作物杂志,2024, 第6期: 212–217 doi: 10.16035/j.issn.1001-7283.2024.06.028

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

外源硅对盐胁迫下娃娃菜种子萌发及幼苗生理特性的影响

鄂利锋1,2(), 徐金崇1, 陈修斌1,2, 权建华1,2, 华军3, 尹丽娟4, 王舜奇4, 赵文勤5   

  1. 1河西学院农业与生态工程学院,734000,甘肃张掖
    2河西学院河西走廊精准设施园艺工程技术研究中心,734000,甘肃张掖
    3张掖市经济作物技术推广站,734000,甘肃张掖
    4临泽县农业技术推广中心,734200,甘肃临泽
    5甘肃华美农业科技有限公司,734000,甘肃张掖
  • 收稿日期:2024-03-19 修回日期:2024-05-12 出版日期:2024-12-15 发布日期:2024-12-05
  • 作者简介:鄂利锋,研究方向为蔬菜栽培与生理生态,E-mail:hxxyelf@163.com
  • 基金资助:
    张掖市科技计划项目(ZY2022RC01)

Effects of Exogenous Silicon on Seed Germination and Physiological Characteristics of Brassica pekinensis under Salt Stress

E Lifeng1,2(), Xu Jinchong1, Chen Xiubin1,2, Quan Jianhua1,2, Hua Jun3, Yin Lijuan4, Wang Shunqi4, Zhao Wenqin5   

  1. 1College of Agriculture and Ecological Engineering, Hexi University, Zhangye 734000, Gansu, China
    2Hexi Corridor Precision Facility Horticulture Engineering and Technology Research Center, Hexi University, Zhangye 734000, Gansu, China
    3Zhangye Economic Crops Technical Extension Station, Zhangye 734000, Gansu, China
    4Linze County Agricultural Technology Extension Center, Linze 734200, Gansu, China
    5Gansu Huamei Agricultural Science and Technology Company Limited, Zhangye 734000, Gansu, China
  • Received:2024-03-19 Revised:2024-05-12 Online:2024-12-15 Published:2024-12-05

摘要:

为探究不同浓度外源硅对盐胁迫下娃娃菜种子萌发及幼苗生理特性的影响,以娃娃菜品种“华耐B1102春玉黄”为试验材料,采用单因素完全随机区组设计,在85.55 mmol/L NaCl盐胁迫下,共设6个处理,分别为CK1(蒸馏水)、CK2(NaCl)、A1(NaCl+0.5 mmol/L Si)、A2(NaCl+1.0 mmol/L Si)、A3(NaCl+2.0 mmol/L Si)和A4(NaCl+4.0 mmol/L Si),每个处理3次重复,测定娃娃菜种子萌发和幼苗生长指标及生理活性的变化。结果表明,不同浓度外源硅均可有效缓解盐胁迫对娃娃菜种子和幼苗带来的伤害,当硅浓度为1.0 mmol/L时,娃娃菜种子的发芽率、发芽势、发芽指数和活力指数显著提高;同时娃娃菜幼苗的株高、茎粗、叶面积、根系体积和叶绿素含量也显著增加,其叶片过氧化物酶活性增高,丙二醛含量下降。外源硅可有效调节盐胁迫对华耐B1102春玉黄娃娃菜种子萌发及幼苗生长的抑制,其缓解盐胁迫效果最佳的硅浓度为1.0 mmol/L。

关键词: 娃娃菜, 外源硅, 盐胁迫, 种子萌发, 幼苗生长

Abstract:

In order to explore the effects of different concentrations of exogenous silicon on seed germination and seedling physiological characteristics of Brassica pekinensis under salt stress, the variety “Huanai B1102 Chunyuhuang” was used as the test material, a single-factor completely randomized block design was conducted. Under 85.55 mmol/L NaCl salt stress, six treatments were set up: CK1 (distilled water), CK2 (NaCl), A1 (NaCl+ 0.5 mmol/L Si), A2 (NaCl+1.0 mmol/L Si), A3 (NaCl+2.0 mmol/L Si), and A4 (NaCl+4.0 mmol/L Si), each treatment was repeated three times. The changes of seed germination, seedling growth index and physiological activity were determined. The results showed that different concentrations of exogenous silicon could effectively alleviate the damage caused by salt stress to the seeds and seedlings of Brassica pekinensis. When the concentration of silicon was 1.0 mmol/L, the germination rate, germination potential, germination index and vigor index of Brassica pekinensis seeds were significantly increased. At the same time, the plant height, stem diameter, leaf area, root volume and chlorophyll content of Brassica pekinensis seedlings also increased significantly, the activity of peroxidase in leaves increased, and the content of malondialdehyde decreased. Exogenous silicon could effectively regulate the inhibition of salt stress on seed germination and seedling growth of “Huanai B1102 Chunyuhuang”, and the best concentration of silicon to alleviate salt stress was 1.0 mmol/L.

Key words: Brassica pekinensis, Exogenous silicon, Salt stress, Seed germination, Seedling growth

表1

不同处理对娃娃菜种子发芽率、发芽势、发芽指数和活力指数的影响

处理
Treatment
发芽率
Germination rate (%)
发芽势
Germination potential (%)
发芽指数
Germination index
活力指数
Vigor index
CK1 96.67±1.76a 68.67±0.67a 41.95±0.93a 2.80±0.14a
CK2 86.67±1.76c 39.33±3.53c 31.74±1.36c 1.19±0.05c
A1 92.67±1.76ab 42.00±1.15bc 34.14±0.87bc 1.93±0.22b
A2 94.00±1.15ab 46.67±0.67b 35.66±0.49b 2.28±0.10b
A3 93.33±1.76ab 44.67±0.67bc 35.14±0.38b 1.96±0.08b
A4 89.33±1.76c 41.33±1.33bc 33.90±0.14bc 1.41±0.02c

表2

不同处理对娃娃菜幼苗株高、茎粗、叶面积、鲜重的影响

处理Treatment 株高Plant height (cm) 茎粗Stem diameter (mm) 叶面积Leaf area (cm2) 鲜重Fresh weight (g)
CK1 16.79±0.53a 4.13±0.19a 126.41±1.62a 14.33±1.18a
CK2 11.70±0.99bc 2.63±0.12b 63.86±3.60c 9.53±0.16c
A1 13.28±0.40b 3.60±0.15a 83.78±3.06c 9.46±0.25c
A2 16.64±0.56a 3.77±0.18a 111.62±2.31b 11.06±0.41bc
A3 12.70±0.40b 3.57±0.24a 60.89±1.98d 11.90±0.64b
A4 10.25±0.35c 2.80±0.20b 60.28±3.57d 9.88±0.46c

表3

不同处理对娃娃菜幼苗根系总长、根系表面积、根系体积和根尖数的影响

处理Treatment 根系总长Total root length (cm) 根系表面积Root surface area (cm2) 根系体积Root volume (cm3) 根尖数Number of root tips
CK1 135.65±20.40a 353.98±9.55a 49.31±15.11a 135.00±20.31a
CK2 73.42±13.75c 175.53±13.74c 28.08±7.96a 38.67±4.91bc
A1 121.01±4.46ab 264.19±7.16b 36.21±8.33a 67.00±0.00bc
A2 135.34±13.97a 352.86±22.93a 49.04±13.99a 148.33±12.02a
A3 83.72±4.65bc 241.70±14.33b 39.23±7.33a 69.33±11.20b
A4 109.59±10.29abc 150.04±15.25c 25.99±9.37a 32.00±1.00c

图1

不同处理对娃娃菜幼苗形态和根系的影响

表4

不同处理娃娃菜叶片叶绿素a、叶绿素b、类胡萝卜素、叶绿素(a+b)总量的影响

处理
Treatment
叶绿素a
Chlorophyll a
叶绿素b
Chlorophyll b
类胡萝卜素
Carotenoids
叶绿素(a+b)
Chlorophyll (a+b)
CK1 9.13±0.06a 5.78±0.11a 1.26±0.03a 14.91±0.16a
CK2 4.02±0.07c 1.66±0.11c 0.93±0.02b 5.67±0.18c
A1 5.81±0.06b 3.91±0.07b 0.68±0.01bc 9.72±0.13b
A2 5.66±0.05b 4.13±0.69b 0.64±0.20c 9.79±0.73b
A3 3.94±0.05c 1.77±0.09c 0.92±0.02b 5.72±0.14c
A4 3.03±0.08d 1.81±0.19c 0.54±0.04c 4.84±0.27c

图2

不同处理对娃娃菜幼苗POD活性和MDA含量的影响 不同小写字母表示在P < 0.05水平上差异显著。

[1] 杨兵丽. 不同氮素形态及配比对娃娃菜光合特性和根系生理的影响. 兰州:甘肃农业大学, 2015.
[2] Qiao Y L, Tie J Z, Wang X H, et al. Comprehensive evaluation on effect of planting and breeding waste composts on the yield, nutrient utilization, and soil environment of baby cabbage. Journal of Environmental Management, 2023, 341:117941.
[3] Kitamura Y, Yano T, Honna T, et al. Causes of farmland salinization and remedial measures in the Aral Sea basin-Research on water management to prevent secondary salinization in rice-based cropping system in arid land. Agricultural Water Management, 2006, 85(1/2):1-14.
[4] 朱建峰, 崔振荣, 吴春红, 等. 我国盐碱地绿化研究进展与展望. 世界林业研究, 2018, 31(4):6.
[5] 赵跃锋, 陈昆. 盐胁迫对茄子光合特性、叶绿素荧光及保护酶活性的影响. 山西农业科学, 2018, 46(11):1797-1799,1906.
[6] 王中玉. NaCl胁迫对西瓜幼苗叶绿素荧光、光合特性、渗透调节及酶活性的影响. 山西农业科学, 2020, 48(12):1909-1912.
[7] Muhammad J. Protective effect of potassium application on NaCl induced stress in tomato (Lycopersicon esculentum L.) genotypes. Journal of Plant Nutrition, 2020, 43(13):1-11.
[8] 黄荣雁, 路程伟, 许嵘, 等. 盐碱胁迫对‘冬红’花楸生长、生理及光合特性的影响. 草地学报, 2024, 32(2):480-488.
doi: 10.11733/j.issn.1007-0435.2024.02.015
[9] 董睿潇, 王永庆, 王鑫博, 等. 盐胁迫对食用型向日葵现蕾期叶片光合性能与冠层结构的影响. 中国生态农业学报(中英文), 2024, 32(1):141-152.
[10] Liu B, Soundararajan P, Manivannan A. Mechanisms of silicon- mediated amelioration of salt stress in plants. Plants, 2019, 8(9):307.
[11] Debona D, Rodrigues F A, Datnoff L E, et al. Siliconʼs role in abiotic and biotic plant stresses. Annual Review of Phytopathology, 2017, 55:85-107.
[12] Guntzer F, Keller C, Meunier J D. Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 2012, 32:201-213.
[13] Waqar I, Muhammad T, Farghama K, et al. Silicon-mediated plant defense against pathogens and insect pests. Pesticide Biochemistry and Physiology, 2020, 168:104641.
doi: 10.1016/j.pestbp.2020.104641 pmid: 32711774
[14] 朱永兴, 夏雨晨, 刘乐承, 等. 外源硅对植物抗盐性影响的研究进展. 植物营养与肥料学报, 2019, 25(3):498-509.
[15] 孟建, 崔栗, 韩江伟, 等. 设施土壤硅素水平和蔬菜施硅效应研究进展. 安徽农学通报, 2013, 19(17):63-66.
[16] López-Pérez M C, Juárez-Maldonado A, Benavides-Mendoza A. Dynamic modeling of silicon bioavailability, uptake, transport, and accumulation: applicability in improving the nutritional quality of tomato. Frontiers in Plant Science, 2018, 9:647.
doi: 10.3389/fpls.2018.00647 pmid: 29868098
[17] 翟江, 高原, 张晓伟, 等. 硅钙对日光温室黄瓜光合作用及产量和品质的影响. 园艺学报, 2019, 46(4):701-713.
doi: 10.16420/j.issn.0513-353x.2018-0687
[18] Lang Y C, Chen Q, Liu Q, et al. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 2003, 160(10):1157-1164.
[19] 解植彩, 罗栋, 张文晋, 等. 硅对盐胁迫下甘草叶片显微结构的影响. 中药材, 2016, 39(12):2698-2701.
[20] 房江育, 王贺, 张福锁. 硅对盐胁迫烟草悬浮细胞的影响. 作物学报, 2003, 29(4):610-614.
[21] 崔云浩, 梁祎, 王军娥, 等. 纳米硅对盐胁迫下甜椒幼苗生长及抗氧化特性的影响. 山西农业科学, 2021, 49(10):1162- 1165.
[22] Kolima P C, Dilier O V, Alexander C H, et al. Silicon mitigates the negative impacts of salt stress in soybean plants. Journal of the Science of Food and Agriculture, 2023, 103(9):4360-4370.
[23] Lamsaadi N, El M A, Irouane Z, et al. Beneficial role of exogenous silicon on yield, antioxidant systems, osmoregulation and oxidative stress in fenugreek (Trigonella foenum-graecum L.) under salinity stress. Silicon, 2022, 15(1):547-561.
[24] 王映霞. 外源硅对盐胁迫下甜瓜种子萌发的影响. 农业科技与信息, 2021(21):48-50.
[25] 陈罡, 樊平声, 冯伟民, 等. 外源硅对盐胁迫下黄瓜幼苗生长和光合荧光特性的影响. 江苏农业学报, 2014, 30(6):1402- 1409.
[26] 李峰, 栾舒雅. 水杨酸对盐胁迫下大白菜种子萌发和幼苗生长发育的影响. 辽宁师专学报, 2013, 15(4):96-98.
[27] 胡晋. 种子生活力测定原理和方法. 北京: 中国农业出版社, 2009.
[28] 蔡淑芳, 吴宝意, 廖水兰, 等. 基于光温效应的温室小白菜农艺指标动态模拟. 福建农业学报, 2020, 35(6):611-617.
[29] Heath R L, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives Biochemistry Biophysics, 1968, 125(1):189-198.
[30] 李合生, 孙群, 赵世杰, 等. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[31] 胡宗英, 张红香, 孙泽威. 盐碱胁迫对农牧作物种子萌发的影响研究进展. 中国种业, 2014(5):21-23.
[32] 于世河, 郑颖, 孟凡金, 等. 盐碱胁迫对科罗拉多蓝杉种子萌发及幼苗生长的影响. 种子, 2022, 41(11):31-36,53.
[33] 潘凌云, 马家冀, 李建民, 等. 植物盐胁迫应答转录因子的研究进展. 生物工程学报, 2022, 38(1):50-65.
[34] 秦曼丽, 胡绪峰, 刘德麒, 等. 硅对盐胁迫下黄瓜生长和多胺代谢的影响. 植物生理学报, 2022, 58(6):1077-1091.
[35] 高伟, 席克勇, 尹军良, 等. 外源SiNPs对盐胁迫下生姜幼苗生长和生理特性的影响. 西北农林科技大学学报(自然科学版), 2023, 51(9):109-118.
[36] 武仲兰, 夏书珍, 何天香, 等. 外源硅对盐胁迫下红豆种子萌发及幼苗生长的影响. 德州学院学报, 2019, 35(6):34-36,51.
[37] 李娟, 王丽慧, 王莹, 等. 盐胁迫对牧草型菊苣种子萌发及幼苗生长的影响. 种子, 2022, 41(11):119-124.
[38] 张鑫月, 翟玉莹. 不同胁迫下硅对植物的作用及发展前景. 现代园艺, 2024, 47(1):58-59,64.
[39] 樊哲仁, 王晓东, 唐琳. 硅对盐胁迫下麻疯树种子萌发及幼苗生长的影响. 中国油料作物学报, 2010, 32(2):217-221.
[1] 李峰, 高宏云, 张翀, 张宝英, 马建富, 郭娜, 白苇, 方爱国, 杨志敏, 李源. 盐胁迫对燕麦生长及生理指标的影响[J]. 作物杂志, 2024, (6): 140–146
[2] 张旭丽, 王瑞军, 郗小倩, 冯学金, 李洪. 干旱胁迫及复水对黄芪幼苗生长、生理特性及次生代谢产物积累的影响[J]. 作物杂志, 2024, (5): 204–211
[3] 张子怡, 王学虎, 苑莹, 沈志峰. 腐植酸悬浮剂对NaCl胁迫下小麦种子萌发和幼苗生长的影响[J]. 作物杂志, 2024, (4): 263–268
[4] 顾怀应, 胡诗钦, 赵晴, 刘长华, 孟丽君. 根际微生物增强水稻耐盐性研究进展[J]. 作物杂志, 2024, (4): 8–13
[5] 吕宝莲, 杨宇昕, 崔立操, 史峰, 马亮, 孔秀英, 张立超, 倪志勇. 小麦bHLH家族转录因子的鉴定及其在盐胁迫条件下的表达分析[J]. 作物杂志, 2024, (1): 65–72
[6] 杨洪伟, 张丽颖, 李晓辉. 盐、碱胁迫下水稻种子萌发过程水分含量变化及对种子发芽影响的低场核磁检测研究[J]. 作物杂志, 2023, (4): 253–259
[7] 徐雪雯, 王兴鹏, 王洪博, 李国辉, 唐茂淞, 曹振玺. 水杨酸对盐胁迫下棉苗生长及生理的调控作用[J]. 作物杂志, 2023, (3): 188–194
[8] 栾金华, 宋欣阳, 汪磊, 孙丽丽, 程艳双, 董浩, 张佳, 程效义, 徐海. 辽宁省水稻新品系苗期耐盐性差异研究[J]. 作物杂志, 2023, (3): 20–26
[9] 贺水玲, 赵霞, 吴明琦, 王东胜. 外源NO和H2S对谷子种子萌发的影响[J]. 作物杂志, 2023, (2): 138–144
[10] 顾逸彪, 颜佳倩, 薛张逸, 束晨晨, 张伟杨, 张耗, 刘立军, 王志琴, 周振玲, 徐大勇, 杨建昌, 顾骏飞. 耐盐性不同水稻品种根系对盐胁迫的响应差异及其机理研究[J]. 作物杂志, 2023, (2): 67–76
[11] 闻丹妮, 鲍聆然, 刘蒙蒙, 沈波. OsWD40过表达水稻根系响应盐胁迫的转录组分析[J]. 作物杂志, 2022, (6): 42–53
[12] 王金香, 王艳芝, 幸丽璇, 刘建霞, 王润梅. 赤霉素对盐胁迫下绿宝糯黍子幼苗根生长及渗透调节的影响[J]. 作物杂志, 2022, (6): 98–104
[13] 王瀚祥, 李广存, 徐建飞, 王万兴, 金黎平. 植物耐盐机理研究进展[J]. 作物杂志, 2022, (5): 1–12
[14] 王燕, 李廷友, 王豆, 李佳薇, 彭雯璐, 芮海云. 异甜菊醇对盐胁迫下小麦幼苗生长的影响[J]. 作物杂志, 2022, (5): 141–145
[15] 庞星月, 万林, 李素, 王宇航, 刘晨, 肖晓璐, 李心昊, 马霓. 外源SLs和纳米K2MoO4对干旱胁迫下油菜种子萌发的影响[J]. 作物杂志, 2022, (4): 214–220
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!