外源硅对盐胁迫下娃娃菜种子萌发及幼苗生理特性的影响
Effects of Exogenous Silicon on Seed Germination and Physiological Characteristics of Brassica pekinensis under Salt Stress
收稿日期: 2024-03-19 修回日期: 2024-05-12 网络出版日期: 2024-05-31
基金资助: |
|
Received: 2024-03-19 Revised: 2024-05-12 Online: 2024-05-31
作者简介 About authors
鄂利锋,研究方向为蔬菜栽培与生理生态,E-mail:
为探究不同浓度外源硅对盐胁迫下娃娃菜种子萌发及幼苗生理特性的影响,以娃娃菜品种“华耐B1102春玉黄”为试验材料,采用单因素完全随机区组设计,在85.55 mmol/L NaCl盐胁迫下,共设6个处理,分别为CK1(蒸馏水)、CK2(NaCl)、A1(NaCl+0.5 mmol/L Si)、A2(NaCl+1.0 mmol/L Si)、A3(NaCl+2.0 mmol/L Si)和A4(NaCl+4.0 mmol/L Si),每个处理3次重复,测定娃娃菜种子萌发和幼苗生长指标及生理活性的变化。结果表明,不同浓度外源硅均可有效缓解盐胁迫对娃娃菜种子和幼苗带来的伤害,当硅浓度为1.0 mmol/L时,娃娃菜种子的发芽率、发芽势、发芽指数和活力指数显著提高;同时娃娃菜幼苗的株高、茎粗、叶面积、根系体积和叶绿素含量也显著增加,其叶片过氧化物酶活性增高,丙二醛含量下降。外源硅可有效调节盐胁迫对华耐B1102春玉黄娃娃菜种子萌发及幼苗生长的抑制,其缓解盐胁迫效果最佳的硅浓度为1.0 mmol/L。
关键词:
In order to explore the effects of different concentrations of exogenous silicon on seed germination and seedling physiological characteristics of Brassica pekinensis under salt stress, the variety “Huanai B1102 Chunyuhuang” was used as the test material, a single-factor completely randomized block design was conducted. Under 85.55 mmol/L NaCl salt stress, six treatments were set up: CK1 (distilled water), CK2 (NaCl), A1 (NaCl+ 0.5 mmol/L Si), A2 (NaCl+1.0 mmol/L Si), A3 (NaCl+2.0 mmol/L Si), and A4 (NaCl+4.0 mmol/L Si), each treatment was repeated three times. The changes of seed germination, seedling growth index and physiological activity were determined. The results showed that different concentrations of exogenous silicon could effectively alleviate the damage caused by salt stress to the seeds and seedlings of Brassica pekinensis. When the concentration of silicon was 1.0 mmol/L, the germination rate, germination potential, germination index and vigor index of Brassica pekinensis seeds were significantly increased. At the same time, the plant height, stem diameter, leaf area, root volume and chlorophyll content of Brassica pekinensis seedlings also increased significantly, the activity of peroxidase in leaves increased, and the content of malondialdehyde decreased. Exogenous silicon could effectively regulate the inhibition of salt stress on seed germination and seedling growth of “Huanai B1102 Chunyuhuang”, and the best concentration of silicon to alleviate salt stress was 1.0 mmol/L.
Keywords:
本文引用格式
鄂利锋, 徐金崇, 陈修斌, 权建华, 华军, 尹丽娟, 王舜奇, 赵文勤.
E Lifeng, Xu Jinchong, Chen Xiubin, Quan Jianhua, Hua Jun, Yin Lijuan, Wang Shunqi, Zhao Wenqin.
娃娃菜(Brassica pekinensis)是甘肃高原种植的主要夏季蔬菜种类之一[1]。近年来,随着娃娃菜栽培规模的不断扩大,长期的连作导致土壤盐渍化程度加剧,制约了娃娃菜产量和经济效益的增加[2]。在土壤深层或地下水中,盐分经毛细管作用逐步积聚于土壤表层,导致Na+、Mg2+、Ca2+以及CO32−、Cl−及SO42−在土壤表面显著集聚,造成土壤盐渍化[3-4]。土壤盐渍化是一种影响植物发育的非生物胁迫,土壤盐分浓度高,使植物保护酶系统遭到破坏[5-6],进而引起一系列的生理生化变化[7],导致光合作用能力下降和矿质元素吸收不平衡等[8-9],造成植株生长发育速率减缓、生物量降低甚至死亡[10]。因此,提高作物耐盐性对于提高作物产量和品质具有重要意义。硅(Si)是一种化学元素,是地壳中含量仅次于氧的有益元素[11],在土壤中主要以氧化物和硅酸盐形式存在,具有减轻环境压力和土壤养分耗竭的潜力[12],可提高作物对生物与非生物胁迫的抗性[13-14],对蔬菜产量的提高和品质的改善有着重要意义[15⇓-17]。大量研究[18⇓-20]证明,缺硅减弱了植物适应力,适当施硅可提升作物耐盐性,减少盐害。崔云浩等[21]发现,纳米硅喷施有效缓解了盐胁迫对甜椒幼苗的影响,提升了抗氧化酶活性,降低了氧化损伤;Kolima等[22]研究表明,外源硅处理在盐胁迫条件下增强了大豆幼苗叶片中的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr),并导致可溶性糖和淀粉积累,抑制了光合作用,从而减缓了植株生长;Lamsaadi等[23]评估了外源硅对盐胁迫下胡芦巴中一些耐受性相关参数的影响,结果表明外源硅供应逆转了盐的抑制效应,改善了胡芦巴的生长和产量;王映霞[24]研究认为,适宜的硅浓度可提升甜瓜种子在盐胁迫下的发芽率和α-淀粉酶活性,促进种子萌发;陈罡等[25]研究表明,外源硅能缓解盐胁迫导致的黄瓜幼苗光合和生长抑制,提升植株耐盐性。以上研究显示,外源硅对盐胁迫下作物生长调控具有积极作用,但关于外源硅缓解娃娃菜盐胁迫方面的研究鲜有报道。本试验以娃娃菜为试验材料,探究外源硅浓度对盐胁迫下娃娃菜种子萌发及幼苗生理特性的影响,揭示外源硅缓解其盐胁迫适应机制,确定娃娃菜最佳外源硅使用浓度,为特色产业娃娃菜发展提供理论依据和技术支撑。
1 材料与方法
1.1 试验材料
供试娃娃菜品种为“华耐B1102春玉黄”,由北京华耐农业发展有限公司生产;“鲁青”牌育苗基质由济宁鲁青生物科技有限公司提供;外源硅为Na2SiO3·9H2O,盐为NaCl。
1.2 试验设计
基于预试验,采用完全随机区组设计,共设6个处理,分别为CK1(蒸馏水)、CK2(NaCl)、A1(NaCl+0.5 mmol/L Si)、A2(NaCl+1.0 mmol/L Si)、A3(NaCl+2.0 mmol/L Si)、A4(NaCl+4.0 mmol/L Si),每个处理3次重复,各处理NaCl浓度均为85.55 mmol/L。
采用培养皿发芽法处理种子。采用直径为120 mm的培养皿,每个培养皿底部覆盖2层定性滤纸,不同处理用配制好的不同试剂浸湿,然后放入100粒娃娃菜种子,放置到光照培养箱中培养,光照强度5000 lx,湿度80%,变温周期设置为白天16 h、25 ℃,夜晚8 h、15 ℃。每天记录发芽数和发芽情况,连续观察记录至第10天,测定种子发芽各项指标。
采用育苗盘培养法处理幼苗。种子发芽试验结束后播种到72孔的穴盘中,待幼苗长至3叶1心后定植于营养钵内,缓苗3 d后处理,每隔3 d浇1次500 mL盐溶液,采用叶面喷施的方法将不同浓度的硅溶液以雾化水珠均匀分布于叶片表面,每天观察幼苗生长发育情况,至幼苗生长30 d进行取样,测定各项指标。
1.3 测定项目与方法
1.3.1 种子发芽指标
发芽率(%)=(已正常发芽种子数/供试种子数)×100;
发芽势(%)=[初期(规定天数)正常发芽种子数/供检种子数]×100;
发芽指数(GI)=ƩGt/Dt,式中,Gt代表不同发芽天数(t)发芽种子数,Dt代表发芽天数;
活力指数(VI)=发芽指数(GI)×幼苗鲜重。
1.3.2 幼苗生长、光合色素及生理指标
1.4 数据处理
用Microsoft Excel 2019进行数据整合及图表制作,应用SPSS 26.0软件进行数据分析,采用Duncan法进行差异显著性分析。
2 结果与分析
2.1 盐胁迫下外源硅对娃娃菜种子萌发的影响
由表1可知,与CK1相比,在盐胁迫CK2处理下娃娃菜种子的发芽率、发芽势、发芽指数、活力指数均显著下降,种子发芽受到明显抑制,分别比CK1降低了10.34%、42.72%、24.33%、57.58%。在盐胁迫下,随着外源硅浓度的增加,与CK2相比,娃娃菜种子的发芽率、发芽势、发芽指数、活力指数有先升高后降低的趋势,在外源硅浓度为1.0 mmol/L(A2处理)时,娃娃菜种子的发芽率、发芽势、发芽指数、活力指数最高,对盐胁迫下种子萌发抑制现象的缓解作用最好,分别升高了8.46%、18.64%、12.34%、92.03%。这表明盐胁迫下施加适宜浓度的外源硅可以缓解盐胁迫对娃娃菜种子萌发造成的伤害,促进种子萌发。
表1 不同处理对娃娃菜种子发芽率、发芽势、发芽指数和活力指数的影响
Table 1
处理 Treatment | 发芽率 Germination rate (%) | 发芽势 Germination potential (%) | 发芽指数 Germination index | 活力指数 Vigor index |
---|---|---|---|---|
CK1 | 96.67±1.76a | 68.67±0.67a | 41.95±0.93a | 2.80±0.14a |
CK2 | 86.67±1.76c | 39.33±3.53c | 31.74±1.36c | 1.19±0.05c |
A1 | 92.67±1.76ab | 42.00±1.15bc | 34.14±0.87bc | 1.93±0.22b |
A2 | 94.00±1.15ab | 46.67±0.67b | 35.66±0.49b | 2.28±0.10b |
A3 | 93.33±1.76ab | 44.67±0.67bc | 35.14±0.38b | 1.96±0.08b |
A4 | 89.33±1.76c | 41.33±1.33bc | 33.90±0.14bc | 1.41±0.02c |
不同小写字母表示在P < 0.05水平上差异显著,下同。
Different lowercase letters indicate significant difference at the P < 0.05 level, the same below.
2.2 盐胁迫下外源硅对娃娃菜幼苗生长的影响
由表2可知,在盐胁迫CK2处理下,娃娃菜幼苗的株高、茎粗、叶面积、鲜重与CK1相比均显著降低,幼苗的生长受到了严重阻碍,上述指标分别比CK1降低了30.32%、36.29%、49.48%、33.49%。盐胁迫下,随着外源硅浓度的增加,与CK2相比,娃娃菜幼苗的株高、茎粗、叶面积、鲜重有先升高后降低的趋势,在外源硅浓度为1.0 mmol/L(A2处理)时,对盐胁迫下幼苗生长抑制现象的缓解作用最显著,娃娃菜幼苗的株高、茎粗、叶面积、鲜重分别升高了42.26%、43.04%、74.78%、16.05%。
表2 不同处理对娃娃菜幼苗株高、茎粗、叶面积、鲜重的影响
Table 2
处理Treatment | 株高Plant height (cm) | 茎粗Stem diameter (mm) | 叶面积Leaf area (cm2) | 鲜重Fresh weight (g) |
---|---|---|---|---|
CK1 | 16.79±0.53a | 4.13±0.19a | 126.41±1.62a | 14.33±1.18a |
CK2 | 11.70±0.99bc | 2.63±0.12b | 63.86±3.60c | 9.53±0.16c |
A1 | 13.28±0.40b | 3.60±0.15a | 83.78±3.06c | 9.46±0.25c |
A2 | 16.64±0.56a | 3.77±0.18a | 111.62±2.31b | 11.06±0.41bc |
A3 | 12.70±0.40b | 3.57±0.24a | 60.89±1.98d | 11.90±0.64b |
A4 | 10.25±0.35c | 2.80±0.20b | 60.28±3.57d | 9.88±0.46c |
由表3可知,在盐胁迫CK2处理下,娃娃菜幼苗根系的根系总长、根系表面积、根尖数与CK1相比均显著减少,幼苗的根系生长受到抑制,分别比CK1降低了45.88%、50.41%、71.36%。盐胁迫下,随着外源硅浓度的增加,与CK2相比,娃娃菜幼苗的根系总长、根系表面积、根系体积、根尖数有先升高后降低的趋势,在外源硅浓度为1.0 mmol/L(A2处理)时,对盐胁迫下幼苗根系生长抑制现象的缓解作用最显著,娃娃菜幼苗的根系总长、根系表面积、根尖数分别升高了84.34%、101.02%、283.62%。
表3 不同处理对娃娃菜幼苗根系总长、根系表面积、根系体积和根尖数的影响
Table 3
处理Treatment | 根系总长Total root length (cm) | 根系表面积Root surface area (cm2) | 根系体积Root volume (cm3) | 根尖数Number of root tips |
---|---|---|---|---|
CK1 | 135.65±20.40a | 353.98±9.55a | 49.31±15.11a | 135.00±20.31a |
CK2 | 73.42±13.75c | 175.53±13.74c | 28.08±7.96a | 38.67±4.91bc |
A1 | 121.01±4.46ab | 264.19±7.16b | 36.21±8.33a | 67.00±0.00bc |
A2 | 135.34±13.97a | 352.86±22.93a | 49.04±13.99a | 148.33±12.02a |
A3 | 83.72±4.65bc | 241.70±14.33b | 39.23±7.33a | 69.33±11.20b |
A4 | 109.59±10.29abc | 150.04±15.25c | 25.99±9.37a | 32.00±1.00c |
由图1可以观察到,盐胁迫下的娃娃菜幼苗叶片较小,长势较弱,根系也受到了不同程度的损伤;在盐胁迫下施用外源硅对娃娃菜幼苗株高、茎粗、叶面积、根系结构有明显的促进作用,可有效缓解盐胁迫给娃娃菜幼苗带来的伤害。
图1
图1
不同处理对娃娃菜幼苗形态和根系的影响
Fig.1
Effects of different treatments on the morphology and root system of Brassica pekinensis seedlings
2.3 盐胁迫下外源硅对娃娃菜幼苗叶片光合色素含量的影响
由表4可知,在盐胁迫CK2处理下,娃娃菜叶片中叶绿素a、叶绿素b、类胡萝卜素、叶绿素总量与CK1相比显著降低,分别比CK1降低了55.99%、71.28%、26.19%、61.94%。盐胁迫下,随着外源硅浓度的增加,与CK2相比,娃娃菜叶片的光合色素含量有先升高后降低的趋势,在外源硅浓度为0.5 mmol/L(A1处理)时,叶绿素a对盐胁迫下幼苗叶片中光合色素积累作用最显著(P<0.05),较CK2升高了44.56%,A1与A2处理处理间无显著差异。在外源硅浓度为1.0 mmol/L时,叶绿素b、叶绿素总量对盐胁迫下幼苗叶片中光合色素积累作用最显著(P<0.05),较CK2分别升高了148.99%、72.62%。在外源硅浓度为4.0 mmol/L(A4处理)时,娃娃菜叶片中叶绿素a、类胡萝卜素、叶绿素总量在盐胁迫下均最低,表明高浓度的硅处理对娃娃菜叶片也存在一定的抑制作用。由此可见,在盐胁迫下适当浓度的外源硅能显著增进娃娃菜叶片光合作用色素的水平,有助于叶片更有效地开展光合过程,增强植物的光合同化效率,并促进植物体内养分的有效积累。
表4 不同处理娃娃菜叶片叶绿素a、叶绿素b、类胡萝卜素、叶绿素(a+b)总量的影响
Table 4
处理 Treatment | 叶绿素a Chlorophyll a | 叶绿素b Chlorophyll b | 类胡萝卜素 Carotenoids | 叶绿素(a+b) Chlorophyll (a+b) |
---|---|---|---|---|
CK1 | 9.13±0.06a | 5.78±0.11a | 1.26±0.03a | 14.91±0.16a |
CK2 | 4.02±0.07c | 1.66±0.11c | 0.93±0.02b | 5.67±0.18c |
A1 | 5.81±0.06b | 3.91±0.07b | 0.68±0.01bc | 9.72±0.13b |
A2 | 5.66±0.05b | 4.13±0.69b | 0.64±0.20c | 9.79±0.73b |
A3 | 3.94±0.05c | 1.77±0.09c | 0.92±0.02b | 5.72±0.14c |
A4 | 3.03±0.08d | 1.81±0.19c | 0.54±0.04c | 4.84±0.27c |
2.4 盐胁迫下外源硅对娃娃菜幼苗POD活性与MDA含量的影响
由图2a可知,在CK2处理下,娃娃菜幼苗的POD活性较CK1显著降低了32.87%。在盐胁迫的环境中施用外源硅,随着外源硅浓度的增加,POD活性呈先增后降的趋势,其中A1~A3处理分别较CK2增高了21.03%、41.41%、41.09%,A4与CK2、A2与A3处理,均无显著差异。由此可见,A2和A3处理效果显著(P<0.05)。
图2
图2
不同处理对娃娃菜幼苗POD活性和MDA含量的影响
不同小写字母表示在P < 0.05水平上差异显著。
Fig.2
Effects of different treatments on POD activity and MDA content of Brassica pekinensis seedlings
Different lowercase letters indicate significant difference at the P < 0.05 level.
由图2b可知,娃娃菜幼苗遭受盐胁迫(CK2处理)时,MDA含量大幅度上升,与CK1相比显著上升了255.23%(P<0.05)。在盐胁迫的环境中施用外源硅,随着外源硅浓度的增加,MDA含量呈先降低后升高的趋势,A1、A2、A3和A4处理与CK2相比分别显著降低了24.93%、63.27%、50.67%、25.74%(P<0.05),其中A2处理娃娃菜幼苗的细胞膜受损较轻。
3 讨论
种子萌发是植物生长周期的起点,极易受到机械伤害、病虫害和环境胁迫的影响[31]。本研究发现,在85.55 mmol/L NaCl模拟盐胁迫下,娃娃菜种子的发芽率、发芽势、发芽指数、活力指数与CK1相比显著降低(P<0.05),这与于世河等[32]对科罗拉多蓝杉种子萌发的研究结果一致。在盐胁迫下,施用0.5~4.0 mmol/L的外源硅后,随着硅浓度的增加,娃娃菜种子的萌发指标与CK2相比明显升高,施用2.0 mmol/L的外源硅时,娃娃菜种子的萌发指标有所下降,但仍高于CK2处理,随着浓度的增加,施用4.0 mmol/L的外源硅时,娃娃菜种子的萌发指标相比于其他浓度处理均达到最低。结果表明,适宜浓度的外源硅可缓解盐胁迫对娃娃菜种子产生的伤害。
盐逆境引起的渗透胁迫和离子毒害使植物细胞电子传递的电子增加,导致细胞的氧化损伤,植株的综合生长表现会明显下降[33]。本研究发现,在85.55 mmol/L NaCl模拟盐胁迫下,娃娃菜幼苗的株高、茎粗、叶面积、鲜重、根系参数显著下降,随着外源硅浓度的增加,与CK2相比,娃娃菜幼苗的株高、茎粗、叶面积、鲜重有先升高后降低的趋势,该结果与秦曼丽等[34]对黄瓜生长影响的研究结果一致。在外源硅浓度为1.0 mmol/L时,对盐胁迫下幼苗根系的缓解作用最显著,娃娃菜幼苗根系的根系总长、根系表面积、根系体积、根尖数升高。该结果与高伟等[35]对生姜幼苗生长和生理特性的研究结果一致。叶片的叶绿素含量明显降低,幼苗的POD活性增强,MDA含量显著增加,该结论与武仲兰等[36]和李娟等[37]的研究结果一致。叶绿素是光合作用的重要基础,其功能是捕获光能并将其转化为化学能。有研究[38]证明,纳米硅可以显著增加植物的叶绿素含量,而普通硅也可以在一定程度上提高植物的叶绿素b含量,同时也可以降低植物的叶绿素a含量;而适宜的外源硅处理盐胁迫下的娃娃菜幼苗可以激发POD活性,清除植物体内由于胁迫产生的活性氧,使活性氧代谢处于平衡状态。在逆境环境中,MDA大量积累会引起与膜结合的脂肪酸氧化分解,导致细胞膜发生脂质过氧化反应使生物膜遭到破坏。施用0.5~4.0 mmol/L的外源硅后,随着硅浓度的增加,娃娃菜幼苗的株高、茎粗、叶面积、鲜重和根系参数都呈现先升高后降低的趋势,叶片的叶绿素含量先增加后减少,POD活性先升高后降低,MDA含量先下降后升高。该结果与樊哲仁等[39]对麻疯树幼苗生长影响的研究结果一致。
4 结论
在85.55 mmol/L NaCl盐胁迫下,1.0 mmol/L的外源硅可有效缓解盐胁迫对华耐B1102春玉黄娃娃菜种子和幼苗的伤害,增强娃娃菜种子及幼苗对盐碱胁迫的适应性及抗盐能力。
参考文献
Comprehensive evaluation on effect of planting and breeding waste composts on the yield, nutrient utilization, and soil environment of baby cabbage
,
Causes of farmland salinization and remedial measures in the Aral Sea basin-Research on water management to prevent secondary salinization in rice-based cropping system in arid land
,
Protective effect of potassium application on NaCl induced stress in tomato (Lycopersicon esculentum L.) genotypes
,
盐碱胁迫对‘冬红’花楸生长、生理及光合特性的影响
,DOI:10.11733/j.issn.1007-0435.2024.02.015 [本文引用: 1]
为探究‘冬红’花楸(Sorbus sibirica ‘DongHong’)的耐盐特性,本试验以‘冬红’花楸幼苗为材料,采用中性盐NaCl、碱性盐NaHCO<sub>3</sub>、混合盐对‘冬红’花楸幼苗胁迫处理,分析不同浓度盐碱胁迫对‘冬红’花楸生长、生理及光合指标的影响。结果表明:随着盐浓度的增加,冬红花楸根总长度、根表面积、根体积、根平均直径、根尖数等指标均受到不同程度的抑制,中性盐抑制程度最轻,碱性盐在浓度为200 mmol·L<sup>-1</sup>时抑制达到最大,出现表皮脱落、碱蚀等现象;根冠比及根生物量呈降低趋势,中性盐降低幅度较小;丙二醛含量和脯氨酸含量呈上升趋势,超氧化物氢化酶和过氧化物酶呈先上升后下降趋势;胞间CO<sub>2</sub>浓度呈现上升趋势,净光合速率、气孔导度及蒸腾速率均呈下降趋势。利用主成分分析筛选出生物量、总根长、根表面积、根体积、根尖数、净光合速率、蒸腾速率、气孔导度可作为‘冬红’花楸耐盐性评价的参考指标。
Mechanisms of silicon- mediated amelioration of salt stress in plants
,
Siliconʼs role in abiotic and biotic plant stresses
,
Benefits of plant silicon for crops: a review
,
Silicon-mediated plant defense against pathogens and insect pests
,DOI:10.1016/j.pestbp.2020.104641 PMID:32711774 [本文引用: 1]
Plant diseases and insect pests are one of the major limiting factors that reduce crop production worldwide. Silicon (Si) is one of the most abundant elements in the lithosphere and has a positive impact on plant health by effectively mitigating biotic and abiotic stresses. It also enhances plant resistance against insect pests and fungal, bacterial, and viral diseases. Therefore, this review critically converges its focus upon Si-mediated physical, biochemical, and molecular mechanisms in plant defense against pathogens and insect pests. It further explains Si-modulated interactive phytohormone signaling and enzymatic production and their involvement in inducing resistance against biotic stresses. Furthermore, this review highlights the recent research accomplishments which have successfully revealed the active role of Si in protecting plants against insect herbivory and various viral, bacterial, and fungal diseases. The article explores the potential in enhancing Si-mediated plant resistance against various economically important diseases and insect pests, further shedding light upon future issues regarding the role of Si in defense against pathogens and insect pests.Copyright © 2020 Elsevier Inc. All rights reserved.
Dynamic modeling of silicon bioavailability, uptake, transport, and accumulation: applicability in improving the nutritional quality of tomato
,DOI:10.3389/fpls.2018.00647 PMID:29868098 [本文引用: 1]
Silicon is an essential nutrient for humans, additionally is beneficial for terrestrial plants In plants Si enhances tolerance to different types of stress, in humans, it improves the metabolism and increases the strength of skeletal and connective tissues as well as of the immune system Most of the Si intake of humans come from edible plants creating a double benefit first, because the absorption of Si increases the antioxidants and other phytochemicals in plants, thereby increasing its functional value, and second because the higher concentration of Si in plants increases intake in human consumers Therefore, it is desirable to raise the availability of Si in the human diet through the agronomic management of Si accumulator species, such as corn, wheat, rice, soybeans, and beans But also in such species as tomatoes, carrots, and other vegetables, whose per capita consumption has increased However, there are few systematized recommendations for the application and management of Si fertilizers based on the physicochemical factors that determine their availability, absorption, transport, and deposition in cells and tissues This study presents updated information about edaphic and plant factors, which determine the absorption, transport, and deposition rates in edible organs The information was integrated into an estimated dynamic model that approximates the processes previously mentioned in a model that represents a tomato crop in soil and soilless conditions In the model, on the other hand, was integrated the available information about key environmental factors related to Si absorption and mobilization, such as the temperature, pH, and soil organic matter The output data of the model were compared against information collected in the literature, finding an adequate adjustment The use of the model for educational or technical purposes, including the possibility of extending it to other horticultural crops, can increase the understanding of the agronomic management of Si in plants.
硅钙对日光温室黄瓜光合作用及产量和品质的影响
,DOI:10.16420/j.issn.0513-353x.2018-0687 [本文引用: 1]
为了探明硅和钙对黄瓜生长发育的调控机理,以‘津优35号’黄瓜(Cucumis sativus L.‘Jinyou 35’)为试材,用盆栽基质培养方法,以不添加硅、钙为对照,研究单施硅(Si)、单施钙(Ca)和硅钙配施(Si + Ca)对黄瓜光合特性、产量及品质的影响。结果表明:Si、Ca和Si + Ca处理均能提高黄瓜叶片的净光合速率(Pn);Si处理的气孔导度(Gs)和蒸腾速率(Tr)显著小于对照,Ca处理显著大于对照,Si + Ca处理与对照差异不显著;Ca和Si + Ca处理可使胞间CO2浓度(Ci)明显升高,而Si处理与对照差异不显著。与对照相比,Si、Ca和Si + Ca处理Rubisco活化酶(RCA)、果糖–1,6–二磷酸酶(FBPase)、景天庚酮糖–1,7–二磷酸酶(SBPase)、果糖–1,6–二磷酸醛缩酶(FBA)和转酮醇酶(TK)活性显著升高;Si + Ca处理的核酮糖–1,5–二磷酸羧化酶(RuBPCase)活性也明显升高,Si、Ca处理无显著变化。Si、Ca和Si + Ca处理的Rubisco大亚基(rbcL)和小亚基(rbcS)、RCA、FBP、SBP、FBA和TK mRNA相对表达量均显著大于对照。Si、Ca和Si + Ca处理叶片的暗适应下PSⅡ最大光化学效率(Fv/Fm)无显著变化,但光下PSⅡ实际光化学效率(ΦPSII)均明显高于对照。Si、Ca和Si + Ca均可促进黄瓜植株生长,产量分别比对照增加11.75%、14.23%和21.28%,黄瓜果实的可溶性糖、蛋白质、游离氨基酸、维生素C含量显著升高,亚硝酸盐和单宁含量明显降低。可见,Si、Ca和Si + Ca可提高黄瓜叶片的Calvin循环关键酶活性与基因表达,增强光合碳同化能力,提高光化学效率,从而促进植株生长,产量和品质显著提高。3个处理相比,Si + Ca处理的光合能力最强,生长量最大,提质增产效果最佳。
Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.)
,
Silicon mitigates the negative impacts of salt stress in soybean plants
,
Beneficial role of exogenous silicon on yield, antioxidant systems, osmoregulation and oxidative stress in fenugreek (Trigonella foenum-graecum L.) under salinity stress
,
Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation
,
硅对盐胁迫下麻疯树种子萌发及幼苗生长的影响
,添加外源硅溶液后,研究盐胁迫下麻疯树种子萌发和幼苗生长,测定种子发芽率、发芽指数、活力指数、丙二醛(MDA)含量和酶活性(包括SOD、POD和CAT)等指标,调查硅对盐胁迫下麻疯树的生理影响。结果表明,盐胁迫下外源硅处理可显著提高麻疯树种子发芽率、发芽指数和活力指数。水培营养液中施加外源硅可降低盐胁迫下幼苗叶片的MDA含量,显著提高了SOD和POD活性,部分提高CAT活性(但不显著)。外源硅缓解了盐胁迫的生长抑制作用。外源硅的缓解效应存在浓度差异,终浓度3mmol/L硅的生长缓解作用最好。
/
〈 | 〉 |