作物杂志,2024, 第2期: 242–248 doi: 10.16035/j.issn.1001-7283.2024.02.030

• 植物保护 • 上一篇    下一篇

马铃薯青枯病拮抗菌的筛选及温室防治效果研究

李盛(), 李翔, 朱美如, 王夏, 李昊阳, 谭欣如, 王海燕()   

  1. 四川大学生命科学学院/生物资源与生态环境教育部重点实验室,610065,四川成都
  • 收稿日期:2023-03-06 修回日期:2023-03-23 出版日期:2024-04-15 发布日期:2024-04-15
  • 通讯作者: 王海燕,研究方向为微生物遗传学,E-mail:hayawang@scu.edu.cn
  • 作者简介:李盛,研究方向为植物细菌病害,E-mail:1798861540@qq.com
  • 基金资助:
    国家自然科学基金(32060720)

Screening of Antagonistic Bacteria against Potato Bacterial Wilt and Study on Its Control Effect in Greenhouse

Li Sheng(), Li Xiang, Zhu Meiru, Wang Xia, Li Haoyang, Tan Xinru, Wang Haiyan()   

  1. College of Life Sciences, Sichuan University/Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu 610065, Sichuan, China
  • Received:2023-03-06 Revised:2023-03-23 Online:2024-04-15 Published:2024-04-15

摘要:

马铃薯青枯病是由青枯雷尔氏菌(Ralstonia solanacearum E.F. Smith)引起的毁灭性土传病害,筛选对马铃薯青枯病有良好防效的生防菌株具有重要意义。本研究从健康马铃薯、番茄、茄子和辣椒植株根际土壤中筛选鉴定出对马铃薯、番茄和烟草青枯病菌均具有较好抑制活性的6株拮抗菌,经分子生物学鉴定为赖氨酸芽胞杆菌(Lysinibacillus sp.)、假单胞菌(Pseudomonas sp.)和科萨克氏菌(Kosakonia sp.),分别具有产蛋白酶、铁载体和生物膜抑菌代谢物的能力。拮抗菌假单胞菌FC-17对“陇薯7号”和“大西洋”马铃薯青枯病的温室防治效果分别达到79.46%和70.83%,具有应用前景。

关键词: 马铃薯青枯病, 拮抗细菌, 抑菌代谢物, 防治效果

Abstract:

Bacterial wilt of potato is a destructive soil-borne disease caused by Ralstonia solanacearum. Screening antagonistic bacteria against pathogen is a vital work for the biocontrol of potato bacterial wilt. Six isolates with good inhibitory effect on three R.solanacearum strains of potato, tomato and tobacco were isolated from the rhizosphere soil of healthy potato, tomato, eggplant and pepper plants. They were identified as Lysinibacillus sp., Pseudomonas sp. and Kosakonia sp. through molecular detection, and it had the ability to produce protease, siderophor and biofilm, respectively. In greenhouse, strain FC-17 significantly reduced disease incidence by 79.46% and 70.83% on potato cultivars “Longshu 7” and “Atlantic”, respectively, indicating good potential for biocontrol of potato bacterial wilt.

Key words: Potato bacterial wilt, Antagonistic bacteria, Antimicrobial metabolites, Control effect

表1

盆栽防治效果试验设计

处理Treatment 添加物(盆)Supplement (pot)
R 20 mL无菌水+10 mL青枯菌菌液
FR 20 mL拮抗菌菌液+10 mL青枯菌菌液
F 20 mL拮抗菌菌液
CK 30 mL无菌水

图1

拮抗菌对3株青枯菌的抑制作用 (a)~(c) 培养基里依次包埋马铃薯、番茄和烟草青枯菌,样品孔里为不同拮抗菌的菌液50 μL(OD600nm=5.0)。

表2

6株拮抗菌对3种青枯菌的抑菌圈直径

菌株名称
Strain name
青枯菌来源Source of R. solanacearum
马铃薯Potato 番茄Tomato 烟草Tobacco
XC-1 4.40±0.74c 3.91±0.30d 4.38±0.74d
XC-2 7.38±0.98b 9.41±0.45b 9.03±0.59b
FC-11 6.61±0.34b 5.54±0.82c 6.64±0.34c
FC-17 6.90±0.79b 8.26±0.62b 8.41±0.34b
HN-9 7.11±0.91b 8.83±0.80b 8.96±0.81b
NX-18 10.14±0.74a 11.98±0.80a 10.70±0.53a

图2

拮抗菌16S rRNA基因及基因间隔区PCR扩增产物电泳图 (a)为16S rRNA基因扩增产物电泳图,M为λ-Eco I T-14 digest;(b)为16S至23S基因间隔区扩增产物电泳图,M为1kb plus DNA Ladder。1~6分别为菌株XC-1、XC-2、FC-11、FC-17、HN-9和NX-18。

图3

拮抗菌菌落形态 菌株划线后在30 ℃静置培养48 h。

图4

拮抗菌抑菌物质的测定 (a) 蛋白酶;(b) 铁载体;(c) 生物膜;“+”:短小芽孢杆菌SCU11,“-”:大肠杆菌MG1655,CK:空白对照。

图5

拮抗菌FC-17对马铃薯青枯病的防治作用 (a)和(b)分别为“陇薯7号”和“大西洋”马铃薯,均拍摄于播种后45 d,最右侧为患病叶特写。

表3

盆栽试验FC-17对马铃薯青枯病的防治效果统计

马铃薯品种
Potato cultivar
处理
Treatment
病情指数
Disease index
防治效果
Control effect (%)
陇薯7号
Longshu 7
R 45.37±18.49
FR 9.52±16.49* 79.46
F
CK
大西洋
Atlantic
R 52.68±16.04
FR 15.18±15.64* 70.83
F
CK
[1] Hayward A C. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology, 1991, 29(1):65-87.
doi: 10.1146/phyto.1991.29.issue-1
[2] Coll N S, Valls M. Current knowledge on the Ralstonia solanacearum type III secretion system. Microbial Biotechnology, 2013, 6(6):614-620.
doi: 10.1111/mbt.2013.6.issue-6
[3] 华静月, 张长龄, 何礼远. 我国马铃薯青枯菌菌系的初步研究. 植物病理学报, 1985, 15(3):181-184.
[4] Xavier A D, de Almeida J C F, de Melo A G, et al. Characterization of CRISPR-Cas systems in the Ralstonia solanacearum species complex. Molecular Plant Pathology, 2019, 20(2):223-239.
doi: 10.1111/mpp.12750 pmid: 30251378
[5] 陈永芳, 何礼远, 徐进. 马铃薯青枯病的PCR检测. 植物保护学报, 2005, 32(2):129-132.
[6] 李广存, 李成彤. 马铃薯青枯病菌的PE-ELISA检测. 中国马铃薯, 2002(1):18-20.
[7] 邵凤成, 兰洪侠, 张雪梅, 等. 辣椒青枯病的发生与防治. 中国农技推广, 2001(2):43.
[8] 赵从新, 郑宇峰, 王顺党. 番茄青枯病的发生与防治. 云南农业科技, 2009(增2):96-97.
[9] 黄明媛, 顾文杰, 张发宝, 等. 番茄青枯病拮抗菌筛选鉴定及其发酵条件初探. 微生物学通报, 2011, 38(2):214-220.
[10] Philippot L, Raaijmakers J M, Lemanceau P, et al. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 2013, 11(11):789-799.
doi: 10.1038/nrmicro3109 pmid: 24056930
[11] Bender S F, Wagg C, van der Heijden M G A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology & Evolution, 2016, 31(6):440-452.
doi: 10.1016/j.tree.2016.02.016
[12] Bakker P, Pieterse C, Jonge R D, et al. The soil-borne legacy. Cell, 2018, 172(6):1178-1180.
doi: S0092-8674(18)30168-5 pmid: 29522740
[13] Barrios E. Soil biota, ecosystem services and land productivity. Ecological Economics, 2007, 64(2):269-285.
doi: 10.1016/j.ecolecon.2007.03.004
[14] 曾庆伟, 温心怡, 吴小芹. 1株Pseudomonas frederiksbergensis JW-SD2的解磷特性及解磷条件研究. 微生物学杂志, 2016, 36(1):11-16.
[15] Lu Z Z, Peng L J, Ding H X. Screening and identifying of Antagonistic actinomycetes against Ralstonia solancearum. Chinese Tobacco Chinese, 2013, 34(2):54-58.
[16] 熊仕俊, 孙成龙, 施闯, 等. 番茄青枯病菌拮抗放线菌的筛选及鉴定. 北方园艺, 2014, 38(5):114-117.
[17] Ran L X, Liu C Y, Wu G J, et al. Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China. Biological Control, 2005, 32(1):111-120.
doi: 10.1016/j.biocontrol.2004.08.007
[18] 雷娟, 段静波, 马寒, 等. 一株抗青枯假单胞菌放线菌的筛选、鉴定及发酵条件优化. 应用与环境生物学报, 2010, 16(1):79-83.
[19] Hu J, Wei Z, Friman V P, et al. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. MBIO, 2016, 7(6):e01790.
[20] Wei Z, Yang X M, Yin S X, et al. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Applied Soil Ecology, 2011, 48(2):152-159.
doi: 10.1016/j.apsoil.2011.03.013
[21] 王迪, 申红妙, 冉隆贤. 内生枯草芽孢杆菌CN181防治桉树青枯病及促生作用研究. 河北林果研究, 2015, 30(4):331-334.
[22] 乔俊卿, 陈志谊, 梁雪杰, 等. 枯草芽孢杆菌Bs916在番茄根部的定殖. 江苏农业学报, 2015, 31(6):1278-1283.
[23] Wang X F, Wei Z, Li M, et al. Parasites and competitors suppress bacterial pathogen synergistically due to evolutionary trade-offs. Evolution, 2017, 71(3):733-746.
doi: 10.1111/evo.13143 pmid: 27925169
[24] 邱清华, 姬广海, 魏兰芳, 等. 马铃薯青枯病拮抗菌株的筛选. 云南农业大学学报, 2002, 17(3):228-231.
[25] Kheirandish Z, Harighi B. Evaluation of bacterial antagonists of Ralstonia solanacearum,causal agent of bacterial wilt of potato. Biological Control, 2015, 86(7):14-19.
doi: 10.1016/j.biocontrol.2015.03.007
[26] 熊汉琴. 番茄青枯病拮抗菌的筛选及其生防机制研究. 广州: 华南农业大学, 2016.
[27] Zhou T T, Chen D, Li C Y, et al. Isolation and characterization of Pseudomonas brassicacearum J 12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiological Research, 2012, 167(7):388-394.
doi: 10.1016/j.micres.2012.01.003
[28] Tans-Kersten J, Brown D, Allen C. Swimming motility, a virulence trait of Ralstonia solanacearum,is regulated by FlhDC and the plant host environment. Molecular Plant-Microbe Interactions, 2004, 17(6):686-695.
doi: 10.1094/MPMI.2004.17.6.686 pmid: 15195951
[29] Guo J H, Qi H Y, Guo Y H, et al. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biological Control, 2004, 29(1):66-72.
doi: 10.1016/S1049-9644(03)00124-5
[30] 金术超, 杜春梅, 平文祥, 等. 解磷微生物的研究进展. 微生物学杂志, 2006, 26(2):73-78.
[31] Selvakumar G, Mohan M, Kundu S, et al. Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Letters in Applied Microbiology, 2008, 46(2):171-175.
pmid: 18028329
[32] Ahemad M, Khan M S. Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere, 2012, 86(9):945-950.
doi: 10.1016/j.chemosphere.2011.11.013
[33] Pieterse C M J, de Jonge R, Berendsen R L. The soil-borne supremacy. Trends in Plant Science, 2016, 21(3):171-173.
doi: S1360-1385(16)00034-0 pmid: 26853594
[34] Weller D M. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology, 2007, 97(2):250-256.
doi: 10.1094/PHYTO-97-2-0250 pmid: 18944383
[35] O'sullivan D J, O'Gara F. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiological Reviews, 1992, 56(4):662-676.
doi: 10.1128/mr.56.4.662-676.1992
[36] Anuratha C S, Gnanamanickam S S. Biological control of bacterial wilt caused by Pseudomonas solanacearum in India with antagonistic bacteria. Plant and Soil, 1990, 124(1):109-116.
doi: 10.1007/BF00010938
[37] Ramesh R, Phadke G S. Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum. Crop Protection, 2012, 37(7):35-41.
doi: 10.1016/j.cropro.2012.02.008
[38] 魏春妹, 张春明, 陶树玉, 等. 番茄青枯病生防制剂的研制与应用(综述). 上海农业学报, 2000, 16(4):69-72.
[39] 徐进, 何礼远, 冯洁, 等. 生防细菌对马铃薯青枯病的防病增产作用研究. 植物保护, 2003, 29(5):40-42.
[40] 丁传雨. 生物有机肥对土传马铃薯青枯病的防控技术及机理研究. 南京: 南京农业大学, 2012.
[41] 郑新艳. 马铃薯土传青枯病拮抗菌的筛选鉴定及其生态效应. 南京: 南京农业大学, 2012.
[1] 任美凤,董晋明,李大琪,张萌,杨静,陆俊姣. 不同种衣剂对红芸豆根腐病防治效果研究[J]. 作物杂志, 2019, (5): 200–204
[2] 刘振兴,周桂梅,陈健,赵晖. 几种生物农药对绿豆叶斑病的防治效果[J]. 作物杂志, 2018, (6): 154–157
[3] 蒋继志,王游游,王雪宁,李丽艳,万安琪,李明. 致病疫霉拮抗细菌SR13-2菌株的鉴定及对马铃薯离体组织的防病作用[J]. 作物杂志, 2017, (3): 146–150
[4] 张雪娇,石晶晶,常娜,张雅琴,齐永志,甄文超,尹宝重. 河北省冬小麦赤霉病拮抗细菌的分离与鉴定[J]. 作物杂志, 2017, (2): 157–162
[5] 罗宝君. 螟黄赤眼蜂对向日葵螟的防治效果研究[J]. 作物杂志, 2015, (4): 157–160
[6] 冯成玉, 吉用栓. 几种杀虫剂对稻纵卷叶螟的防治效果[J]. 作物杂志, 2014, (6): 135–139
[7] 何付丽, 陈丽丽, 郭晓慧, 等. 稀禾啶、烯草酮等6种除草剂对不同叶龄期野黍的防治效果比较[J]. 作物杂志, 2013, (1): 112–116
[8] 冯成玉, 张维根, 陆晓峰. 不同药剂对稻田稻螟蛉的防治效果[J]. 作物杂志, 2010, (2): 91–92
[9] 张雷. 黑河地区大豆根潜蝇可控制技术的研究[J]. 作物杂志, 2008, (6): 85–87
[10] 冯成玉, 于宝富, 陆晓峰, 等. 不同杀虫剂对稻纵卷叶螟和稻飞虱的防治效果[J]. 作物杂志, 2008, (4): 80–82
[11] 邱清华, 邓绍云. 拮抗细菌处理种薯对马铃薯发芽、植株生长及产量的影响[J]. 作物杂志, 2008, (3): 43–45
[12] 陈雪, 李宝聚, 傅俊范, 等. 石硫合剂在黄瓜叶面病害防治中的应用[J]. 作物杂志, 2008, (2): 54–56
[13] 崔苗青. 芝麻田小地老虎发生危害特性及防治技术[J]. 作物杂志, 2005, (1): 34–34
[14] 汪爱娟, 张风娣, 俞永远. 杭州地区四(2)代稻纵卷叶螟发生与防治[J]. 作物杂志, 2004, (5): 45–46
[15] 胡务义, 潘飞云, 郑明祥, 等. 豆突眼长蝽发生规律及防治技术的初步研究[J]. 作物杂志, 2003, (6): 26–27
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!