enabling the direct selection and/or construction of strains which will perform under a variety of environmental conditions.

Anuratha C S, Gnanamanickam S S.

Biological control of bacterial wilt caused by Pseudomonas solanacearum in India with antagonistic bacteria

Plant and Soil, 1990, 124(1):109-116.

DOI:10.1007/BF00010938      URL     [本文引用: 1]

Ramesh R, Phadke G S.

Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum

Crop Protection, 2012, 37(7):35-41.

DOI:10.1016/j.cropro.2012.02.008      URL     [本文引用: 1]

魏春妹, 张春明, 陶树玉, .

番茄青枯病生防制剂的研制与应用(综述)

上海农业学报, 2000, 16(4):69-72.

[本文引用: 1]

徐进, 何礼远, 冯洁, .

生防细菌对马铃薯青枯病的防病增产作用研究

植物保护, 2003, 29(5):40-42.

[本文引用: 1]

丁传雨. 生物有机肥对土传马铃薯青枯病的防控技术及机理研究. 南京: 南京农业大学, 2012.

[本文引用: 1]

郑新艳. 马铃薯土传青枯病拮抗菌的筛选鉴定及其生态效应. 南京: 南京农业大学, 2012.

[本文引用: 1]

/