作物杂志, 2024, 40(5): 29-34 doi: 10.16035/j.issn.1001-7283.2024.05.004

遗传育种·种质资源·生物技术

不同胚乳表型对高粱农艺性状及产量的影响

董明宇,, 郑宏峰, 朱哲

铁岭市农业科学院,112616,辽宁铁岭

Effects of Different Endosperm Phenotypes on Agronomic Traits and Yield in Sorghum

Dong Mingyu,, Zheng Hongfeng, Zhu Zhe

Tieling Academy of Agricultural Sciences, Tieling 112616, Liaoning, China

收稿日期: 2023-04-27   修回日期: 2023-11-9   网络出版日期: 2023-11-22

基金资助: 辽宁省重点研发计划(2020JH2/10200014)

Received: 2023-04-27   Revised: 2023-11-9   Online: 2023-11-22

作者简介 About authors

董明宇,主要从事高粱遗传育种研究,E-mail:1148463456@qq.com

摘要

为探究高粱籽粒胚乳质地及淀粉类型对高粱产量、株高和其他农艺性状的潜在影响,以一个粉质高粱品系作为母本,一个糯性高粱品系作为父本,于2021年进行人工杂交,2022年对F2胚乳表型重组群体进行随机抽样调查,以鉴定样本胚乳表型,测量和分析样本的产量、株高和其他农艺性状。结果表明,糯性淀粉类型显著降低了植株的单穗重,粉质胚乳质地显著降低了植株的单穗重、千粒重和株高。然而,选择出高产且具有糯性淀粉类型或粉质胚乳质地的品系是可能的,为了有效地识别出具有这种表型的高产品系,需要对其育种工作予以重视。

关键词: 高粱; 胚乳质地; 淀粉类型; 产量; 农艺性状

Abstract

In order to explore the potential effects of endosperm texture and starch type on grain yield, plant height, and other agronomic traits in sorghum, this study conducted artificial hybridization between a waxy sorghum line as the male parent and a floury sorghum line as the female parent in 2021. In 2022, a sample survey was conducted on the F2 population of recombinant endosperm phenotype to identify sample endosperm phenotypes, measure grain yield, plant height, and other agronomic traits for analysis. The results showed that plants with the waxy starch had significantly reduced panicle weight, while those with floury endosperm texture had significantly reduced panicle weight, 1000-grain weight and plant height. Nonetheless, high-yielding lines with a waxy starch type or floury endosperm texture can be chosen, and breeding efforts for these lines must be prioritized in order to effectively discover high-yielding lines with this phenotype.

Keywords: Sorghum; Endosperm texture; Starch type; Yield; Agronomic trait

PDF (517KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

董明宇, 郑宏峰, 朱哲. 不同胚乳表型对高粱农艺性状及产量的影响. 作物杂志, 2024, 40(5): 29-34 doi:10.16035/j.issn.1001-7283.2024.05.004

Dong Mingyu, Zheng Hongfeng, Zhu Zhe. Effects of Different Endosperm Phenotypes on Agronomic Traits and Yield in Sorghum. Crops, 2024, 40(5): 29-34 doi:10.16035/j.issn.1001-7283.2024.05.004

高粱[Sorghum bicolor (L.) Moench]是全球第五大作物,仅次于玉米、小麦、水稻和大麦[1]。高粱优良的抗旱特性使其成为干旱和半干旱地区最重要的粮食和饲料作物之一[2]。超35%的高粱是直接种植供人类食用的,其余主要用作动物饲料、生产酒精和工业产品等[3]。近年来,由于高粱的无麸质特性及其所含的天然酚类化合物成分更有利于健康,人们对种植高粱的兴趣越来越大[4]

高粱的化学成分与玉米相当,营养成分与小麦相似[5],但高粱在煮熟后其蛋白质消化率降低,且明显比其他煮熟的类似谷物(如玉米、小麦)的蛋白质更难消化[6],这是高粱作为食物原料的一个主要弊端。研究[7]表明,高粱蛋白质消化率低受多种因素影响,但很大程度上是高粱蛋白质本身变化引起的。醇溶蛋白(kafirin)是高粱最丰富的种子贮藏蛋白,占整个高粱籽粒胚乳蛋白的77%~82%,占总蛋白的68%~73%[8],基于分子量、溶解度和结构可进一步分为α-醇溶蛋白、β-醇溶蛋白和γ-醇溶蛋白[9]。α-醇溶蛋白是主要贮藏蛋白,约占胚乳中醇溶蛋白总量的80%,正常高粱蛋白质体的结构呈规则球状,α-醇溶蛋白位于中心,β-醇溶蛋白及γ-醇溶蛋白位于外围[10]。当高粱煮熟后,γ-醇溶蛋白的二硫键广泛结合形成具有酶抗性的蛋白质聚合物,阻碍α-醇溶蛋白被消化[11]。高可消化突变体的蛋白质体高度内陷,并包含深褶皱,蛋白质体的表面积增加,γ-醇溶蛋白位于褶皱的底部,消化酶容易接近α-醇溶蛋白[12],因此,高可消化高粱品系的蛋白质体消化率比普通高粱品系的高,大多数高可消化突变体往往具有完全粉质化的胚乳质地[13]。高粱的胚乳质地是由玻璃状(角质层)胚乳与面粉状(粉质层)胚乳的比例决定的。Da Silva等[14]认为,导致高粱蛋白质消化率显著提高的原因不仅仅是因为蛋白质体的高度内陷,还可能是由于面粉状胚乳中醇溶蛋白的含量较低。为证实这一观点,Ioerger等[15]研究发现,面粉状胚乳比玻璃状胚乳含有更少的二硫键和不溶性蛋白。高粱作为食物原料的另一个弊端是必需氨基酸(包括赖氨酸)的缺乏。大部分高粱蛋白由醇溶蛋白和谷蛋白(glutelin)构成,谷蛋白中含有大量的赖氨酸和精氨酸等,醇溶蛋白含有比谷蛋白多的亮氨酸[16],可见高粱中醇溶蛋白与谷蛋白的比例会对高粱蛋白中一些关键氨基酸浓度产生很大的影响。1973年报道[17]出一些高赖氨酸水平的高粱品系,这些高粱品系也都同样具有完全粉质化的胚乳质地。有研究[18-19]表明,随着高粱总蛋白水平的增加,醇溶蛋白含量会以牺牲谷蛋白含量为代价而增加,而玻璃状胚乳的总蛋白和醇溶蛋白含量较面粉状胚乳高[15],因此,玻璃状胚乳的谷蛋白含量会较面粉状胚乳低,即面粉状胚乳的谷蛋白含量较高,具有完全粉质化胚乳质地的高粱品系会出现高赖氨酸水平的现象。

除高粱胚乳质地对加工等方面有影响外,高粱胚乳淀粉组成及含量也是一个重要的影响因素。淀粉颗粒由直链淀粉和支链淀粉组成,二者具有不同的结构和性质,直链淀粉是一种相对较长的线性多糖,主要由α-1,4键连接而成[20],而支链淀粉是由不同长度的α-1,4链通过约5%的α-1,6键连接而成的高度分支化多糖,是比直链淀粉大得多的分子[21]。在淀粉的合成过程中有一系列可溶性酶(SSS)和颗粒结合淀粉合成酶(GBSS)的参与,其中GBSS是谷物胚乳中负责直链淀粉合成的酶,当一些物种的突变体缺乏GBSS活性时,其胚乳中支链淀粉的含量可达到总淀粉含量的98%以上[22]。淀粉中支链淀粉的含量和长度直接决定了淀粉的许多功能特性,支链淀粉含量的增加能够降低糊化温度,提升糊化性能[23]。普通高粱籽粒的淀粉中约含有25%的直链淀粉和75%的支链淀粉[24],1933年报道出一种具有白色蜡质胚乳的糯性高粱,这种高粱的胚乳中只含有或含有大量的支链淀粉[25]。2005年报道出这种性状受2对隐性等位基因控制,并基于GBSS的缺失或失活命名为wxawxb[26]。有研究[27-28]表明,糯性高粱更有利于用于食品及工业用途。

尽管这些性状在食品和工业等方面更具有优势,但也存在一些弊端。已有研究[29-31]指出,在高粱和小麦等作物中,糯性淀粉类型会降低产量和株高等农艺性状上的优势。尽管对于高粱胚乳质地的相关报道较少,但是同样可能存在着如淀粉类型对高粱产量及其他农艺性状产生的影响。本文探究高粱同系中不同胚乳表型(即胚乳质地和淀粉类型)是否会对产量及其他农艺性状产生影响。

1 材料与方法

1.1 试验群体及亲本系

以铁岭市农业科学院多代选育而成的2个重组自交系17527和21894为亲本。17527是铁岭市农业科学院2017年利用T625/122-2经多代重组选育出的自交恢复系,其籽粒呈黄色,是具有完全粉质化胚乳的粳高粱。21894是糯性恢复系,籽粒呈黄褐色,胚乳呈蜡质,具有50%以上的角质层。试验以17527为母本,21894为父本,于2021年对17527人工去雄授粉,构建F2胚乳表型重组群体。

1.2 试验地概况

试验在铁岭市农业科学院试验地进行,于2022年进行栽培试验,前茬作物为谷子,南北垄向,垄长4 m,垄宽60 cm,株距15 cm,试验小区设15垄,群体数量约400株,4月27日播种,9月10日收获,随机取样75株,样品不取边行。播种时施长效缓释肥,田间管理同常规大田。

1.3 测定项目与方法

按照GB/T 19557.15-2018[32]测定样本植株的8个性状,分别为单穗重、千粒重、株高、茎粗、穗长、穗柄长、叶片长、叶片宽。通过计算得到叶面积,叶面积=叶片长(cm)×叶片宽(cm)×0.75。

1.4 高粱籽粒胚乳表型划分方法

从每一样本植株的全部籽粒中随机选取20个健全籽粒,纵向解剖并放在灯箱上目视观察,参照高粱胚乳类型图[33],估算各株系玻璃状胚乳与面粉状胚乳的相对比例,根据玻璃状胚乳占整个胚乳的不同比例可将高粱籽粒胚乳质地分为以下3类:角质(corneous)、中等粉质(intermediate floury)、粉质(floury),其中角质胚乳质地指完全或大部分(>50%)胚乳为玻璃状胚乳,中等粉质胚乳质地指胚乳中玻璃状胚乳较薄,但占总体胚乳的比例不到50%,粉质胚乳质地指胚乳中不存在玻璃状胚乳或玻璃状胚乳非常狭窄且不完整。

根据不同的胚乳淀粉类型,可将高粱籽粒分为糯性和粳性。利用Pedersen等[34]描述的碘染色技术筛选各株系的胚乳淀粉类型。粳性纯合胚乳或杂合胚乳由于直链淀粉的存在而被染成蓝紫色,而糯性胚乳由于支链淀粉的存在而被染成红棕色或洋红色。

显性杂合植株籽粒发育过程中由于花粉直感作用及双受精作用会得到小概率糯性籽粒,不计其中。

1.5 数据处理

采用Excel 2013对数据进行汇总、处理,采用SPSS 25.0进行双因素方差分析,采用LSD法分析显著性,采用Origin 2018绘图。

2 结果与分析

2.1 样本胚乳表型的鉴定

经逐个鉴定,F2群体中共分离出如图1所示的6种不同胚乳表型,利用碘染色技术染色后呈图2所示,6种不同胚乳表型的样本数量如表1所示。

图1

图1   F2群体中分离出的6种不同胚乳表型

(a) 糯-角质,(b) 糯-中等粉质,(c) 糯-粉质,(d) 粳-角质,(e) 粳-中等粉质,(f) 粳-粉质,下同。

Fig.1   Six different endosperm phenotypes were separated from F2 population

(a) waxy-corneous, (b) waxy-intermediate, (c) waxy-floury, (d) nonwaxy-corneous, (e) nonwaxy-intermediate, (f) nonwaxy-floury, the same below.


图2

图2   碘染色后的6种不同胚乳表型

Fig.2   Six different endosperm phenotypes after iodine staining


表1   不同胚乳表型的样本数量

Table 1  The number of samples with different endosperm phenotypes

淀粉类型
Starch type
胚乳质地
Endosperm texture
样本数量(株)
The number of samples (plant)
淀粉类型
Starch type
胚乳质地
Endosperm texture
样本数量(株)
The number of samples (plant)
粳Nonwaxy角质11糯Waxy角质8
中等粉质40中等粉质3
粉质11粉质2

新窗口打开| 下载CSV


2.2 不同胚乳表型的农艺性状方差分析

表2可知,胚乳淀粉类型对单穗重有显著性(P<0.05)影响,对千粒重、株高、穗长、茎粗、穗柄长和叶面积影响不显著(P>0.05)。胚乳质地对单穗重和千粒重有显著性影响,对株高影响极显著(P<0.01),对其他农艺性状影响不显著。胚乳淀粉类型和胚乳质地的交互效应对所测量的各个农艺性状影响均不显著。

表2   不同胚乳表型的方差分析(P值)

Table 2  Analysis of variance (ANOVA) for different endosperm phenotypes (P-value)

变异来源
Source of variation
单穗重
Panicle weight
千粒重
1000-grain weight
株高
Plant height
穗长
Panicle length
茎粗
Stem diameter
穗柄长
Peduncle length
叶面积
Leaf area
淀粉类型Starch type0.0420.1850.5680.1440.4420.6610.217
胚乳质地Endosperm texture0.0460.0110.0070.0950.3680.0720.348
淀粉类型×胚乳质地
Starch type×endosperm texture
0.750
0.407
0.809
0.776
0.210
0.221
0.373

新窗口打开| 下载CSV


2.3 不同胚乳表型对单穗重及千粒重的相对影响

图3所示,在同一淀粉类型下,随着面粉状胚乳占比的提高,平均单穗重均呈下降趋势,角质胚乳质地表现最高,分别为110.57和86.92 g。在粳性淀粉类型下,中等粉质、粉质较角质胚乳质地的单穗重分别降低了11.94%和27.81%,且粉质与角质胚乳质地之间差异显著。在糯性淀粉类型下,面粉状胚乳占比的提高导致单穗重降低幅度较小,中等粉质、粉质与角质胚乳质地相比分别降低了2.76%和8.47%,且粉质与角质胚乳质地之间差异极显著。在同一胚乳质地下,糯性植株的单穗重均较粳性植株低,分别降低了21.39%、13.20%和0.33%,差异均不显著,共降低了17.64%,差异显著。

图3

图3   不同淀粉类型下3种胚乳质地的单穗重

不同小写和大写字母分别表示不同胚乳质地间在0.05和0.01水平上的显著差异,下同。

Fig.3   Panicle weight of three endosperm textures under different starch types

Different lowercase and uppercase letters denote significant differences between different endosperm textures at the levels of 0.05 and 0.01, respectively, the same below.


不同胚乳表型对千粒重的影响见图4,在同一淀粉类型下,千粒重随着面粉状胚乳占比的增高均有所降低,角质胚乳质地依旧最高,分别为32.30和30.38 g。在粳性淀粉类型下,中等粉质较角质胚乳质地的千粒重降低了4.22%,差异不显著,粉质胚乳质地较其他2种胚乳质地的千粒重分别降低了27.81%和24.63%,差异极显著。在糯性淀粉类型下,粉质胚乳质地较其他2种胚乳质地的千粒重分别降低了22.55%和2.57%,差异不显著。在角质、中等粉质下,糯性植株的千粒重均较粳性植株低,分别降低5.96%和21.95%,差异不显著,在粉质胚乳质地下,糯性植株的千粒重高于粳性植株,提高了0.90%,差异不显著,总体降低了6.51%,差异不显著。

图4

图4   不同淀粉类型下3种胚乳质地的千粒重

Fig.4   1000-grain weight of three endosperm textures under different starch types


2.4 F2群体单穗重、千粒重分布情况

各样本单穗重、千粒重分布情况见图5。在单穗重前15名中有1个糯―中等粉质,1个粳―粉质,其排名分别为第2和第11,还有3个粳―角质,其余10个均为粳―中等粉质。在千粒重前15名中有2个糯―角质,其排名分别为第1和第5,还有4个粳―角质,其余9个均为粳―中等粉质。在单穗重较高的品系中存在糯性淀粉类型或粉质胚乳质地的植株,而在千粒重较高的品系中只存在糯性淀粉类型的植株。

图5

图5   F2群体中各样本单穗重及千粒重分布情况

Fig.5   Distribution of panicle weight and 1000-grain weight in each sample of F2 population


2.5 不同胚乳表型对其他农艺性状的相对影响

不同胚乳表型的其他农艺性状见表3,在同一种淀粉类型下,随着胚乳中面粉状胚乳占比的增加,株高逐步降低,在每一种淀粉类型中粉质胚乳质地与角质胚乳质地间的差异均达极显著水平。在相同胚乳质地下,糯性植株的株高均较粳性植株低,差异均不显著。

表3   不同胚乳表型的其他农艺性状

Table 3  Other agronomic traits of different endosperm phenotypes

淀粉类型
Starch type
胚乳质地
Endosperm texture
株高
Plant height (m)
穗长
Panicle length (cm)
茎粗
Stem diameter (cm)
穗柄长
Peduncle length (cm)
叶面积
Leaf area (cm2)
粳Nonwaxy角质1.85±0.21bB23.73±4.31aA1.72±0.32aA36.23±3.98bA554.80±74.39aA
中等粉质1.76±0.18bAB21.95±2.86aA1.70±0.26aA35.03±5.15abA551.68±122.36aA
粉质1.53±0.39aA21.27±3.29aA1.76±0.27aA31.24±6.06aA549.22±118.76aA
糯Waxy角质1.85±0.24bB22.13±2.53aA1.62±0.21aA36.48±4.18aA516.58±64.95aA
中等粉质1.64±0.09aA21.33±1.53aA1.86±0.23aA29.83±2.46aA572.58±95.51aA
粉质1.51±0.05aA18.50±3.54aA1.48±0.04aA33.80±6.65aA418.80±55.26aA

不同小写和大写字母分别表示在0.05和0.01水平上的显著差异。

Different lowercase and uppercase letters indicate significant differences between different endosperm at the levels of 0.05 and 0.01, respectively.

新窗口打开| 下载CSV


在同一淀粉类型下,随着胚乳中面粉状胚乳占比的增加,穗长逐步降低,差异不显著。在相同胚乳质地下,糯性植株的穗长均较粳性植株低,差异不显著。

在同一种淀粉类型或胚乳质地下,植株的茎粗、穗柄长和叶面积均未呈现出逐步降低或升高的趋势,可能是胚乳表型对其无影响或环境对其作用较大。

3 讨论

本试验结果同近期相关报道一致,Cesevičienė等[35]在试验中观察到糯性小麦品系的产量均低于非糯性品系,而其中1个糯性品系的产量与非糯性品系相似。Rooney等[36]在试验中观察到糯性高粱品系的综合产量比非糯性品系低17%,但对单个品系的分析表明,一些糯性品系与非糯性品系没有统计学差异。对糯性品系的研究已有几十年,但胚乳淀粉类型对产量性能的影响尚不完全清楚。Zi等[30]发现,糯小麦在灌浆后期淀粉合成较弱,最终导致籽粒总淀粉含量降低。然而,Cesevičienė等[35]对不同遗传背景的小麦进行了淀粉含量的比较,结果表明,糯性品种的总淀粉含量略低于对照品种,但差异并不显著。关于胚乳淀粉类型与产量性能的关系,在已发表的研究结果中不完全一致,有时甚至相互矛盾。Hallauer[37]认为糯性玉米杂交种与非糯性玉米杂交种的产量差异仅为5%或更少;Milander等[38]通过比较糯性杂交种与普通杂交种的产量发现,糯玉米的产量组成部分可能与普通玉米相同或相似;Graybosch等[39]认为,在小麦育种中糯性淀粉类型性状不会导致籽粒产量下降。

Da Silva等[14]观察到高粱籽粒中面粉状胚乳的蛋白体形状不规则且高度内陷,从而导致其表面积比正常蛋白质体更大,使其排列更为松散。Ioerger等[15]报道面粉状胚乳的总蛋白含量较低。这可能是导致具有粉质胚乳质地的高粱品系千粒重显著下降的主要原因。在本试验中,也未发现高千粒重的粉质品系,与此观点一致。千粒重下降可能是导致单穗重显著降低的主要原因。然而,杂交育种只需要严格关注最优秀的几个品系。因此,重要的是评估所有具有目标基因型的品系,以确定其是否为高产量品系。在本试验中观察到F2分离群体中存在粉质胚乳质地的高产品系,这表明具有粉质胚乳质地的品系可以同时具有高产量特性。粉质胚乳质地导致株高下降的原因可能是基因的连锁,本次试验结果仅根据单组亲本之间杂交产生的F2群体所得到,其导致株高下降的遗传联系可能是亲本和受测群体所特有的。若更换亲本,关于高粱籽粒胚乳质地的研究中观察到植株株高下降的情况可能不会出现。

4 结论

本结果表明,在相同遗传背景下,糯性淀粉类型的存在会降低高粱植株的单穗重,而粉质胚乳质地的存在会降低高粱植株的单穗重、千粒重和株高。然而,也发现存在一些高产量的糯性或粉质品系,这表明,随着对其育种进度的不断推进,将来可逐步育成具有糯性淀粉类型、粉质胚乳质地的高产高粱品系。

参考文献

于纪珍, 王瑞, 詹鹏杰, .

中国主要高粱杂交种农艺及品质性状多样性分析

作物杂志, 2017(5):49-54.

[本文引用: 1]

张瑞栋, 高铭悦, 岳忠孝, .

灌浆期不同阶段干旱对高粱籽粒淀粉积累的影响

作物杂志, 2021(4):172-177.

[本文引用: 1]

Awika J M, Rooney L W.

Sorghum phytochemicals and their potential impact on human health

Phytochemistry, 2004, 65(9):1199-1221.

PMID:15184005      [本文引用: 1]

Sorghum is a rich source of various phytochemicals including tannins, phenolic acids, anthocyanins, phytosterols and policosanols. These phytochemicals have potential to significantly impact human health. Sorghum fractions possess high antioxidant activity in vitro relative to other cereals or fruits. These fractions may offer similar health benefits commonly associated with fruits. Available epidemiological evidence suggests that sorghum consumption reduces the risk of certain types of cancer in humans compared to other cereals. The high concentration of phytochemicals in sorghum may be partly responsible. Sorghums containing tannins are widely reported to reduce caloric availability and hence weight gain in animals. This property is potentially useful in helping reduce obesity in humans. Sorghum phytochemicals also promote cardiovascular health in animals. Such properties have not been reported in humans and require investigation, since cardiovascular disease is currently the leading killer in the developed world. This paper reviews available information on sorghum phytochemicals, how the information relates to current phytonutrient research and how it has potential to combat common nutrition-related diseases including cancer, cardiovascular disease and obesity.

Dykes L.

Sorghum phytochemicals and their potential impact on human health

Methods and Protocols, 2019,1931:121-140.

[本文引用: 1]

Kulamarva A G, Sosle V R, Raghavan G S V.

Nutritional and rheological properties of sorghum

International Journal of Food Properties, 2009, 12(1):55-69.

[本文引用: 1]

Hamaker B R, Kirleis A W, Mertz E T, et al.

Effect of cooking on the protein profiles and in vitro digestibility of sorghum and maize

Journal of Agricultural and Food Chemistry, 1986, 34(4):647-649.

[本文引用: 1]

Duodu K G, Taylor J R N, Belton P S, et al.

Factors affecting sorghum protein digestibility

Journal of Cereal Science, 2003, 38(2):117-131.

[本文引用: 1]

Hamaker B R, Mohamed A A, Habben J E, et al.

Efficient procedure for extracting maize and sorghum kernel proteins reveals higher prolamin contents than the conventional method

Cereal Chemistry, 1995, 72(6):583-588.

[本文引用: 1]

Shull J M, Watterson J J, Kirleis A W.

Proposed nomenclature for the alcohol-soluble proteins (kafirins) of Sorghum bicolor (L. Moench) based on molecular weight, solubility, and structure

Journal of Agricultural and Food Chemistry, 1991, 39(1):83-87.

[本文引用: 1]

Shull J M, Watterson J J, Kirleis A W.

Purification and immunocytochemical localization of kafirins in Sorghum bicolor (L. Moench) endosperm

Protoplasma, 1992, 171(1/2):64-74.

[本文引用: 1]

Oria M P, Hamaker B R, Schull J M.

In vitro protein digestibility of developing and mature sorghum grain in relation to α-, β-, and γ-kafirin disulfide crosslinking

Journal of Cereal Science, 1995, 22(1):85-93.

[本文引用: 1]

Oria M P, Hamaker B R, Axtell J D, et al.

A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies

Proceedings of the National Academy of Sciences of the United States, 2000, 97(10):5065-5070.

[本文引用: 1]

Duressa D, Weerasoriya D, Bean S R, et al.

Genetic basis of protein digestibility in grain sorghum

Crop Science, 2018, 58 (6):2183-2199.

[本文引用: 1]

Da Silva L S, Jung R, Zhao Z, et al.

Effect of suppressing the synthesis of different kafirin sub-classes on grain endosperm texture, protein body structure and protein nutritional quality in improved sorghum lines

Journal of Cereal Science, 2011, 54(1):160-167.

[本文引用: 2]

Ioerger B, Bean S R, Tuinstra M R, et al.

Characterization of polymeric proteins from vitreous and floury sorghum endosperm

Journal of Agricultural and Food Chemistry, 2007, 55(25):10232-10239.

PMID:18020308      [本文引用: 3]

Differences in protein content and composition between vitreous and floury endosperm were investigated using a number of different techniques. Differences in protein cross-linking between vitreous and floury endosperm were investigated using differential solubility, size exclusion chromatography (SEC), and analysis of sulfhydryl content and composition. Vitreous endosperm was found to have higher levels of total protein and kafirins, but floury endosperm had a higher proportion of gamma-kafirins than the vitreous. Floury endosperm was found to have higher levels of SDS-soluble proteins than SDS-insoluble proteins extracted using sonication than vitreous endosperm. Conversely, vitreous endosperm had a greater proportion of the insoluble proteins. SEC analysis of the polymeric proteins revealed that the insoluble proteins had more polymeric proteins than did the soluble proteins, indicating greater cross-linking and a larger Mw distribution. Vitreous endosperm was also found to have a greater percentage (i.e., a higher ratio of disulfide to total sulfhydryls) of disulfide bonds than floury endosperm. These results show that the proteins in vitreous endosperm have a higher degree of cross-linking and a greater Mw distribution than those found in floury endosperm.

Selle P H, Cadogan D J, Li X, et al.

Implications of sorghum in broiler chicken nutrition

Animal Feed Science and Technology, 2010, 156(3/4):57-74.

[本文引用: 1]

Singh R, Axtell J D.

High lysine mutant gene (hl that improves protein quality and biological value of grain sorghum

Crop Science, 1973, 13(5):535-539.

[本文引用: 1]

Taylor J R N, Schussler L, Van Der Walt W H.

Fractionation of proteins from low-tannin sorghum grain

Journal of Agricultural and Food Chemistry, 1984, 32(1):149-154.

PMID:6707328      [本文引用: 1]

Virupaksha T K, Sastry L V S.

Protein content and amino acid composition of some varieties of grain sorghum

Journal of Agricultural and Food Chemistry, 1968, 16(2):199-203.

[本文引用: 1]

Ball S G, Marion H B J, Visser R G F.

Progress in understanding the biosynthesis of amylose

Trends in Plant Science, 1998, 3 (12):462-467.

[本文引用: 1]

Hizukuri S.

Polymodal distribution of the chain lengths of amylopectins and its significance

Carbohydrate Research, 1986, 147(2):342-347.

[本文引用: 1]

Seung D.

Amylose in starch: towards an understanding of biosynthesis, structure and function

New Phytologist, 2020, 228(5):1490-1504.

[本文引用: 1]

Jane J L, Chen Y Y, Lee L F, et al.

Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch

Cereal chemistry, 1999, 76(5):629-637.

[本文引用: 1]

Palmer G H.

Sorghum—food, beverage and brewing potentials

Process Biochemistry, 1992, 27(3):145-153.

[本文引用: 1]

Karper R E.

Inheritance of waxy endosperm in sorghum

Journal of Heredity, 1933, 24(6):257-262.

[本文引用: 1]

Pedersen J F, Bean S R, Graybosch R A, et al.

Characterization of waxy grain sorghum lines in relation to granule-bound starch synthase

Euphytica, 2005, 144(1-2):151-156.

[本文引用: 1]

Rooney L W, Pflugfelder R L.

Factors affecting starch digestibility with special emphasis on sorghum and corn

Journal of Animal Science, 1986, 63(5):1607-1623.

DOI:10.2527/jas1986.6351607x      PMID:3539904      [本文引用: 1]

Starch exists inside the endosperm of cereals enmeshed in a protein matrix, which is particularly strong in sorghum and corn. Starch digestibility is affected by the plant species, the extent of starch-protein interaction, the physical form of the granule, inhibitors such as tannins, and the type of starch. Among the cereals, sorghum generally has the lowest starch digestibility. The resistance to digestive action of the hard peripheral endosperm layer is largely responsible for this effect. Processing methods such as steam-flaking and reconstitution are effective in raising sorghum digestibility to near that of corn. Waxy sorghum shows consistently higher feeding value than normal sorghum. Both the starch granules and the protein matrix around them are more digestible in waxy grain. The development of new heterowaxy or waxy sorghum hybrids may further increase sorghum feed efficiency.

Yan S, Wu X, Bean S R, et al.

Evaluation of waxy grain sorghum for ethanol production

Cereal Chemistry, 2011, 88(6):589-595.

[本文引用: 1]

Kuhlman L C. Investigation of a xenia effect for yield caused by the waxy gene in grain sorghum. Texas: Texas A & M University 2005.

[本文引用: 1]

Zi Y, Ding J F, Song J M, et al.

Grain yield,starch content and activities of key enzymes of waxy and non-waxy wheat (Triticum aestivum L.)

Scientific Reports, 2018, 8(1):4548.

[本文引用: 2]

高杰, 李青风, 李晓荣, .

贵州省不同年代糯高粱品种(系)农艺性状演变分析

作物杂志, 2019(4):17-23.

[本文引用: 1]

全国植物新品种测试标准化技术委员会. 植物品种特异性、一致性和稳定性测试指南:GB/T 19557.15-2018. 北京:中国标准出版社,2018.

[本文引用: 1]

Sabine G.

Estimation of Sorghum Grain Endosperm Texture:ICC Standard 176

ICC, 2011.

[本文引用: 1]

Pedersen J F, Bean S R, Funnell D L, et al.

Rapid iodine staining techniques for identifying the waxy phenotype in sorghum grain and waxy genotype in sorghum pollen

Crop Science, 2004, 44(3):764-767.

[本文引用: 1]

Cesevičienė J, Gorash A, Liatukas Ž, et al.

Grain yield performance and quality characteristics of waxy and non-waxy winter wheat cultivars under high and low-input farming systems

Plants, 2022, 11(7):882.

[本文引用: 2]

Rooney W L, Aydin S, Kuhlman L C.

Assessing the relationship between endosperm type and grain yield potential in sorghum

Field Crops Research, 2005, 91(2/3):199-205.

[本文引用: 1]

Hallauer A R. Specialty Corns. Boca Raton: CRC Press, 2000

[本文引用: 1]

Milander J J, Mason S C, Kruger G, et al.

Waxy maize yield and components as influenced by environment, water regime, and hybrid

Maydica, 2015, 60(3):26.

[本文引用: 1]

Graybosch R A, Souza E, Berzonsky W, et al.

Functional properties of waxy wheat flours: genotypic and environmental effects

Journal of Cereal Science, 2003, 38(1):69-76.

[本文引用: 1]

/