作物杂志, 2024, 40(3): 207-215 doi: 10.16035/j.issn.1001-7283.2024.03.028

生理生化·植物营养·栽培耕作

复合盐碱胁迫对不同谷子品种萌发期的影响及耐盐碱品种筛选

刘莹,1,2, 尹泽群1,2, 吴柏辰1, 徐明丽1, 刘畅1, 石慧姝1, 庞博1, 苗兴芬,1,2

1黑龙江八一农垦大学农学院,163319,黑龙江大庆

2黑龙江省农业科学院作物资源研究所,163319,黑龙江大庆

Effects of Compound Saline-Alkali Stress on Germination Period of Different Foxtail Millet Varieties and Screening of Saline-Alkali Tolerance Varieties

Liu Ying,1,2, Yin Zequn1,2, Wu Baichen1, Xu Mingli1, Liu Chang1, Shi Huishu1, Pang Bo1, Miao Xingfen,1,2

1Agricultural College of Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China

2Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Daqing 163319, Heilongjiang, China

通讯作者: 苗兴芬,研究方向为谷子育种及种子生理生化,E-mail:byndmxf@126.com

收稿日期: 2023-04-17   修回日期: 2023-07-7   网络出版日期: 2023-07-12

基金资助: 黑龙江省博士后启动项目(LRB13127567)
黑龙江省重点研发项目(GA21B009)

Received: 2023-04-17   Revised: 2023-07-7   Online: 2023-07-12

作者简介 About authors

刘莹,主要从事作物遗传育种研究,E-mail:1428858183@qq.com

摘要

为了探究复合盐碱胁迫对不同谷子品种萌发的影响,对100份谷子品种进行研究,选定2种中性盐(Na2SO4,NaCl)和2种碱性盐(NaHCO3,Na2CO3),按4:1:4:1(摩尔比)混合,随机选取5个供试品种进行耐盐碱性的浓度筛选,设0、20、40、60、80、100、120、150 mmol/L共8个处理,研究谷子品种萌发期盐碱胁迫条件下发芽率以及对根、芽的影响。结果表明,80 mmol/L的盐碱溶液是筛选谷子萌发期耐盐碱的最适浓度;在80 mmol/L盐碱浓度下,对100份谷子品种萌发期的耐盐碱性进行了综合评价,结果显示,各品种指标之间差异达到显著或极显著水平,各性状的变异系数从小到大为相对发芽率、相对发芽指数、相对芽长、相对芽干重、相对芽鲜重、相对发芽势、相对根长、相对根鲜重、相对根干重;根据综合评分值(D值),将100份谷子品种分为4个耐盐碱级别,分别为极耐盐碱品种8份、耐盐碱品种11份、中度耐盐碱品种62份、敏感盐碱品种19份。

关键词: 谷子; 盐碱胁迫; 萌发期; 品种筛选

Abstract

In order to explore the influence of compound saline-alkali stress on the germination of different foxtail millet varieties, 100 foxtail millet varieties were studied. Two neutral salts (Na2SO4, NaCl) and two alkaline salts (NaHCO3, Na2CO3) were selected and mixed according to the molar ratio of 4:1:4:1 and five tested varieties were randomly selected for salt-alkali tolerance concentration screening, eight treatments (0, 20, 40, 60, 80, 100, 120 and 150 mmol/L) were set. The germination rate of foxtail millet varieties under saline-alkali stress during germination stage and its influence on roots and buds were studied. The results showed that 80 mmol/L saline-alkali solution was the optimum concentration for screening the salt-alkali tolerance of foxtail millet during germination. The saline-alkali tolerance of 100 foxtail millet varieties at germination stage were comprehensively evaluated at 80 mmol/L saline-alkali concentration. The results showed that the differences among varieties reached significant and extremely significant levels, and the coefficient of variation of each characteristic was from small to large: relative germination rate, relative germination index, relative bud length, relative bud dry weight, relative bud fresh weight, relative germination potential, relative root length, relative root fresh weight and relative root dry weight. According to the comprehensive score value (D), 100 foxtail millet varieties were divided into four grades of saline-alkali tolerance, including eight varieties with extreme saline-alkali tolerance, 11 varieties with saline-alkali tolerance, 62 varieties with moderate saline-alkali tolerance and 19 saline-alkali sensitive varieties.

Keywords: Foxtail millet; Saline-alkali stress; Germination period; Variety screening

PDF (469KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘莹, 尹泽群, 吴柏辰, 徐明丽, 刘畅, 石慧姝, 庞博, 苗兴芬. 复合盐碱胁迫对不同谷子品种萌发期的影响及耐盐碱品种筛选. 作物杂志, 2024, 40(3): 207-215 doi:10.16035/j.issn.1001-7283.2024.03.028

Liu Ying, Yin Zequn, Wu Baichen, Xu Mingli, Liu Chang, Shi Huishu, Pang Bo, Miao Xingfen. Effects of Compound Saline-Alkali Stress on Germination Period of Different Foxtail Millet Varieties and Screening of Saline-Alkali Tolerance Varieties. Crops, 2024, 40(3): 207-215 doi:10.16035/j.issn.1001-7283.2024.03.028

盐碱胁迫是影响作物生长和生产力的主要非生物胁迫之一。全世界不同程度的盐碱化土地超过10亿hm2,中国有4000万hm2盐碱化土地,伴随着工业排污、农业生产中不合理的灌溉方式及过度使用农药化肥使环境恶化,导致生态系统遭到破坏,土壤盐碱化加剧,次生盐碱地面积逐年增加,综合治理盐碱地和提高植物的耐盐碱性已成为农业可持续发展和环境改善的重要内容[1]。盐碱胁迫是影响农业最严重的全球性问题之一[2],是限制作物生长发育和产量的重要因素[3-5]。土壤盐碱化问题是现在的重点研究方向,这个问题不仅影响植物的生长和发育,而且还会降低作物的产量和品质[6]。盐碱胁迫对于种子发芽和植物生长发育都有很大的影响[7]。谷子(Setariaitalic L.)是东亚地区一种重要的谷类作物[8],又称粟,是狗尾草属二倍体自花授粉作物,谷子的种植已有8000多年的历史,是一种起源于中国黄河流域的禾本科作物[9-11]。谷子具有粮饲兼用、抗旱耐瘠薄、适应性强等特性[12],是一种典型的环境友好型作物[13-15]。提高谷子品种的耐盐碱性是缓解盐碱地对谷子品种影响的有效生物学措施,也能产生较好的生态和经济效益,促进农业可持续发展[16],因此,研究盐碱胁迫对谷子发芽期的影响具有重要意义。本试验研究了盐碱胁迫对谷类种子萌发的影响和耐盐碱种质资源的筛选,从而筛选出一批抗性强、综合性状优良的种质资源,为研究谷类耐盐碱机制和选择耐盐碱的新品种提供基础材料。

1 材料与方法

1.1 供试材料

最适盐碱筛选浓度供试材料为山西乌谷、紫根谷子、钻头白、嫩选15、黄金吨谷;萌发期耐盐碱筛选试验材料为100份谷子品种(表1),由黑龙江八一农垦大学谷子研究室提供。

表1   100份供试谷子品种

Table 1  The 100 tested millet varieties

编号
Code
材料
Material
编号
Code
材料
Material
编号
Code
材料
Material
编号
Code
材料
Material
编号
Code
材料
Material
1紫根白21龙谷3541冀谷2261公矮9号81红粘谷
2峰红4号22磨里谷42赤优金苗1号62峰红3号82晋谷1号
3龙谷3123龙谷4643陇谷1363草谷1083四留钱
4龙谷3024刀把齐44九谷2064赤谷6号84峰红2号
5豫谷1825晋谷2945冀谷2565红久谷85长农47
6公矮2号26黑谷46赤谷2066赤谷8号86白根红黏
7大青叶粘谷27红钙谷47长农3567冀谷3987冀谷41
8公矮8号28大糟谷48草谷868燕谷2号88龙谷39
9金谷240129九谷1549大白谷69长生1389朝谷58
10龙谷2530勾根红50小黄谷70三三二90豫谷1号
11金苗K231小苗谷51嫩选1671山西红谷91豫谷35
12鸡西麻山32龙谷4752公谷8872赤谷2392白苗白流沙
13龙谷4433金苗1号53黄沙谷73龙谷3793龙谷38
14红谷09-134中谷2号54公谷83F274龙蛇谷94黄谷
15金穗黄谷子35燕谷1号55赤谷1075大粒系95绿谷王
16六一谷36晋谷2156宇谷1号76大青苗96红谷粒
17龙谷2437龙谷3257河北香谷77公矮5号97中谷9号
18大同2938龙谷2658九谷2378公谷7698金穗黄金谷
19张杂谷1339嫩选1859晋谷红谷79金穗光谷99张杂谷16
20林秋变40龙谷6560龙谷2780黄金苗100冀谷168

新窗口打开| 下载CSV


1.2 试验方法

1.2.1 萌发期谷子耐盐碱最适浓度筛选

试验选用2种中性盐(Na2SO4,NaCl)和2种碱性盐(NaHCO3,Na2CO3),按4:1:4:1(摩尔比)混合,复合盐碱浓度设20、40、60、80、100、120、150 mmol/L共8个处理浓度,在实验室内进行,从供试的种子中选取大小、形状、颜色、饱满度一致的种子用清水洗净,用75%的酒精消毒30 s,用蒸馏水不断清洗直至无味,然后将种子在1%的NaClO溶液中浸泡10 min,用蒸馏水清洗5次。用滤纸吸干种子表面水分,将50粒种子放在铺有一层滤纸的发芽盒中,每个处理3次重复,放于25 ℃恒温箱中培养,湿度为60%,每天光照时间12 h,在此期间,每天检查滤纸以保持湿度,并记录每天发芽的种子数量,发芽的标准是根和芽的直径超过种子的一半,并记录每天发芽种子的数量。于第3天测量发芽势,第7天计算发芽率。

1.2.2 萌发期谷子耐盐碱品种筛选

用筛选出的浓度80 mmol/L(Na2SO4:NaCl:NaHCO3:Na2CO3= 4:1:4:1)处理100份谷子品种,以蒸馏水处理作为对照,按照1.2.1中筛选浓度方法培养,3次重复。

1.2.3 萌发期谷子测定指标

以胚根、胚芽长度均超过种子直径一半为发芽标准,每日定时调查种子萌发数量,于第3天调查发芽势,第7天调查发芽率,第8天从每个重复中随机选取10株幼苗,用尺子测量根长和芽长;使用万分之一天平分别测定10株幼苗根鲜重和芽鲜重;然后用报纸把根和芽包好,放入烘箱中105 ℃下杀青30 min,再于80 ℃下烘干至恒重,称量干重。

发芽势(%)=3 d时发芽种子数/供试种子数× 100;

发芽率(%)=7 d时发芽种子数/供试种子数× 100;

发芽指数(GI)=∑(Gt/Dt),式中,Gt为在不同时间(t)的发芽个数,Dt为发芽天数;

相对发芽势(RGP,%)=处理发芽势/对照发芽势×100;

相对发芽率(RGR,%)=处理发芽率/对照发芽率×100;

相对发芽指数(RGI,%)=处理发芽指数/对照发芽指数×100;

相对活力指数(%)=处理活力指数/对照活力指数×100;

相对根长(RRL,%)=处理根长/对照根长×100;

相对芽长(RBL,%)=处理芽长/对照芽长×100;

相对根鲜重(RRFW,%)=处理根鲜重/对照根鲜重×100;

相对芽鲜重(RBFW,%)=处理芽鲜重/对照芽鲜重×100;

相对根干重(RRDW,%)=处理根干重/对照根干重×100;

相对芽干重(RBDW,%)=处理芽干重/对照芽干重×100;

综合耐盐碱指数(Zi)=ni=αixii=1,2,3,...,n),式中,αi是某一指标特征值所对应的特征向量;xi是指标相对值。

隶属函数值[µ(Zi)]=(ZiZimin)/(ZiZimax)(i=1,2,3,...,n),式中,µ为各试验材料第i个主成分的隶属函数值;Zi是各试验材料第i个的综合指标值;ZiminZimax分别为各试验材料的第i个综合指标的最小值和最大值。

权重(Wi)=Pi/nii=1,2,3,...,n),式中,Wi是各试验材料第i个综合指标的权重;Pi是各试验材料第i个综合指标的贡献率。

综合评分值(D)=ni=µ(ZiWii=1,2,3,...,n),式中,D值为复合盐碱胁迫下各试验材料利用主成分评价获得的综合评分值。

1.3 数据处理

采用Excel 2003软件、SPSS 17.0软件和DPS统计分析并整合数据,采用描述性统计、总体评估以及主成分分析和聚类分析处理数据。

2 结果与分析

2.1 不同浓度盐碱胁迫对谷子发芽率的影响

图1表2可知,在不同盐碱浓度处理下谷子发芽率、根长和芽长存在差异。发芽率是衡量种子质量的重要指标之一,在低浓度下,盐碱处理与对照的发芽率差异不明显,而谷子发芽率随着浓度的增加而下降,当浓度大于80 mmol/L时,总体发芽率呈急剧下降的趋势,当盐碱浓度达到150 mmol/L时,只有少数种子发芽,说明高浓度的盐碱胁迫明显抑制了种子的萌发。根长和芽长随着盐碱浓度的增加而受到抑制;当盐碱浓度达到80 mmol/L时,谷子的生长受到显著抑制,在120 mmol/L时谷子的芽长和根长受到强烈的抑制作用,对根的抑制程度比芽大。综合来看,当盐碱浓度为80 mmol/L时,与对照相比各品种的发芽率、根长、芽长都有明显差异,因此80 mmol/L的盐碱溶液为筛选谷子耐盐碱性的适宜浓度。

图1

图1   不同浓度盐碱胁迫对谷子发芽率的影响

Fig.1   The effects of different concentration saline-alkali stresses on the germination rate of millet


表2   不同盐碱胁迫对谷子根长和芽长的影响

Table 2  Effects of different saline-alkali stresses on root length and bud length of millet cm

编号
Code
材料
Material
0 mmol/L20 mmol/L40 mmol/L60 mmol/L80 mmol/L100 mmol/L120 mmol/L150 mmol/L
根长
Root
length
芽长
Bud
length
根长
Root
length
芽长
Bud
length
根长
Root
length
芽长
Bud
length
根长
Root
length
芽长
Bud
length
根长
Root
length
芽长
Bud
length
根长
Root
length
芽长
Bud
length
根长
Root
length
芽长
Bud
length
根长
Root
length
芽长
Bud
length
1山西乌谷6.101.855.532.063.381.901.941.591.051.210.270.370.100.260.000.00
2紫根谷子6.362.295.032.183.922.192.121.440.511.160.290.830.080.780.000.05
3钻头白5.033.605.012.052.661.290.871.360.940.780.120.410.180.460.060.01
4嫩选156.342.844.952.832.352.141.181.640.441.170.240.840.010.370.000.03
5黄金吨谷6.721.975.272.293.191.841.831.410.460.940.350.730.080.410.010.06

新窗口打开| 下载CSV


2.2 盐碱胁迫对谷子发芽指标的影响

表3可知,在80 mmol/L的盐碱胁迫下处理100份谷子品种,相对发芽势最大的品种为编号4龙谷30(97.06%),最小的为编号56宇谷1号(6.00%);相对发芽率最大的为编号4龙谷30(98.95%),最小的为编号41冀谷22(9.52%);相对发芽指数最大为编号4龙谷30(89.28%),最小为编号88龙谷39(13.70%);相对根长最大为编号57河北香谷(36.88%),最小为编号81红粘谷(0.00%);相对芽长最大为编号58九谷23(96.94%),最小为编号56宇谷1号(12.62%);相对根鲜重最大的为编号65红久谷(37.33%),最小为编号81红粘谷和编号63草谷10(均为0.00%);相对芽鲜重最大的为编号72赤谷23(95.80%),最小为编号60龙谷27(4.96%);相对根干重最大的为编号65红久谷(71.83%),最小为编号31小苗谷、编号35燕谷1号、编号41冀谷22、编号54公谷83F2、编号56宇谷1号、编号63草谷10、编号74龙蛇谷、编号84峰红2号、编号97中谷9号(均为0.00%),相对芽干重最大的品种为编号7大青叶粘谷(92.71%),最小为编号56宇谷1号(7.77%)。在盐碱胁迫下,谷子的根长、根鲜重和根干重的相对值分别低于芽长、芽鲜重和芽干重的相对值。

表3   盐碱胁迫下谷子萌发期发芽指标相对值

Table 3  Relative values of germination indicators of millet during germination under saline-alkali stress %

编号
Code
材料
Material
相对发芽势
RGP
相对发芽率
RGR
相对发芽指数
RGI
相对根长
RRL
相对芽长
RBL
相对根鲜重
RRFW
相对芽鲜重
RBFW
相对根干重
RRDW
相对芽干重
RBDW
1紫根白65.6768.7566.554.8843.5412.9946.749.4256.96
2峰红4号79.4996.3981.594.6353.4832.5351.9411.2351.98
3龙谷3172.5387.1068.9114.3649.6220.8656.9321.4366.42
4龙谷3097.0698.9589.287.8171.909.2651.8511.4180.00
5豫谷1886.7694.6279.263.7442.898.3841.977.3551.38
6公矮2号68.5467.1265.685.4952.098.4638.098.4735.62
7大青叶粘谷78.4874.6073.964.7343.7311.6251.7727.2792.41
8公矮8号94.7895.6589.165.7068.2010.4045.1724.5162.71
9金谷240182.9871.4380.309.0651.016.6934.4511.5455.28
10龙谷2580.0080.0076.8111.4256.3614.1048.0417.0467.42
11金苗K246.8861.9754.568.8642.7812.9127.7614.5337.36
12鸡西麻山76.2384.8876.4910.1862.0717.1335.6920.9063.73
13龙谷4482.5280.8180.8735.8619.9420.3654.8520.5470.36
14红谷09-186.6788.2485.0312.0355.9830.4660.3021.4373.11
15金穗黄谷子76.7991.8977.635.1742.826.8147.7810.7748.25
16六一谷71.4379.7371.316.3547.675.2829.369.8153.16
17龙谷3443.4868.7554.738.8566.9912.6761.8811.2572.01
18大同2936.8454.0042.614.2935.166.9127.0012.9737.50
19张杂谷1344.5550.6047.044.1360.295.1128.1718.9042.86
20林秋变44.1992.3168.528.4851.3513.0939.1615.8757.98
21龙谷3578.5775.3873.778.7555.509.2263.5211.7063.89
22磨里谷64.9660.2658.890.9754.600.5935.861.3965.22
23龙谷4660.8368.8961.785.9767.8610.4128.3812.2962.44
24刀把齐41.3558.9045.454.5544.584.7142.2313.5653.68
25晋谷2976.1975.3875.404.2143.254.4337.014.5547.91
26黑谷22.4128.9228.013.4141.225.5846.211.0041.80
27红钙谷70.1879.5269.535.0061.417.1053.106.2166.67
28大糟谷62.7571.4362.602.8431.815.7038.938.9038.94
29九谷1579.1081.7276.199.3271.2212.9350.6610.0061.97
30勾根红26.7446.1545.661.3940.200.9228.050.5544.94
31小苗谷38.6859.7648.322.4860.283.0840.620.0090.91
32龙谷4775.0092.7580.313.8753.302.2640.918.2752.17
33金苗1号12.5029.8526.990.4238.671.0819.122.5546.01
34中谷2号59.2686.2166.384.1855.033.2240.732.9452.43
35燕谷1号50.0066.6762.503.1130.036.2822.990.0025.84
36晋谷2140.5456.0653.362.7540.582.6432.292.1932.45
37龙谷3257.1468.2962.459.9559.707.3850.1813.3367.16
38龙谷2637.2540.2440.454.5940.956.0234.267.0255.98
39嫩选1843.8134.6243.179.6466.477.7462.0714.1768.57
40龙谷6576.8183.0581.7017.3278.9423.7763.7228.2179.60
41冀谷2211.679.5217.272.0619.221.1414.390.0016.04
42赤优金苗1号74.0781.6771.685.9065.317.2750.9724.6743.51
43陇谷1338.7870.5951.824.9161.143.6046.5744.3865.09
44九谷2074.0070.8370.8911.1662.778.4139.2917.7181.89
45冀谷2553.9360.2959.447.1860.978.6557.438.3323.65
46赤谷2062.1470.8364.326.5538.277.6936.0111.0152.34
47长农3575.8668.7575.487.2555.5410.2645.3722.2857.69
48草谷864.1083.3364.934.9629.566.5733.368.0637.67
49大白谷90.2892.3179.2910.4360.1225.0850.9842.8672.46
50小黄谷68.5268.0959.202.4443.182.1031.522.5337.45
51嫩选1665.1467.4466.813.7548.594.9249.5210.1049.69
52公谷8835.9647.6937.231.8444.821.3824.102.0536.00
53黄沙谷37.2150.0041.294.9657.092.7251.884.7163.74
54公谷83F235.0080.0051.351.0220.850.9716.990.0076.72
55赤谷1058.8255.8852.873.3542.815.3433.7733.6752.98
56宇谷1号6.0037.8415.451.1212.620.296.660.007.77
57河北香谷36.0572.9757.8536.8850.001.9941.463.0350.50
58九谷2324.3646.5838.081.9096.943.3739.976.2846.93
59晋谷红谷52.3876.6755.681.8542.700.7426.271.0652.97
60龙谷2736.5155.1047.652.4944.430.254.964.3156.02
61公矮9号44.1973.9161.266.1552.024.5239.0013.5644.07
62峰红3号66.1360.0052.143.4747.232.4038.528.8952.94
63草谷1018.4651.1133.670.3722.180.0020.800.0029.56
64赤谷6号90.9189.7179.8913.5273.1312.5252.9822.0949.57
65红久谷44.0751.9250.863.9335.5537.3325.2271.8352.76
66赤谷8号12.6650.0031.501.7337.602.0938.383.8747.28
67冀谷3912.5053.8526.672.5813.743.9714.883.4815.22
68燕谷2号62.1690.4868.180.9114.561.7025.113.3824.12
69长生1310.2636.8429.773.4852.084.4633.079.3740.91
70三三二78.1587.3676.901.2554.283.7742.127.0148.04
71山西红谷32.3159.4253.862.3239.683.2634.064.1233.08
72赤谷2339.5251.1455.326.6242.766.9195.8010.1848.52
73龙谷3759.1879.7365.005.5643.237.1834.767.6943.56
74龙蛇谷45.7153.7546.722.3149.291.4127.110.0066.45
75大粒系53.7580.6070.435.0654.243.2540.5813.3769.00
76大青苗58.7280.2655.123.6153.236.9932.9216.1144.19
77公矮5号41.6763.8644.553.2742.285.3233.7410.8850.44
78公谷7655.8174.2465.147.9856.647.5350.4210.8047.98
79金穗光谷75.0092.3176.8316.2770.7413.7578.5223.2774.42
80黄金苗35.2985.3758.557.5941.725.0126.3319.5128.00
81红粘谷53.3375.6148.610.0024.390.0034.370.0059.26
82晋谷1号51.7275.2960.996.9948.489.6546.195.5942.92
83四留钱60.0060.8155.472.9360.120.2571.610.9172.47
84峰红2号20.5110.0020.429.6020.703.8925.530.0041.18
85长农4717.9521.0521.492.7436.671.1631.970.6548.91
86白根红黏76.1985.5676.7818.0974.8110.2452.4021.0887.41
87冀谷4183.7281.2583.0915.7754.6135.7449.2530.1987.27
88龙谷3913.2410.0013.709.5626.695.6228.4513.3339.32
89朝谷5837.6848.2149.028.4633.309.1329.808.1141.79
90豫谷1号53.3962.3559.7611.6351.4510.9438.7324.6350.68
91豫谷3531.8245.7140.324.0237.835.8828.2516.0047.34
92白苗白流沙37.8864.4158.974.1547.0325.2971.796.4645.78
93龙谷3837.2754.0556.1014.9043.9017.3950.5216.7455.86
94黄谷64.8061.2963.888.2849.417.8043.937.0242.75
95绿谷王64.0481.0368.065.5639.559.5736.097.8035.87
96红谷粒62.1671.7671.1111.3058.479.1148.8318.6159.12
97中谷9号90.9175.0079.578.0848.255.0349.840.0048.04
98金穗黄金谷63.8777.6567.698.3759.1710.1256.347.5667.68
99张杂谷1656.4579.7962.884.6051.914.2655.486.1275.26
100冀谷16830.6950.0037.894.4943.503.2133.055.2340.49
特征值
Eigenvalue
最大值97.0698.9589.2836.8896.9437.3395.8071.8392.41
最小值6.009.5213.700.0012.620.004.960.007.77
均值54.3566.7558.706.6048.178.1140.7811.5852.76
标准差22.3119.5417.575.8414.887.6014.7211.0216.52
变异系数 (%)41.0529.2829.9488.3830.8993.6036.1095.2131.31

新窗口打开| 下载CSV


2.3 盐碱胁迫下萌发期谷子性状间的相关性分析

表4可知,在复合盐碱胁迫下谷子的相对发芽势与相对发芽率、相对发芽指数、相对根长、相对芽长、相对根鲜重、相对芽鲜重、相对根干重、相对芽干重均呈极显著正相关;相对发芽率与相对发芽指数、相对芽长、相对根鲜重、相对芽鲜重、相对根干重、相对芽干重均呈极显著正相关,与相对根长呈显著正相关;相对发芽指数与相对根长、相对芽长、相对根鲜重、相对芽鲜重、相对根干重、相对芽干重均呈极显著正相关;相对根长与相对芽长呈显著正相关,与相对根鲜重、相对芽鲜重、相对根干重、相对芽干重均呈极显著正相关;相对芽长与相对根鲜重呈显著正相关,与相对芽鲜重、相对根干重、相对芽干重均呈极显著正相关;相对根鲜重与相对芽鲜重、相对芽鲜重、相对根干重、相对芽干重呈极显著正相关;相对芽鲜重与相对根干重呈显著正相关,与相对芽干重呈极显著正相关;相对根干重与相对芽干重呈极显著正相关。

表4   盐碱胁迫下谷子萌发期发芽指标相对值的相关分析

Table 4  Correlation analysis of relative values of germination indicators during millet germination under saline-alkali stress

性状IndicatorRGPRGRRGIRRLRBLRRFWRBFWRRDWRBDW
RGP1.000
RGR0.802**1.000
RGI0.937**0.897**1.000
RRL0.319**0.255*0.377**1.000
RBL0.460**0.375**0.481**0.229*1.000
RRFW0.431**0.349**0.474**0.437**0.247*1.000
RBFW0.473**0.367**0.508**0.399**0.558**0.410**1.000
RRDW0.334**0.265**0.343**0.318**0.300**0.658**0.236*1.000
RBDW0.489**0.386**0.480**0.349**0.553**0.351**0.510**0.345**1.000

*”和“**”分别表示在0.05和0.01水平相关性显著。

*”and“**”indicate significant correlation at 0. 05 and 0.01 levels, respectively.

新窗口打开| 下载CSV


2.4 盐碱胁迫下萌发期谷子耐盐碱评价

每个材料的D值由隶属函数和权重计算得出,D值用于评估每个材料的耐盐碱性,其中D值越大,材料的综合耐盐碱性越强。由表5可知,龙谷30、龙谷44、红谷09-1、公谷65、大白谷、金穗光谷、白根红黏、冀谷41的D值比较大,分别为0.752、0.697、0.794、0.738、0.697、0.719、0.709、0.728,其耐盐性极强。

表5   参试材料D值及耐盐碱评价

Table 5  D values and saline-alkali resistance evaluation of the tested materials

编号
Code
材料
Material
D
D value
耐盐碱性
Saline-alkali
resistance
编号
Code
材料
Material
D
D value
耐盐碱性
Saline-alkali
resistance
编号
Code
材料
Material
D
D value
耐盐碱性
Saline-alkali
resistance
1紫跟白0.537中度6公矮2号0.486中度11金苗k20.456中度
2峰红4号0.6097大青叶粘谷0.65012鸡西麻山0.615
3龙谷310.6338公矮8号0.64413龙谷440.697极耐
4龙谷300.752极耐9金谷24010.559中度14红谷09-10.794极耐
5豫谷180.551中度10龙谷250.62715金穗黄谷子0.547中度
16六一谷0.520中度45冀谷250.481中度74龙蛇谷0.460中度
17龙谷340.593中度46赤谷200.503敏感75大粒系0.555中度
18大同290.401敏感47长农350.581中度76大青苗0.486中度
19张杂谷130.450中度48草谷80.462中度77公矮5号0.448中度
20林秋变0.548中度49大白谷0.697极耐78公谷760.533中度
21龙谷350.61650小黄谷0.445中度79金穗光谷0.719极耐
22磨里谷0.502中度51嫩选160.518中度80黄金苗0.432中度
23龙谷460.540中度52公谷880.370敏感81红粘谷0.443中度
24刀把齐0.472中度53黄沙谷0.496中度82晋谷1号0.498中度
25晋谷290.64654公谷83F20.444中度83四留钱0.569中度
26黑谷0.388敏感55赤谷100.493中度84峰红2号0.334敏感
27红钙谷0.585中度56宇谷1号0.202敏感85长农470.356敏感
28大糟谷0.458中度57河北香谷0.566中度86白根红黏0.709极耐
29九谷150.62058九谷230.461中度87冀谷410.728极耐
30勾根红0.385敏感59晋育红谷0.465中度88龙谷390.342敏感
31小苗谷0.539中度60龙谷270.400敏感89朝谷580.426中度
32龙谷470.545中度61公矮9号0.485中度90豫谷1号0.532中度
33金苗1号0.334敏感62峰红3号0.485中度91豫谷350.415中度
34中谷2号0.537中度63草谷100.290敏感92白苗白流沙0.505中度
35燕谷1号0.388敏感64赤谷6号0.64193龙谷380.540中度
36晋谷210.399敏感65红久谷0.533中度94黄谷0.504中度
37龙谷320.578中度66赤谷8号0.414中度95绿谷王0.479中度
38龙谷260.439中度67冀谷390.266敏感96红谷粒0.584中度
39嫩选180.556中度68燕谷2号0.392敏感97中谷9号0.556中度
40公谷650.738极耐69长生130.380敏感98金穗黄金谷0.596中度
41冀谷220.231敏感70三三二0.529中度99张杂谷160.573中度
42赤优金苗1号0.566中度71山西红谷0.398敏感100冀谷1680.401敏感
43陇谷130.555中度72赤谷230.544中度
44九谷200.62773龙谷370.485中度

新窗口打开| 下载CSV


2.5 100份谷子品种萌发期耐盐碱性分析

D值为依据,对100份谷子品种进行耐盐碱性分析,将其分为4类,分别为极耐盐碱品种、耐盐碱品种、中度耐盐碱品种和敏感盐碱品种(表6)。类群Ⅰ的D值变化范围在0.794~0.697,由红谷09-1、龙谷30、公谷65等8份材料组成的极耐盐碱品种类群,占总材料的8%;类群Ⅱ的D值变化范围在0.650~0.609,由大青叶粘谷、晋谷29、公矮8号等11份材料组成的耐盐碱品种类群,占总材料的11%;类群Ⅲ的D值变化范围在0.596~ 0.414,由金穗黄金谷、龙谷34、红钙谷等62份材料组成的中度耐盐碱品种类群,占总材料的62%;类群Ⅳ的D值变化范围在0.401~0.202,由大同29、冀谷168、龙谷27等19份材料组成的敏感品种类群,占总材料的19%。

表6   谷子萌发期耐盐碱分类情况

Table 6  Saline-alkali tolerance classification of millet at germination stage

类群
Group
耐盐碱性
Saline-alkali resistance
D
D value
品种
Variety
极耐0.794~0.697红谷09-1、龙谷30、公谷65、冀谷41、金穗黄谷、白根红黏、大白谷、龙谷44


0.650~0.609
大青叶粘谷、晋谷29、公矮8号、赤谷6号、龙谷31、九谷20、龙谷25、九谷15、龙谷35、鸡西麻山、峰红4号






中度





0.596~0.414





金穗黄金谷、龙谷34、红钙谷、红谷粒、长农35、龙谷32、张杂谷16、四留钱、河北香谷、赤优金苗1号、金谷2401、嫩选18、中谷9号、陇谷13、大粒系、豫谷18、林秋变、金穗黄谷子、龙谷47、赤谷23、龙谷38、龙谷46、小苗谷、中谷2号、紫跟白、公谷76、红久谷、豫谷1号、三三二、六一谷、嫩选16、白苗白流沙、黄谷、赤谷20、磨里谷、晋谷1号、黄沙谷、赤谷10、公矮2号、大青苗、峰红3号、公矮9号、龙谷37、冀谷25、绿谷王、刀把齐、晋育红谷、草谷8、九谷23、龙蛇谷、大糟谷、金苗k2、张杂谷13、公矮5号、小黄谷、公谷83、红粘谷、龙谷26、黄金苗、朝谷58、豫谷35、赤谷8号


敏感

0.401~0.202

大同29、冀谷168、龙谷27、晋谷21、山西红谷、燕谷2号、燕谷1号、黑谷、勾根红、长生13、公谷88、长农47、龙谷39、金苗1号、峰红2号、草谷10、冀谷39、冀谷22、宇谷1号

新窗口打开| 下载CSV


3 讨论

由于土壤盐化和土壤碱化常常同时发生,土壤中可溶性盐类的增加长期以来被统称为土壤盐碱化。由碱性盐类(如Na2CO3和NaHCO3)引起的土壤碱化可能比由中性盐类(如NaCl和Na2SO4)引起的土壤碱化更为严重,土壤盐化已成为限制农林业发展的一个严重世界性问题[17]。在盐碱胁迫下,萌发期的种子发芽能力会受到严重抑制,发芽是植物生长过程中的关键时期,盐胁迫会抑制种子发芽,特别是对盐度敏感的品种,主要是由于渗透和离子毒害作用。因此,在发芽阶段测定耐盐性,可以在短时间内对大量的品种进行评价,是一种非常高效、简短和有效的方法,通常用于植物耐盐性的初步评价[18]。萌发期种子的耐盐碱性能够直接影响谷子的出苗率,采取萌发期的相关性状指标来研究盐碱处理下对谷子的影响,进而对谷子品种耐盐碱性进行探索分析是十分必要的,对大量谷子品种的初步筛选以及耐盐碱品种的选育和遗传研究也是必要的。

盐碱胁迫是影响作物生长和生产力的主要非生物胁迫之一,盐碱胁迫可引起植物一系列生理代谢变化,抑制植物生长发育,许多研究[19-21]已经揭示,盐碱胁迫诱导植物生长和发育的各种有害改变。研究[19]发现,当植物受到不同程度盐碱胁迫时,根系构型也会随之改变,盐碱胁迫会使植物根长、根表面积、根体积、根平均直径等许多参数降低,这与本试验中复合盐碱胁迫下对根的抑制较为明显的研究结果相似。陈二影等[20]研究表明,在盐碱胁迫下,相对发芽势与相对发芽率、相对根长与相对芽长及相对根鲜重与相对芽鲜重均呈显著或极显著正相关,这与本研究的结果基本一致。另有王慧敏等[21]研究指出,在盐碱胁迫下谷子相对根长显著小于相对芽长;郭瑞锋等[22]研究发现,盐碱胁迫对谷子幼苗根部生长的抑制作用强于芽部生长,即在谷子幼苗生长中根部对盐碱胁迫比芽部更敏感,这与本研究结果基本一致。对于内陆盐碱地来说,多地区是既含有中性盐又含有碱性盐,所以,盐碱混合胁迫才是实际存在的主要问题,本试验可以为耐盐碱品种培育和耐盐碱机制研究提供依据。

4 结论

本试验结果表明,80 mmol/L(Na2SO4:NaCl:NaHCO3:Na2CO3=4:1:4:1)盐碱浓度为评价谷子萌发期耐盐碱性的适宜浓度;100份谷子种质资源中性状相对值的变异系数由小到大依次为相对发芽率、相对发芽指数、相对芽长、相对芽干重、相对芽鲜重、相对发芽势、相对根长、相对根鲜重、相对根干重;根据D值将萌发期100份谷子种质资源划分为4类,其中红谷09-1、龙谷30、公谷65、冀谷41、金穗光谷、白根红黏、大白谷和龙谷44为极耐盐碱品种,可以作为后续谷子耐盐碱研究材料。

参考文献

魏嘉, 蔡勤安, 李源, .

植物对盐碱胁迫响应机制的研究进展

山东农业科学, 2022, 54(4):156-164.

[本文引用: 1]

Kehao Z, Jingru T, Yi W, et al.

The tolerance to saline-alkaline stress was dependent on the roots in wheat

Physiology and Molecular Biology of Plants, 2020, 26(5):947-954.

DOI:10.1007/s12298-020-00799-x      PMID:32377044      [本文引用: 1]

Saline-alkaline stress is one of the most serious global problems affecting agriculture, causing enormous economic and yield losses in agricultural production. Wheat, one of the most important crops worldwide, is often subjected to saline-alkaline stress. In this study, two wheat cultivars with different saline-alkaline tolerance, XC-12 (non-tolerance) and XC-45 (tolerance), were used to investigate the influence of saline-alkaline stress on photosynthesis and nitrogen (N) metabolism through hydroponic experiment with aim of elucidating the mechanism of resistance to salt-alkali. These results showed that saline-alkaline stress significantly reduced biomass accumulation, chlorophyll content, photosynthetic ability and N absorption but increased N utilization efficiency. There was no significant difference in photosynthesis between XC-12 and XC-45 under saline-alkaline stress. In addition, XC-45 had lower ratio of Na/K in leaves and Na-K selection rate and higher N absorption ability than XC-12, thereby improving physiological metabolism. Moreover, the roots exhibited greater growth performance in response to saline-alkaline stress as a result of increasing glutamine synthetase activity in roots, thus promoting N metabolism in roots. By coordinating the synergistic effect of increasing soluble protein in root, XC-45 exhibited greater tolerance to saline-alkaline stress. All data pinpoint that the root physiological function was more responsible for resistance to saline-alkaline stress in wheat.© Prof. H.S. Srivastava Foundation for Science and Society 2020.

Liang W X, Ma X L, Wang P, et al.

Plant salt-tolerance mechanism: a review

Biochemical and Biophysical Research Communications, 2018, 495(1):286-291.

DOI:S0006-291X(17)32220-9      PMID:29128358      [本文引用: 1]

Almost all crops that are important to humans are sensitive to high salt concentration in the soil. The presence of salt in soil is one of the most significant abiotic stresses in farming. Therefore, improving plant salt tolerance and increasing the yield and quality of crops in salty land is vital. Transgenic technology is a fast and effective method to obtain salt-tolerant varieties. At present, many scholars have studied salt damage to plant and plant salt-tolerance mechanism. These scholars have cloned a number of salt-related genes and achieved high salt tolerance for transgenic plants, thereby showing attractive prospects. In this paper, the salt-tolerance mechanism of plants is described from four aspects: plant osmotic stress, ion toxicity, oxidative stress, and salt tolerance genes. This review may help in studies to reveal the mechanism of plant salt tolerance, screen high efficiency and quality salt tolerance crops.Copyright © 2017 Elsevier Inc. All rights reserved.

Sun H, Meng M H, Yan Z H, et al.

Genome-wide association mapping of stress tolerance traits in cotton

The Crop Journal, 2019, 7(1):77-88.

[本文引用: 1]

Wu H H. Plant salt tolerance and Na+ sensing and transport. The Crop Journal, 2018, 6(3):215-225.

[本文引用: 1]

刘奕媺, 于洋, 方军.

盐碱胁迫及植物耐盐碱分子机制研究

土壤与作物, 2018, 7(2):201-211.

[本文引用: 1]

Guo J M, Chen Y Y, Lu P Z, et al.

Roles of endophytic bacteria in Suaeda salsa grown in coastal wetlands: Plant growth characteristics and salt tolerance mechanisms

Environmental Pollution, 2021, 287:117641.

[本文引用: 1]

何红中. 中国古代粟作研究. 南京: 南京农业大学, 2010.

[本文引用: 1]

Tang S, Zhao Z, Liu X, et al.

An E2-E 3 pair contributes to seed size control in grain crops

Nature Communications, 2023, 14(1):3091.

DOI:10.1038/s41467-023-38812-y      PMID:37248257      [本文引用: 1]

Understanding the molecular mechanisms that regulate grain yield is important for improving agricultural productivity. Protein ubiquitination controls various aspects of plant growth but lacks understanding on how E2-E3 enzyme pairs impact grain yield in major crops. Here, we identified a RING-type E3 ligase SGD1 and its E2 partner SiUBC32 responsible for grain yield control in Setaria italica. The conserved role of SGD1 was observed in wheat, maize, and rice. Furthermore, SGD1 ubiquitinates the brassinosteroid receptor BRI1, stabilizing it and promoting plant growth. Overexpression of an elite SGD1 haplotype improved grain yield by about 12.8% per plant, and promote complex biological processes such as protein processing in endoplasmic reticulum, stress responses, photosystem stabilization, and nitrogen metabolism. Our research not only identifies the SiUBC32-SGD1-BRI1 genetic module that contributes to grain yield improvement but also provides a strategy for exploring key genes controlling important traits in Poaceae crops using the Setaria model system.© 2023. The Author(s).

Diao X M, Schnable J, Bennetzen J L, et al.

Initiation of Setaria as a model plant

Frontiers of Agricultural Science and Engineering, 2014, 1(1):16-20.

DOI:10.15302/J-FASE-2014011      [本文引用: 1]

Model organisms such as Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) have proven essential for efficient scientific discovery and development of new methods. With the diversity of plant lineages, some important processes such as C4 photosynthesis are not found in either Arabidopsis or rice, so new model species are needed. Due to their small diploid genomes, short life cycles, self-pollination, small adult statures and prolific seed production, domesticated foxtail millet (Setaria italica) and its wild ancestor, green foxtail (S. viridis), have recently been proposed as novel model species for functional genomics of the Panicoideae, especially for study of C4 photosynthesis. This review outlines the development of these species as model organisms, and discusses current challenges and future potential of a Setaria model.

Doust A N, Kellogg E A, Devos K M, et al.

Foxtail millet: A sequence-driven grass model system

Plant Physiology, 2009, 149:137-141.

DOI:10.1104/pp.108.129627      PMID:19126705      [本文引用: 1]

张笛, 苗兴芬, 王雨婷.

100份谷子品种资源萌发期耐盐性评价及耐盐品种筛选

作物杂志, 2019(6):43-49.

[本文引用: 1]

陈二影, 杨延兵, 程炳文, .

不同夏谷品种的产量与氮肥利用效率

中国土壤与肥料, 2015(2):101-105.

[本文引用: 1]

Diao X M.

Production and genetic improvement of minor cereals in China

The Crop Journal, 2017, 5(2):103-114.

[本文引用: 1]

代小冬, 朱灿灿, 宋迎辉, .

基于RNA-seq的谷子萌芽期抗旱相关基因挖掘与分析

核农学报, 2021, 35(8):1761-1770.

DOI:10.11869/j.issn.100-8551.2021.08.1761      [本文引用: 1]

为了明确响应干旱胁迫的关键基因,解析谷子抗旱机制,本研究以谷子抗旱品种山西2010和干旱敏感品种K359*M4-1为材料,应用RNA-seq技术对两个品种干旱胁迫前后萌发期种子进行转录组测定。结果表明,在山西2010和K359*M4-1中分别鉴定出2 300个和3 652个差异表达基因(DEG),包括编码类锌诱导的促进因子、类萌发素蛋白、蛋白磷酸化酶、转运蛋白、胚胎发育晚期丰富蛋白(LEA)、转录因子、过氧化物酶等基因。通过对鉴定到的DEG进行GO和KEGG代谢途径富集分析,发现山西2010和K359*M4-1中的DEG分别富集在52个和21个生物学过程。KEGG 富集分析发现,DEG主要富集在淀粉和蔗糖代谢, 植物激素信号转导,光合作用-天线蛋白,苯丙素生物合成,角质、亚氨酸和蜡生物合成,次生代谢物生物合成等途径。本研究结果为挖掘谷子抗旱关键基因、解析谷子抗旱机制奠定了基础。

王佺珍, 刘倩, 高娅妮, .

植物对盐碱胁迫的响应机制研究进展

生态学报, 2017, 37(16):5565-5577.

[本文引用: 1]

Fang S, Hou X, Liang X.

Response mechanisms of plants under saline-alkali stress

Frontiers in Plant Science, 2021, 12:667458.

[本文引用: 1]

阎志红, 刘文革, 赵胜杰, .

NaCl胁迫对不同西瓜种质资源发芽的影响

植物遗传资源学报, 2006, 7(2):220-225.

[本文引用: 1]

毛爽, 周万里, 杨帆, .

植物根系应答盐碱胁迫机理研究进展

浙江农业学报, 2021, 33(10):1991-2000.

DOI:10.3969/j.issn.1004-1524.2021.10.23      [本文引用: 2]

土壤盐碱化问题日益严峻,已经成为全球范围内制约植物生长发育的主要环境因子之一。根系在植物应答逆境胁迫中具有重要的调节作用,但是多年来对于植物抗逆性的研究往往集中于地上,根系作为环境胁迫下最先感知并作出反应的器官,其耐逆机理还不明确。基于此,本文从根系构型、结构、生长、生理和分子生物学等多角度对国内外植物根系应答土壤盐碱胁迫机理进行了综述,并提出了不足与展望,旨为深层次揭示植物根系功能和耐盐碱胁迫机理提供一定的科学依据。

陈二影, 王润丰, 秦岭, .

谷子芽期耐盐碱综合鉴定及评价

作物学报, 2020, 46(10):1591-1604.

DOI:10.3724/SP.J.1006.2020.04064      [本文引用: 2]

以全国主推的53个谷子品种为材料, 在100 mmol L<sup>-1</sup>混合盐碱(NaCl∶NaHCO<sub>3</sub> = 4∶1)胁迫下研究了不同谷子品种的耐盐碱性。结果表明, 在盐碱胁迫下, 53个谷子品种的发芽势、发芽率、根长、芽长、根鲜重和芽鲜重均受到不同程度的抑制, 以对根长的影响最大; 相对发芽势与相对发芽率、相对根长与相对芽长及相对根鲜重与相对芽鲜重均呈显著或极显著正相关。通过主成分分析将14个单项性状指标转化为4个主成分, 累积贡献率为90.4%; 以4个主成分的得分值通过隶属函数分析获得不同品种耐盐碱的综合得分值, 并通过聚类分析将53个谷子品种划分为6种耐盐碱类型, 其中强耐盐碱品种2个, 耐盐碱品种16个, 中间型品种17个, 盐碱敏感品种6个, 不耐盐碱品种9个和极不耐盐碱的品种3个。同时利用回归分析建立了可用于评价谷子耐盐碱性的回归方程D° = 0.298 + 0.037X<sub>2</sub> + 0.144X<sub>3</sub> + 0.018X<sub>6</sub> + 0.209X<sub>7</sub> - 0.183X<sub>9</sub> + 0.115X<sub>11</sub> - 0.201X<sub>12</sub> + 0.112X<sub>13</sub> - 0.101X<sub>14</sub> + 0.284X<sub>15</sub>, 相对发芽率、根长盐害率、芽长盐害率和根冠比盐害率可以作为谷子耐盐碱性的评价指标。

王慧敏, 李明昊, 李云, .

谷子品种(系)萌发期耐盐碱性鉴定及评价

作物杂志, 2023(2):57-66.

[本文引用: 2]

郭瑞锋, 张永福, 任月梅, .

混合盐碱胁迫对谷子萌发、幼芽生长的影响及耐盐碱品种筛选

作物杂志, 2017(4):63-66.

[本文引用: 1]

/