马铃薯疮痂病生防链霉菌菌株PBSH9发酵条件优化
Optimization of Fermentation Conditions for the Biocontrol Streptomyces Strain PBSH9 against Potato Scab Disease
通讯作者:
收稿日期: 2023-05-4 修回日期: 2024-05-31 网络出版日期: 2024-06-05
基金资助: |
|
Received: 2023-05-4 Revised: 2024-05-31 Online: 2024-06-05
作者简介 About authors
宋亚迪,主要从事植物病理学研究,E-mail:
以发酵液菌量为筛选指标,采用单因素方法筛选菌株PBSH9的最佳碳源、氮源、接种量、pH、温度及培养时间,以优化发酵培养条件。 结果表明,小麦麸皮最有利于菌株PBSH9的生长,将小麦麸皮以1%浓度替代高氏1号培养基的可溶性淀粉时,菌株PBSH9发酵液菌落数为1.04×1011CFU/mL,抑菌率为60.3%;豆粕饼粉最有利于菌株PBSH9的生长,以0.5%浓度取代高氏1号培养基的硝酸钾时,菌落数及抑菌率最大,分别为1.24×1011 CFU/mL和55.6%;将浓度为1×108 CFU/mL种子液以4%比例接种到高氏1号培养基中,发酵液菌量和抑菌率最大,菌落数为1.45×1011 CFU/mL,抑菌率为71.9%;菌株PBSH9 pH 6.0~7.0抑菌率最高,分别为66.3%和65.8%;28 ℃时发酵液菌落数和抑菌率最大,菌落数为1.02×1012 CFU/mL,抑菌率为69.1%;在优化发酵培养基中培养6 d时,菌量最大,抑菌率(71.9%)最高。
关键词:
Using the fermentation broth bacterial quantity as the screening index, the single-factor method was used to screen the best carbon source, nitrogen source, inoculum amount, pH, temperature, and incubation duration for strain PBSH9. The findings indicated that the best material for strain PBSH9 development was wheat bran. When wheat bran was used to replace soluble starch in Gaoshi 1 medium with a concentration of 1%, the bacterial colony amount of strain PBSH9 in the fermentation broth was 104.3×109 CFU/mL, and the antibacterial rate was 60.3%. Soybean meal powder is most beneficial for the growth of strain PBSH9, When replacing potassium nitrate in Gaoshi 1 culture medium with 0.5% concentration of soybean meal powder, the maximum number of colonies and antibacterial rate were 123.7×109 CFU/mL and 55.6%, respectively. Inoculating a seed solution with a concentration of 1×108 CFU/mL by 4% ratio into Gaoshi 1 culture medium, the fermentation broth had the highest bacterial amount and antibacterial rate, with a colony amount of 144.6×109 CFU/mL and an antibacterial rate of 71.9%; strain PBSH9 in pH 6.0-7.0 had the strongest bacterial inhibition activity, 66.3% and 65.8%, respectively; the fermentation broth had the largest colony size and bacterial inhibition rate at 28 ℃, with a colony size of 101.6×1010 CFU/mL and 69.1% inhibition rate. When cultured in optimized fermentation medium for six days, the maximum bacterial amount and antibacterial rate (71.9%) were achieved.
Keywords:
本文引用格式
宋亚迪, 郭婷, 修志君, 王丽玮, 杨春芳, 王淑华, 张笑宇.
Song Yadi, Guo Ting, Xiu Zhijun, Wang Liwei, Yang Chunfang, Wang Shuhua, Zhang Xiaoyu.
马铃薯疮痂病是由多种致病链霉菌(Streptomyces spp.)引起的一种土传病害,发病后在块茎表面形成深浅不一、面积不等的疮痂状坏死斑,导致马铃薯品质与经济价值下降,降低了市场竞争力[9-10]。生物防治是控制土传病害切实可行的防治措施[11-12],具有安全、高效、环境兼容性好等优点。目前,用于防控疮痂病的微生物种类包括细菌、放线菌、真菌和噬菌体。已被证明有拮抗作用的菌株中,拮抗链霉菌数量最多,芽孢杆菌种类最多,部分菌株的生物防治机制已初步明确[13]。Agbessi等[14]发现黑孢链霉菌(Streptomyces melanosporofaciens)对疮痂病原菌(Streptomyces scabies)菌株的生长起到抑制作用;Hiltunen等[15]试验证明,在田间使用肿痂链霉菌(Streptomyces turgidiscabies)防治疮痂病能够取得一定的防治效果。刘大群等[16]采用拮抗链霉菌对马铃薯疮痂病进行防治,3年田间试验结果表明防治效果显著;陈志垚等[17]筛选出一株马铃薯疮痂病拮抗菌株BKS104,鉴定为贝莱斯芽孢杆菌(Bacillus velezensis),能够有效抑制马铃薯疮痂病菌的生长。目前,马铃薯疮痂病生防菌株被大量挖掘,但并没有被广泛推广和应用,究其原因,菌株发酵水平低是限制其产业化发展的问题之一。因此,低成本、高产量的发酵方法是促进马铃薯生防菌株产业化发展的关键。
1 材料与方法
1.1 供试材料
1.1.1 供试菌株
马铃薯疮痂病生防链霉菌菌株PBSH9(S.hohhotensis sp. nov.)和马铃薯疮痂病病原菌PS1(S.galilaeus)均由内蒙古农业大学植物病理实验室分离鉴定并保存。
1.1.2 供试培养基
高氏1号培养基:可溶性淀粉20 g、KNO3 1 g、K2HPO4 0.5 g、MgSO4·7H2O0.5 g、NaCl 0.5 g、FeSO4·7H2O 0.01 g、琼脂粉15 g、蒸馏水1000 mL、pH 7.2、121 ℃灭菌20 min。
基础发酵培养基:高氏1号液体培养基,高氏1号培养基不加琼脂粉。
1.2 菌株PBSH9活化及种子液的制备
将低温保存的拮抗菌株PBSH9在高氏1号培养基平板上活化。28 ℃倒置培养3~5 d。用直径为5 mm的无菌打孔器打取2个菌饼,接种到装液量为80 mL/250 mL的高氏1号液体培养基中。28 ℃、180转/min振荡培养3 d,得到浓度为1×108 CFU/mL的种子液备用。
1.3 发酵培养基成分优化
1.3.1 碳源种类及浓度筛选
将小麦粉、小麦麸皮、燕麦麸皮、甘露醇和玉米粉按1 g/100 mL分别加入高氏1号基础发酵培养基中,等量替换基础发酵培养基中的可溶性淀粉,配成含不同碳源的液体培养基。培养基氮源KNO3浓度不做调整,调节培养基pH为7。将菌株PBSH9种子液2 mL,接种到装有100 mL不同碳源培养液的三角瓶(250 mL)中。置于28 ℃、180转/min的恒温振荡培养箱中培养5 d,每个处理3次重复。以不加碳源的基础发酵培养基为对照(CK),利用稀释平板涂布法测定不同碳源菌株PBSH9菌量,并测定抑菌活性,确定最佳碳源。将以上筛选出来的最佳碳源设置不同添加量,分别为1%、2%、3%、4%、5%、6%、7%和8%,其他条件不变(KNO3 0.1 g/100 mL,初始接种量2 mL/100 mL,pH 7.0,培养温度28 ℃,摇床转速180转/min,发酵培养5 d),筛选最佳碳源添加量,采用相同的方法进行菌量和抑菌活性的测定。
1.3.2 氮源种类及浓度筛选
将黄豆饼粉、棉籽饼粉、豆粕饼粉、花生饼粉和尿素按1 g/100 mL分别加入到基础发酵培养基中,等量替换其中的硝酸钾,配成含不同氮源的液体培养基。培养基碳源种类可溶性淀粉及浓度不做调整,为原基础发酵培养基中可溶性淀粉,浓度为2 g/100 mL,调节培养基pH为7.0。将菌株PBSH9种子液2 mL,接种到装有100 mL不同氮源培养液的三角瓶(250 mL)中,以不加氮源的基础发酵培养基为对照,培养条件同1.3.1。每个处理3次重复。稀释平板涂布法测定不同氮源菌株PBSH9的菌量,并测定抑菌活性,筛选得到最佳氮源。将以上最佳氮源设置添加量为0.5%、1.0%、1.5%、2.0%、2.5%、3.0%、3.5%和4.0%,其他条件不变(可溶性淀粉2 g/100 mL,初始接种量2 mL/100 mL,pH为7.0,培养温度28 ℃,摇床转速180转/min,发酵培养5 d),筛选得到最佳氮源添加量,采用相同的方法进行菌量和抑菌活性测定。
1.4 发酵培养条件优化
在确定最优发酵培养基的基础上依次优化菌株PBSH9的接种量、初始pH、温度和发酵时间。
接菌量的筛选:将种子液以1%、2%、4%、6%、8%和10%的比例加入到基础发酵培养基中,不调pH,温度28 ℃,摇床震荡培养5 d,筛选最佳接种量。
pH筛选:设置pH为4.0、5.0、6.0、7.0、8.0、9.0和10.0,接种量为装液量的4%,温度28 ℃,摇床震荡培养5 d,筛选最适发酵pH。
温度筛选:设置培养温度为22、25、28、31和34 ℃,接种量为装液量的4%,pH 6,摇床震荡培养5 d,筛选最适发酵培养温度。
发酵时间筛选:设置发酵时间为1、2、3、4、5、6、7、8、9和10 d,接种量为装液量的4%,pH 6,温度28 ℃,筛选最佳发酵时间。
各处理设3次重复,稀释平板涂布法测定发酵液菌量,测定各处理对疮痂病原菌PS1的抑菌效果。
1.5 菌株PBSH9菌量计测
采用稀释平板涂布法[22]计算产菌量,将各条件下振荡培养的菌株PBSH9发酵菌悬液梯度稀释至10-7、10-8和10-9 3个梯度,吸取200 μL稀释液,接入到固体高氏1号平板培养基中,涂布均匀,每个稀释浓度3次重复。于28 ℃恒温培养箱中倒置培养3 d,计算发酵液中菌液浓度。
发酵液浓度(CFU/mL)=平板中的3次平均单菌落数(cfu)×5×稀释倍数。
1.6 菌株PBSH9发酵菌悬液抑菌活性测定
将活化后的菌株PBSH9在28 °C培养5 d,挑取单菌落于液体高氏培养基中。置于28 ℃、180转/min的恒温振荡培养箱中培养3 d,取200 μL 1×108 CFU/mL菌悬液接入到固体高氏平板培养基中,涂布均匀。在培养基中心放置7层直径为1.5 cm的灭菌滤纸片,用移液枪打入不同处理的PBSH9发酵菌悬液200 μL,每个处理设3次重复,于28 ℃恒温培养箱中共培养3 d,用十字交叉法测定抑菌圈直径,计算抑菌率。
抑菌率(%)=[(处理抑菌圈直径-对照抑菌圈直径)/处理抑菌圈直径]×100。
1.7 数据处理
采用SPSS 22软件进行方差分析,采用Microsoft Excel(2010)软件作图。
2 结果与分析
2.1 菌株PBSH9碳、氮源种类及浓度筛选结果分析
2.1.1 碳源种类
碳源种类筛选结果见图1,菌株PBSH9在5种碳源培养基中均能生长,小麦麸皮最有利于菌株PBSH9生长,菌落数量显著高于其他处理,对马铃薯疮痂病病原菌的抑制活性最强,菌落数为1.42×1010 CFU/mL,抑制率52.42%;可溶性淀粉做碳源时与小麦麸皮抑菌活性没有显著差异,但菌落数较少,为0.43×1010 CFU/mL;小麦粉和燕麦麸皮次之,小麦粉菌落数和抑菌率分别为0.78×1010 CFU/mL和30.98%,燕麦麸皮菌落数和抑菌率分别为0.77×1010 CFU/mL和43.5%;碳源为甘露醇和玉米粉时菌落数和抑菌活性均最低。
图1
图1
菌株PBSH9在不同碳源下的菌落数及抑菌率
不同小写字母表示差异显著(P < 0.05),下同。
Fig.1
Colony forming unit and antibacterial rate of strain PBSH9 under different carbon sources
Different lowercase letters indicate significant differences (P < 0.05), the same below.
2.1.2 碳源浓度
碳源浓度筛选结果见图2,以小麦麸皮为菌株PBSH9发酵培养基碳源,当小麦麸皮的浓度为1%时,PBSH9发酵液菌落数最高,为1.04×1011 CFU/mL,抑菌率为60.3%,显著高于其他浓度;随着小麦麸皮量的增加,发酵液菌落数及抑菌活性逐渐降低,浓度为7%和8%时菌落数和抑菌率最低。碳源浓度过高或过低均不利于菌株PBSH9生长。
图2
图2
菌株PBSH9在不同小麦麸皮浓度下的菌落数及抑菌率
Fig.2
Colony forming unit and antibacterial rate of strain PBSH9 at different wheat bran concentrations
2.1.3 氮源种类
氮源种类筛选结果见图3,菌株PBSH9在5种氮源培养基中均能生长。豆粕饼粉和黄豆饼粉做氮源时发酵液抑菌活性最强,分别为65.7%和64.8%,豆粕饼粉菌落数最高,为8.27×1010 CFU/mL,黄豆饼粉次之,为6.98×1010 CFU/mL;花生饼粉和硝酸钾较差,棉籽饼粉最低,为3.07× 1010 CFU/mL,抑菌活性也最弱,为37.3%。综上所述,豆粕饼粉为最佳氮源。
图3
图3
菌株PBSH9在不同氮源下的菌落数及抑菌率
Fig.3
Colony forming unit and antibacterial rate of strain PBSH9 under different nitrogen sources
2.1.4 氮源浓度
图4显示,当豆粕饼粉的浓度为0.5%时,菌株PBSH9的菌落数及抑菌活性最大,分别为1.24×1011 CFU/mL和55.64%,显著高于其他处理。随着豆粕饼粉浓度的增加,菌株PBSH9的菌落数及抑菌活性呈逐渐降低趋势,浓度为4%时,菌落数及抑菌率最低,菌落数为0.16×1011 CFU/mL,抑菌率为22.9%。说明低浓度的豆粕饼粉有利于菌株PBSH9生长和提高抑菌活性。
图4
图4
菌株PBSH9在不同豆粕饼粉浓度下的菌落数及抑菌率
Fig.4
Colony forming unit and antibacterial rate of strain PBSH9 at different soybean meal cake powder concentrations
2.2 PBSH9发酵条件优化结果分析
2.2.1 初始接种量
初始接种量显著影响菌株PBSH9的生长及发酵液抑菌活性。初始接种量筛选结果见图5。随着接种量的增加,PBSH9发酵液的菌落数和抑菌活性均出现先增后降的趋势;当接种量为4%时,发酵液菌落数和抑菌活性最大,菌落数为1.45×1011 CFU/mL,抑菌率为71.9%;当接种量大于装液量的4%时,菌落数和抑菌率均下降。
图5
图5
菌株PBSH9在不同接种量下的菌落数及抑菌率
Fig.5
Colony forming unit and antibacterial rate of strain PBSH9 at different vaccination amounts
2.2.2 pH筛选
pH筛选结果见图6。菌株PBSH9在pH 4.0~10.0的范围内均能生长,均能对马铃薯疮痂病病原菌PS1产生抑制作用。在pH 6.0~7.0范围内菌株PBSH9发酵液抑菌活性最强,分别为66.3%和65.8%;当pH为6.0时,发酵液菌落数显著高于其他处理,菌落数为1.04×1012 CFU/mL;随着pH增加,发酵液中菌落数显著降低。最适宜发酵培养基pH为6.0。
图6
图6
菌株PBSH9在不同pH值下的菌落数及抑菌率
Fig.6
Colony forming unit and antibacterial rate of strain PBSH9 at different pH values
2.2.3 温度筛选
温度筛选结果见图7。在22~ 34 ℃之间,发酵液菌落数及抑菌活性表现出先上升后下降的趋势,28 ℃时发酵液菌落数和抑菌活性最大,菌落数为1.02×1012 CFU/mL,抑菌率为69.1%;之后随着温度的升高,菌落数和抑菌活性表现出降低的趋势。菌株PBSH9液体发酵培养的最适温度为28 ℃。
图7
图7
菌株PBSH9在不同温度下的菌落数及抑菌率
Fig.7
Colony forming unit and antibacterial rate of strain PBSH9 at different temperatures
2.2.4 发酵时间筛选
发酵时间筛选结果见图8。随着培养时间的延长,菌株PBSH9菌落数及抑菌活性均呈先增后降的趋势。当培养6 d时,菌落数达到最大值,为1.39×1012 CFU/mL,培养时间在5~6 d时,发酵液抑菌活性最大,分别为71.9%和71.39%。培养6 d为最佳的发酵时间。
图8
图8
菌株PBSH9在不同发酵时间下的菌落数及抑菌活性
Fig.8
Colony forming unit and antibacterial rate of strain PBSH9 at different fermentation times
3 讨论
发酵过程中链霉菌的形态分化过程与菌株抑菌活性密切相关,链霉菌在生成孢子的过程中伴随着多种抑菌物质的合成,同时链霉菌在不同的发酵条件下会呈现蓬松、分散以及紧密的菌丝形态,菌丝形态差异也与抑菌物质的产量密切相关[23]。在本研究中,以发酵液中的菌量为衡量指标,发酵液的成分有菌丝和分生孢子,也可能产生抑菌活性物质,均和抑菌活性有关,菌落数和抑菌活性多呈相同的先增后减趋势,可溶性淀粉为碳源时PBSH9发酵液有较强的抑菌活性,但菌量较少,这可能是因为可溶性淀粉较利于PBSH9菌株产生抑菌物质,但不利于该菌株生长和产孢,具体原因有待深入研究。
生防菌活性取决于菌株本身的特性和发酵条件。菌株生长情况及抑菌活性与培养基营养成分的种类相关。本试验碳源筛选结果发现,将1%浓度小麦麸皮替代可溶性淀粉时,菌株PBSH9菌落数及抑菌活性最大。姜云等[24]研究表明,2%葡萄糖作为碳源时链霉菌xjy(Streptomyces lavendulae)发酵液对番茄叶霉病菌(Fulvia fulva)的抑制活性最强。陈立梅等[25]研究表明,以2.0%蔗糖作为碳源时,发酵液对玉米弯孢菌叶斑病(Curvularia lunata Waker)抑制效果最好。段雅婕等[26]发现以2%蔗糖作为碳源时,放线菌FS-4(Streptomyces manipurensis)对香蕉枯萎病菌(Fusarium oxysporum f. sp. cubense)抑菌活性最大。梁春浩等[27]研究表明,暗黑链霉菌菌株PY-1(Streptomyces atratus)发酵培养基氮源为玉米粉时极大提高了发酵液对葡萄霜霉病(Plasmopara viticola)的抑菌能力。孟庆芳等[28]在做棉花黄萎病研究时发现,以花生饼粉或黄豆饼粉为天然的有机氮源,拮抗链霉菌S23(Streptomyces sp.)发酵液对棉花黄萎病菌(Verticillium dahliae)的抑菌活性较强。与本试验结果不同,拮抗链霉菌菌株PBSH9在豆粕饼粉做氮源时发酵液菌落数最大,抑菌活性也最高。可见,不同菌株对碳、氮源的利用情况有差异,筛选成本低、利用率高、防效好的碳、氮源是非常有必要的。
接种量过高或过低都会影响菌体的生长,接种量过大则菌体代谢产物积累过快,容易造成胁迫,不利于菌体生长,接种量过小则延长发酵周期。梁春浩等[27]研究表明,接种量5%时葡萄霜霉病拮抗放线菌PY-1抑菌能力最强。在本研究中,随着接种量的增加,菌悬液浓度及抑菌活性增大,当接种量大于装液量的4%时,菌悬液浓度及抑菌率显著降低。具体原因有待进一步研究。
初始pH、培养温度和培养时间同样是制约菌株生长的重要因素。pH过高或过低会改变细胞膜的通透性,进而影响菌体的生长和代谢。本研究中菌株PBSH9在过酸或过碱的环境中生长较慢,最适培养基pH为6.0,其他研究也有相似的结论。孟庆芳等[28]研究发现,当培养基pH为6.0时拮抗链霉菌S23发酵液对棉花黄萎病菌的抑菌活性较强。郑东光等[29]研究发现,pH为7时,疮痂链霉菌许昌亚种SCY114(S.scabiei subsp. xuchangensis)对小麦全蚀病病原菌(Gaeumannomyces graminis var. tritici)的抑菌活性最大。但也有不同的结论,牛世全等[30]研究发现,pH为10时菌株DA4-3-12(Streptomyces alboflavus)发酵液对尖孢镰刀菌(Fusarium oxysporum)KR997535(G5)和KR997536(G6)、茄腐镰刀菌(Fusarium solani)KR997532(G2)和KR997533(G9)、油菜立枯丝核(Rhizoctonia solani)和轮枝镰刀菌(Fusarium verticillioide)这几种植物病原真菌抑菌效果显著。
因此,菌株的生长和发酵条件需深入研究,有必要对不同因子相互作用影响菌量及活性进一步探索,为该菌规模化发酵以及菌剂的开发奠定基础。
4 结论
菌株PBSH9最佳培养基配方及发酵培养条件:将小麦麸皮以1%浓度替代高氏1号培养基的可溶性淀粉,将豆粕饼粉以0.5%浓度代替硝酸钾,接种量为装液量的4%,pH 6.0,温度28 ℃,摇床震荡发酵培养6 d。在最佳发酵培养基和培养条件下,菌株PBSH9发酵液菌落数达到了1.39× 1012 CFU/mL、抑菌率达到71.9%。小麦麸皮和豆粕饼粉作为菌株的主要营养成分,达到了降低成本提高效价的目的。
参考文献
A survey of genetic variation in Streptomyces isolates causing potato common scab in the United States
,DOI:10.1094/PHYTO-96-1363 PMID:18943669 [本文引用: 1]
Common scab is a serious disease of potatoes and other root and tuber crops, affecting crop quality and market value. The disease is caused by gram positive soil bacteria in the genus Streptomyces. Disease incidence and severity vary in different locations and years; this is due in part to variation in the environment (weather) and genetic variation in potato cultivars. Little information is available on the contribution of genetic variation by the pathogen. To examine genetic diversity in different locations within the United States, streptomycetes were isolated from lesions on field-grown potatoes from six states. Isolates were classified into species based on sequence of variable regions in the 16s rRNA gene. The presence of genes associated with the recently described S. turgidiscabies pathogenicity island (PAI) was also determined. About half of the isolates belonged to S. scabies or S. europaeiscabiei based on 16s rDNA sequence, and had characteristic features of the PAI. They were found in all six states, and were pathogenic on potato and radish. The remaining isolates included pathogens and nonpathogens. They were varied in appearance, and represent several species, including one pathogenic species not previously reported. Some pathogenic isolates lacked one or more genes characteristic of the PAI, although all had genes for biosynthesis of the pathogenicity determinant thaxtomin. In this relatively small survey, regional differences in scab-causing streptomycetes were seen. This report furnishes tools and baseline data for population genetic study of scab-causing streptomycetes in the United States.
Distribution and characterization of Streptomyces species causing potato common scab in Germany
,
马铃薯疮痂病研究进展
,(2024-06-05) [2024-08-15]. https://doi.org/10.13926/j.cnki.apps.001039.
土传病害生物防治研究进展
,DOI:10.11686/cyxb20150321 [本文引用: 1]
土传病害已成为严重制约我国农牧业发展的主要原因,近年来人们对于食物安全的重视和环保意识的增强,对农业的可持续发展提出了更高的要求。生物防治因其低成本、高效率、环境友好和无药物残留等特点已成为当前国内外植物病害防治的研究热点。本文从农艺措施改良和优化,利用细菌、真菌、放线菌等生防微生物进行生物防治,诱导寄主产生系统抗病性和其他生物防治方法等几个方面对国内外植物土传病害生物防治的研究现状进行了综述,提出了生物防治目前存在的问题,并对生物防治的研究进行了展望。
The ability of Pseudomonas sp. LBUM 223 to produce phenazine-1- carboxylic acid affects the growth of Streptomyces scabies, the expression of thaxtomin biosynthesis genesand the biological control potential against common scab of potato
,DOI:10.1111/j.1574-6941.2010.00992.x PMID:21073487 [本文引用: 1]
Streptomyces scabies causes common scab, an economical disease affecting potato crops world-wide, for which no effective control measure exists. This pathogen produces the plant toxin thaxtomin A, which is involved in symptom development on potato tubers. A biological control approach that can limit S. scabies growth and repress thaxtomin production represents an attractive alternative to classical control strategies. Pseudomonas sp. LBUM 223 produces phenazine-1-carboxylic acid (PCA), an antibiotic that inhibits the growth of plant pathogens and contributes to the biological control of plant diseases. In this study, the involvement of LBUM 223's PCA-producing ability in the growth inhibition of S. scabies, repression of thaxtomin biosynthesis genes (txtA and txtC) and the biological control of common scab of potato was investigated using a mutant defective in PCA production (LBUM 223phzC(-) ). Streptomyces scabies growth was inhibited to a significantly lesser degree by LBUM 223phzC(-) than by the wild type. LBUM 223 also significantly repressed txtA and txtC expression in S. scabies and protected potato against disease, whereas LBUM 223phzC(-) did not. These results suggest that PCA production is central to the ability of LBUM 223 to limit pathogen growth, repress the expression of key pathogenicity genes and control common scab of potato.© 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Antagonistic properties of two recombinant strains of Streptomyces melanosporofaciens obtained by intraspecific protoplast fusion
,
Interactions and biocontrol of pathogenic Streptomyces strains co-occurring in potato scab lesions
,DOI:10.1111/j.1365-2672.2008.03992.x PMID:19054229 [本文引用: 1]
To test interactions between pathogenic strains of Streptomyces turgidiscabies, S. scabies and S. aureofaciens. To study biological control of S. turgidiscabies and S. scabies using the nonpathogenic Streptomyces strain (346) isolated from a scab lesion and a commercially available biocontrol agent (S. griseoviridis strain K61; 'Mycostop').Pathogenic strains of S. turgidiscabies and S. aureofaciens inhibited growth of S. scabies in vitro, whereas strain 346 and S. griseoviridis inhibited the pathogenic strains and were subsequently tested for control of scab in the greenhouse and field. Strains 346 and K61 suppressed development of common scab disease caused by S. turgidiscabies in the greenhouse. Strain 346 reduced incidence of S. turgidiscabies in scab lesions on potato tubers in the field.Streptomyces turgidiscabies shows antagonism against S. scabies that occurs in the same scab lesions and shares the ecological niche in the field. Biocontrol of S. turgidiscabies is possible with nonpathogenic Streptomyces strains but interactions may be complicated.Streptomyces turgidiscabies may have potential to displace S. scabies under the Scandinavian potato growing conditions. Biological control of the severe potato scab pathogen, S. turgidiscabies, is demonstrated for the first time. The results can be applied to enhance control of common scab.
A novel Streptomyces sp. strain PBSH 9 for controlling potato common scab caused by Streptomyces galilaeus
,
Some engineering aspects of solid-state fermentation
,
拮抗放线菌菌株FS-4发酵工艺筛选
,DOI:10.3969/j.issn.1000-2561.2020.02.018 [本文引用: 1]
FS-4是1株对香蕉枯萎病菌有较好拮抗作用的放线菌。以高氏一号培养基为基础,通过单因素和响应面实验进行了相关优化,对FS-4菌株的发酵工艺进行筛选。结果表明:0.5%蛋白胨,2.4%蔗糖,0.05%的磷酸氢二钾、氯化钠和硫酸镁,发酵温度28 ℃,初始pH为7为最佳培养基配方及最优发酵条件。发酵62 h后,发酵液中抑菌物质活性达到最高水平,对香蕉枯萎病菌的抑菌圈直径达到27.1 mm。
葡萄霜霉病菌拮抗放线菌PY-1发酵条件优化
,DOI:10.16409/j.cnki.2095-039x.2015.06.015 [本文引用: 2]
为探讨暗黑链霉菌Streptomyces atratus PY-1液体摇瓶发酵条件,提高其活性次级代谢产物的产量,以菌体生物量和发酵液抑制葡萄霜霉病菌Plasmopara viticola活性为指标,采用单因子试验和正交试验对菌株PY-1的最适发酵培养基成分及发酵条件进行优化。结果表明,菌株PY-1最适发酵培养基为玉米粉50 g/L、葡萄糖5 g/L、蛋白胨5 g/L、氯化铵5 g/L、氯化钠 0.5 g/L;最佳发酵培养条件为培养温度28 ℃、培养时间5 d、初始pH 7.0、250 mL三角瓶装液量90 mL、接种量体积分数5%、摇床转速180 r/min。在最佳发酵培养基和培养条件下,菌株PY-1发酵液抑菌率达到99.26%,抑菌能力提高8.35%。
/
〈 | 〉 |