作物杂志, 2024, 40(6): 218-225 doi: 10.16035/j.issn.1001-7283.2024.06.029

生理生化·植物营养·栽培耕作

水稻BR受体突变株Fn189拔节期生长发育及碳代谢分析

胡娅晴,1,2, 李春情2, 王冠1, 徐江,2

1吉林农业大学农学院,130118,吉林长春

2中国农业科学院作物科学研究所/农业农村部作物生理生态重点实验室,100081,北京

Analysis of Growth, Development and Carbon Metabolism of Rice BR Receptor Mutant Fn189 at Jointing Stage

Hu Yaqing,1,2, Li Chunqing2, Wang Guan1, Xu Jiang,2

1College of Agronomy, Jilin Agricultural University, Changchun 130118, Jilin, China

2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China

通讯作者: 徐江,主要从事作物生理生化研究,E-mail:jiangxu_xj@163.com

收稿日期: 2024-03-10   修回日期: 2024-04-24   网络出版日期: 2024-09-29

基金资助: 国家自然科学基金(31571589)
中国农业科学院创新工程(01-ICS-20)

Received: 2024-03-10   Revised: 2024-04-24   Online: 2024-09-29

作者简介 About authors

胡娅晴,主要从事作物生理生化研究,E-mail:huyaqing2021@163.com

摘要

以水稻油菜素内酯(BR)受体BRI1编码基因(OsBRI1)的突变体Fn189及其野生型Tz65为供试材料,在大田条件下,采取随机区组试验设计,研究BR对拔节期水稻生长发育及碳代谢相关生理指标的影响。结果表明,与野生型相比,Fn189拔节期生长受到抑制,Fn189的株高、分蘖数分别降低了25.07%和15.82%。此外,Fn189拔节期叶片的Rubisco活性降低,叶片固定CO2的能力减弱;在蔗糖―淀粉代谢中,与野生型相比,Fn189拔节期叶片的蔗糖磷酸合成酶、蔗糖合酶、腺苷二磷酸葡萄糖焦磷酸化酶、可溶性淀粉合酶和颗粒结合型淀粉合酶活性降低,酸性转化酶活性增加,说明Fn189叶肉细胞内蔗糖和淀粉合成减弱,而蔗糖分解加速;结果显示Fn189叶片中蔗糖、可溶性糖、淀粉和非结构性碳水化合物含量均显著降低,较野生型分别降低了23.76%、13.46%、9.02%和10.40%。最终,Fn189的产量较野生型降低了71.04%。综上,BR信号转导受阻不仅影响了拔节期水稻的生长发育,还通过影响水稻叶片的光合作用、蔗糖和淀粉代谢,最终影响水稻产量。

关键词: 水稻; 油菜素内酯; 突变体Fn189; 拔节期; 生长发育; 碳代谢

Abstract

Rice brassinosteroids (BR) receptor BRI1 coding gene (OsBRI1) mutant Fn189 and its wild type Tz65 were used as test materials. Under field conditions, a randomized block design was used to study the effects of BR on growth and development and carbon metabolism-related physiological indexes of rice at jointing stage. The results showed that compared with the wild-type Tz65, the growth of Fn189 was inhibited at jointing stage, and the plant height and tiller number of Fn189 were decreased by 25.07% and 15.82%, respectively. In addition, the Rubisco activity of Fn189 leaves decreased at jointing stage, and the ability of leaves to fix CO2 decreased. Compared with the wild-type, the activities of sucrose phosphate synthetase, sucrose synthase, ADP-glucose pyrophosphorylase, soluble starch synthase and granule-bound starch synthase of Fn189 leaves decreased at jointing stage, and the activity of acid invertase increased, indicating that the synthesis of sucrose and starch in the mesophyll cells of Fn189 decreased, while the decomposition of sucrose accelerated. The results showed that the contents of sucrose, soluble sugar, starch and non-structural carbohydrates in Fn189 leaves were significantly decreased by 23.76%, 13.46%, 9.02% and 10.40%, respectively, compared with the wild-type. Finally, the yield of Fn189 was 71.04% lower than that of wild-type. Therefore, BR signal transduction not only affected the growth and development of rice at jointing stage, it also affected the photosynthesis of rice leaves and the metabolism of sucrose and starch, and ultimately affected the yield of rice.

Keywords: Rice; Brassinosteroids; Mutant Fn189; Jointing stage; Growth and development; Carbon metabolism

PDF (510KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

胡娅晴, 李春情, 王冠, 徐江. 水稻BR受体突变株Fn189拔节期生长发育及碳代谢分析. 作物杂志, 2024, 40(6): 218-225 doi:10.16035/j.issn.1001-7283.2024.06.029

Hu Yaqing, Li Chunqing, Wang Guan, Xu Jiang. Analysis of Growth, Development and Carbon Metabolism of Rice BR Receptor Mutant Fn189 at Jointing Stage. Crops, 2024, 40(6): 218-225 doi:10.16035/j.issn.1001-7283.2024.06.029

水稻(Oryza sativa L.)是世界三大粮食作物之一,全球有一半以上的人口以水稻为主食[1],因此,提高水稻产量对维护世界粮食安全具有重要意义。水稻产量的高低主要由籽粒中积累碳水化合物的量决定,其中,淀粉是籽粒储存碳水化合物的主要形式,淀粉含量占水稻糙米重的90%[2];而蔗糖作为碳水化合物的主要运输形式,在光合产物从源到库的转运和水稻籽粒灌浆过程中发挥重要的作用[3]。光合作用是植物碳水化合物产生的主要来源,蔗糖和淀粉在各器官的合成、运输和分解受蔗糖磷酸合成酶(sucrose phosphate synthetase,SPS)、蔗糖合酶(sucrose synthase,SS)、酸性转化酶(acid invertase,AI)和腺苷二磷酸葡萄糖焦磷酸化酶(ADP-glucose pyrophosphorylase,AGPase)等一系列酶的催化[4]。增强碳代谢有利于促进植物各器官的生长发育,提高产量。

油菜素内酯(brassinosteroids,BR)是一种甾体类植物激素,广泛存在于各种植物中,它参与调控种子萌发、维管组织分化、气孔形成和开花等多个植物生长发育过程[5]。例如,小麦种子经低浓度BR溶液浸泡后,种子中α-淀粉酶活性提高,促进淀粉分解,提高种子中可溶性糖含量,从而提高小麦种子发芽势[6]。BR还参与水稻籽粒的生长发育,初花期外施表油菜素内酯(Epi-brassinolide,EBR)可通过提高籽粒灌浆过程中AGPase、可溶性淀粉合酶(soluble starch synthase,SSS)、颗粒结合型淀粉合酶(granule-bound starch synthase,GBSS)和淀粉分支酶(starch branching enzyme,SBE)活性,促进淀粉积累和籽粒灌浆,提高粒重[7]。穗分化期叶片喷施EBR能提高高温胁迫下叶片的气孔导度、电子交换率和叶绿素含量,维持净光合速率,缓解高温带来的损害,提高产量[8]。上述研究说明BR能通过调节碳代谢相关酶活性,影响碳同化物在植物器官中的合成、运输和积累,进而调控植物的生长发育。

自从BR被发现以来,研究者对其生物合成、信号转导和在各代谢中发挥的作用进行了深入研究。拔节期是水稻生长发育过程中外部形态和内部生理过程发生重大变化的阶段。在大田管理中,拔节期水稻的生长情况是后期调整田间栽培措施的依据[9];对于水稻的生殖生长而言,该时期积累的碳水化合物为孕穗期穗粒生长发育提供物质基础[10]

本试验以水稻BR受体BRI1的突变体Fn189及其野生型Tz65为试验材料,在大田环境下,采用随机区组试验设计,通过测定拔节期Fn189的农艺性状、光合作用和蔗糖―淀粉代谢相关指标,为进一步研究BR调控水稻生长发育的生理与分子机制提供理论依据。

1 材料与方法

1.1 试验材料

供试材料为水稻BR受体BRI1编码基因第2500位发生A到T单碱基置换的突变体Fn189及其野生型台中65(Tz65)。

1.2 试验设计

采取随机区组试验设计,每个品种5次重复,共10个小区,小区面积38.25 m2(8.5 m×4.5 m)。所有试验材料均于2022年在中国农业科学院作物科学研究所顺义试验基地种植,5月6日育秧,6月7日插秧,株行距为15 cm×22 cm,每穴1株,按照大田模式统一进行管理。底肥施用碳酸氢铵263 kg/hm2和氯化钾150 kg/hm2;返青肥施用碳酸氢铵150 kg/hm2;穗肥施用尿素60 kg/hm2

在水稻进入拔节期后开始取样测定,选取具有代表性且长势一致的水稻植株用于农艺性状测定;取单株的倒二叶作为功能叶,进行液氮速冻,-80 ℃保存,用于碳代谢相关生理指标测定。

1.3 测定项目与方法

1.3.1 农艺性状相关指标

选取10株具有代表性且长势一致的水稻植株,进行株高、叶面积和分蘖数测定,计算叶面积指数。将植株样品分为叶片和茎,测定叶片和茎的干物质量,并计算地上部分干物质量。

1.3.2 光合色素含量

参照李合生[11]的方法测定叶片叶绿素a和叶绿素b含量,并计算总叶绿素含量。

1.3.3 碳水化合物含量

参照张志良等[12]的方法测定叶片蔗糖含量,参照李合生[11]的方法测定叶片可溶性糖和淀粉含量,试验方法略作改动。采用间苯二酚法测定蔗糖含量,采用蒽酮比色法测定可溶性糖和淀粉含量。

1.3.4 碳代谢相关酶活性

采用江苏酶免实业有限公司的植物1,5-二磷酸核酮糖羧化酶ELISA试剂盒测定1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)活性。参照李合生[11]的方法测定SPS、SS和AI活性。

参照Choix等[13]的方法测定AGPase活性,参照Jiang等[14]的方法测定GBSS、SSS和SBE活性,试验方法略有改动。

1.3.5 产量及其构成因素

收获期,按照平均有效分蘖数选取长势一致的水稻10株进行考种,测定有效穗数、穗粒数、千粒重和结实率。收获1 m2内全部稻穗,重复3次,脱粒称重,测定实际产量。

1.4 数据处理

利用Microsoft Excel 2021软件进行数据整理、计算和作图,采用SPSS v17.0软件进行比较分析及方差分析。

2 结果与分析

2.1 Fn189拔节期形态指标的变化

图1所示,在拔节期,与野生型水稻Tz65相比,Fn189的株高、分蘖数分别极显著降低了25.07%和15.82%,叶面积、叶长和叶宽分别增加了34.60%、5.84%和28.44%。Fn189叶片干物质积累量较野生型增加35.34%,茎干物质积累量、地上部分干物质积累量分别降低了43.54%和12.85%。总体而言,与Tz65相比,Fn189拔节期的株高、分蘖数、茎干物质量和地上部分干物质积累量均显著降低,叶长、叶宽、叶面积和叶片干物质积累量均显著增加。

图1

图1   拔节期Fn189和Tz65形态指标的比较

“*”和“**”分别表示在P < 0.05和P < 0.01水平上差异显著,下同。

Fig.1   Comparison of morphological indexes between Fn189 and Tz65 at jointing stage

“*”and“**”indicate significant difference at P < 0.05 and P < 0.01 levels, respectively, the same below.


2.2 Fn189拔节期碳代谢指标的变化

2.2.1 光合相关指标的变化

叶片是植物光合作用的主要器官,而光反应首先需要依靠叶绿素捕获太阳能,叶绿素含量能在一定程度上反映光反应的强弱[15]。如图2所示,与野生型相比,拔节期Fn189的叶面积指数增加了12.17%,叶绿素a、叶绿素b和总叶绿素含量分别显著增加了16.10%、18.05%和14.18%,叶绿素a/b降低了3.78%。Rubisco是卡尔文循环的限速酶,催化CO2和1,5-二磷酸核酮糖发生羧化反应生成3-磷酸甘油酸,Rubisco活性高低直接影响作物的光合速率[16]。与对照相比,Fn189的Rubisco活性降低了11.76%。在拔节期,Fn189的叶绿素含量和叶面积指数较野生型增加,其中叶绿素b含量增加更多,暗反应限速酶Rubisco的活性较对照也显著降低。

图2

图2   拔节期Fn189和Tz65光合相关指标的比较

Fig.2   Comparison of photosynthetic indexes between Fn189 and Tz65 at jointing stage


2.2.2 蔗糖、淀粉代谢的变化

在蔗糖代谢中,SPS和SS是叶片蔗糖合成的关键酶,SPS催化果糖-6-磷酸与尿苷二磷酸葡萄糖(uridine diphosphate glucose,UDPG)结合生成磷酸蔗糖,SS催化游离果糖和UDPG生成蔗糖的可逆反应;酸性转化酶是分解蔗糖的关键酶,催化蔗糖水解成葡萄糖和果糖[3]。由图3所示,与野生型相比,在蔗糖合成上,Fn189拔节期叶片SPS、SS(合成方向)的活性分别极显著降低了35.97%和35.73%;在蔗糖分解上,SS(分解方向)、AI活性分别极显著提高了166.20%和66.26%;Fn189叶片的蔗糖、可溶性糖含量分别极显著降低了23.76%和13.46%。

图3

图3   拔节期Fn189和Tz65蔗糖、淀粉代谢的比较

Fig.3   Comparison of sucrose and starch metabolism between Fn189 and Tz65 at jointing stage


在淀粉代谢中,AGPase是淀粉合成的限速酶,催化腺苷三磷酸和1-磷酸葡萄糖合成腺苷二磷酸葡萄糖;而腺苷二磷酸葡萄糖在SSS、SBE和淀粉脱分支酶的催化下合成支链淀粉,或者在GBSS的催化下合成直链淀粉[17]。与Tz65相比,Fn189淀粉合成关键酶AGPase、SSS、GBSS和SBE活性均显著降低,分别降低了39.26%、42.10%、22.71%和44.92%,叶片淀粉含量也极显著降低了9.02%。上述结果说明,在蔗糖代谢中,Fn189叶片的SPS和SS(合成方向)活性较野生型显著降低,SS(分解方向)和AI活性显著提高,叶片蔗糖和可溶性糖含量显著降低;在淀粉代谢中,Fn189的AGPase、SSS、GBSS和SBE活性均显著降低,叶片的淀粉含量也显著降低,最终导致叶片非结构性碳水化合物(non-structural carbohydrates,NSC)的含量显著降低了10.40%。

2.3 Fn189收获期产量及其构成的变化

表1可知,从产量构成因素上看,Fn189的有效穗数、千粒重和结实率均极显著降低,与野生型相比分别降低了24.40%、36.09%和47.79%,而穗粒数增加9.99%,穗粒数虽然显著增加,但有效穗数、千粒重和结实率降低幅度更大,结果导致Fn189的产量极显著降低了71.04%。

表1   收获期Fn189和Tz65产量及其构成因素的比较

Table 1  Comparison of yield and its components of Fn189 and Tz65 at harvest stage

材料
Material
有效穗数
Effective number of panicles (/m2)
穗粒数
Grains per panicle
千粒重
1000-grain weight (g)
结实率
Seed-setting rate (%)
产量
Yield (kg/hm2)
Tz65504.0096.7326.5681.569818.80
Fn189381.00**106.40*16.97**42.58**2843.27**

“*”和“**”分别表示在P < 0.05和P < 0.01水平上差异显著。

“*”and“**”indicate significant difference at P < 0.05 and P < 0.01 levels, respectively.

新窗口打开| 下载CSV


3 讨论

3.1 油菜素内酯对拔节期水稻生长的影响

水稻的生育期分为营养生长和生殖生长2个阶段,营养生长包括幼苗期、插秧期、分蘖期和拔节期,生殖生长包括孕穗期、抽穗期、扬花授粉期和灌浆期。在营养生长阶段,水稻进入拔节期后,生理代谢速度加快,大量吸收养分,该时期积累的物质是实现大穗和高产的基础[18]

前人[19]研究表明,BR参与调控植物的代谢和生长发育,对水稻的形态结构和产量也都有明显影响;对于水稻植株地上部分而言,形态结构主要包括株高、叶面积、分蘖数和穗部形态。在水稻中,BR生物合成或BR信号缺失突变体大多表现出节间缩短但节数不变、株高降低的表型[20]。BR和赤霉素(gibberellin,GA)都是调节植物细胞伸长的主要激素,Tong等[21]发现,在水稻BR突变体d61-1d61-2d2d11中,GA生物合成基因GA20ox-2GA3ox-2表达下调,且GA失活相关基因GA2ox-3表达上调,这说明BR突变体在抑制GA合成的同时诱导GA失活,导致植株的GA含量降低,细胞伸长受阻,株高降低;这也说明BR可以通过和GA相互作用进而调控水稻株高。此外,BR还影响水稻的单株分蘖数,在水稻中敲除BR信号通路中的OsBSK1基因,突变体植株表现出株高降低和分蘖数减少的特征;而在水稻中过表达OsBSK1,转基因植株表现出叶夹角增大和分蘖数增加的表型[22]OsGSK2是水稻BR信号通路的负调节因子,过表达OsGSK2的转基因株系表现出叶片直立、矮化和分蘖数减少的特征[23]。本试验中,与野生型相比,BR受体BRI1功能缺失突变体Fn189在拔节期也表现出株高降低和分蘖数减少的形态特征,说明OsBRI1作为BR信号通路的重要成员正调控拔节期水稻的株高和分蘖数。

叶片是植物光合作用的主要器官,而BR影响叶片的生长发育。DLT是水稻BR信号通路中OsGSK2的下游基因,DLTOsGSK2磷酸化调控,在水稻中过表达DLT,转基因植株的叶片伸长[24]。在拟南芥BR生物合成关键基因CPY90缺失突变体cpd中,植株BR含量降低,突变体叶片细胞的分裂周期延长,细胞分化延迟,导致细胞大小和数目减少,进而使叶片缩小,CPY90恢复突变株系的叶片可恢复至正常大小[23]。与前人[23]研究不同的是,在拔节期BR受体缺失突变体Fn189的叶长、叶宽和叶面积均显著增加。从叶片的组织细胞构成和生长发育过程看,植物叶片的大小由叶片细胞数目和细胞体积共同决定,细胞体积又受细胞质中水和溶质的积累以及细胞壁的延展能力调节,而细胞壁的延展则需要不断合成纤维素和半纤维素等结构性碳水化合物来补充原料[25]。而纤维素的合成速率与SS活性直接相关,SS可催化蔗糖分解成UDPG,为纤维素的合成提供底物[3]。与Tz65相比,Fn189叶片SS(蔗糖分解方向)活性显著增加;因此,我们推测,Fn189叶面积的增大可能是由于叶片SS(蔗糖分解方向)活性增加,促进了蔗糖分解,为叶片细胞壁纤维素的合成提供了足够的底物所致,其他激素和生理代谢原因有待进一步研究。

生物量和植物产量密切相关,植株高度是植物生物量的决定因素之一[26];BR可通过调节株高影响生物量,BR合成缺陷和BR信号通路成员功能缺失突变体大多表现出株高降低的表型。Wu等[27]研究发现,在水稻中过表达BR合成相关的甾醇C-22羟化酶编码基因CYP,能显著提高转基因植株的株高、单株分蘖数和收获期植株生物量。此外,BR对植物不同器官的生物量影响不同,用BR生物合成抑制剂芸苔素唑(brassinazole,Brz)处理黄瓜后,植株生物量显著降低,但是单位叶面积的叶片质量显著增加[28]。在本研究中,与Tz65相比,Fn189的叶面积显著增加34.60%,使叶片干物质积累量显著增加35.34%;株高显著降低25.07%,从而使茎干物质积累量显著降低43.54%,最终导致Fn189地上部分干物质积累量显著降低了12.85%。

综上所述,与野生型Tz65相比,Fn189的茎、叶生长表现出不同的变化趋势,株高降低、分蘖数减少;而叶片的长、宽和面积却有所增大;具体到干物质积累量的变化,也就是叶片干物质积累量增大,而茎秆干物质积累量显著降低,地上部干物质积累量总体呈现下降趋势,表明突变体的生长发育受到一定程度的抑制。

3.2 油菜素内酯对拔节期水稻碳代谢的影响

碳代谢是植物体内光合碳同化物合成、转化、运输、积累和消耗的过程,该过程中的碳同化物大多来源于植物的光合作用;其中,叶片的光合作用占据整个植株光合作用的90%[29]。在一定范围内,叶面积指数越大,光能捕获率就越高,水稻产量也越高[30]。BR可以通过调控叶面积指数进而影响光合和产量,干旱胁迫下,在小麦孕穗期喷施BR可以提高小麦的叶面积指数、气孔导度和叶绿素含量,增强光合作用,从而提高小麦产量[31]。而本试验显示,相同种植密度下,Fn189的叶面积指数较对照增加,这说明该突变体材料中叶片的生长发育除了受BR影响外,或许还存在其他的激素或信号转导调控途径;因此导致Fn189拔节期叶片的叶面积不仅没有因为BR受体功能缺失而降低,反而有所增加,其具体的生理与分子调控机制有待深入探究。

植物光合作用的光反应需要叶绿素捕获光能,BR影响植物光合色素的含量,外施EBR可提高黄瓜叶片总叶绿素含量,且叶绿素b含量的增加尤为显著[32];大豆种子经EBR浸种预处理后,可以提高苗期叶片的叶绿素含量、最大光能转化效率、气孔导度和Rubisco活性,促进光合作用,缓解铝胁迫[33]。高温胁迫下,在水稻叶面喷施EBR可以提高叶片叶绿素含量、气孔导度和水分利用率,维持PSII光量子效率,进而提高水稻的光合作用[34]。在番茄中,Li等[35]构建了BR生物合成基因Dwarf的过表达株系及其突变体dimDwarf过表达株系的总叶绿素含量显著降低,但胞间CO2浓度和净光合速率显著增加,光合作用增强;而突变体dim的总叶绿素含量显著增加,但气孔导度、胞间CO2浓度、蒸腾速率和净光合速率却显著降低,光合作用减弱。在黄瓜中也发现类似情况,外施BR合成抑制剂Brz会增加叶片总叶绿素含量,但叶片的PSII量子产率和CO2同化率降低,而对喷施Brz的植株外施EBR后,植株的光合作用可恢复至正常水平[28];该研究中叶片总叶绿素含量和光合作用的变化趋势相反,说明喷施Brz对光合作用的抑制并不是通过降低光合色素含量实现的[30]。上述研究结果说明,BR对不同植物叶片光合色素含量的影响有所不同;叶绿素含量的多少并不能完全代表光合作用的强弱。本试验测得拔节期Fn189叶片的叶绿素a、叶绿素b和总叶绿素含量均显著高于对照Tz65,其中叶绿素b的增加更为显著。Fn189的叶面积增大、叶绿素含量增高是否会影响光合量子效率和净光合速率,它们之间的关系如何,这些问题都有待后续研究给出答案。

Rubisco是催化CO2固定的关键酶,其活性在很大程度上影响了植物的净光合速率;Gao等[36]发现,在玉米苗期叶片分别喷施EBR和BR合成抑制剂Brz,与对照相比,喷施EBR的叶片Rubisco大亚基基因(rubisco large subunit gene,rbcL)、Rubisco小亚基基因(rubisco small subunit gene,rbcS)、Rubisco激活酶β亚基基因(rubisco activase β subunit,RCAβ)和磷酸烯醇式丙酮酸羧化酶基因(phosphoenolpyruvate carboxylase,PEPC)的转录水平均上调;在喷施Brz的叶片中,上述基因的表达均下调;Rubisco和Rubisco激活酶的活性在喷施EBR的植株中提高,在喷施Brz的植株中降低,说明BR可以通过激活Rubisco相关基因的表达,提高Rubisco活性,进而促进光合暗反应。在黄瓜中也发现相似情况,与对照相比,喷施Brz的黄瓜叶片中rbcLrbcS的表达下调,Rubisco初始活性、最大羧化速率和1,5-二磷酸核酮糖再生速率均降低;而在喷施EBR的叶片中,上述指标均呈相反趋势,说明BR可以通过提高Rubisco活性和CO2固定效率,促进光合作用[30]。在本研究中,与野生型相比,拔节期Fn189叶片的Rubisco活性降低,暗示该突变体的光合碳同化能力可能并未随着叶面积的增大和叶绿素含量的升高而提高,BR受体缺失限制了叶片光合能力的正常发挥,这与Fn189生物量的降低是一致的。

蔗糖是植物体内光合碳同化物的主要运输形式,蔗糖在叶片等源器官中形成后被运输分配到各库器官中用于生长发育,或者进一步转化为淀粉或其他大分子贮存物质。在水稻穗分化期叶面喷施EBR,提高了灌浆期叶片的SPS活性及蔗糖含量,同时也显著提高了籽粒中AI和SS活性以及NSC含量,说明BR可通过提高叶片SPS活性,促进蔗糖合成,增加叶片蔗糖含量;还可通过提高籽粒AI和SS活性,促进蔗糖分解,为籽粒淀粉合成提供更多底物,进而促进籽粒灌浆,提高产量[37]。高温胁迫下,在水稻幼穗期喷施EBR能通过提高蔗糖转运蛋白基因OsSUT1OsSUT2OsSUT4的表达水平来促进同化物从叶片到幼穗的运输;EBR还通过提高小穗AI和SS活性,促进蔗糖在幼穗中的分解,进而增加小穗干物质和NSC积累,缓解高温对颖花的损伤,提高产量[38]。在玉米8叶期叶面喷施EBR可以通过提高SPS和SS活性,加速蔗糖的合成,增强蔗糖代谢,为淀粉合成提供充足的原料[39]。本研究发现,与野生型相比,拔节期Fn189叶片SPS和SS(蔗糖合成方向)活性降低,AI和SS(蔗糖分解方向)活性增加,叶片蔗糖和可溶性糖含量均显著降低,说明Fn189叶片在蔗糖合成受抑制的同时蔗糖的分解加速,结果使得拔节期叶片内蔗糖积累减少。在淀粉代谢中,开花期外施EBR能提高小麦籽粒AGPase、SSS和GBSS活性,促进淀粉合成,从而提高产量[40]。在本研究中,与野生型相比,拔节期Fn189叶片的AGPase、SSS、GBSS和SBE活性均显著降低,淀粉和NSC含量也显著降低。这与蔗糖含量的变化趋势是一致的;说明BR信号通路受阻会显著抑制水稻叶片中碳水化合物的合成和积累,并进而对生长发育造成一定的影响。

综上所述,就光合性能而言,Fn189拔节期的叶面积指数升高,叶绿素a、b和总叶绿素含量也呈上升趋势,但Rubisco活性却显著低于Tz65,显示Fn189在BR信号转导受阻时有增强光截获和光能吸收的趋向,但却似乎无法提供足够的同化力用于CO2的固定。进一步比较叶片蔗糖与淀粉合成能力,Fn189拔节期叶片的蔗糖和淀粉含量,以及可溶性糖和非结构性碳水化合物含量都极显著低于Tz65,说明BR信号通路受阻显著抑制了拔节期叶片的碳水化合物合成能力。具体到蔗糖和淀粉代谢相关酶活性,Fn189叶片中SPS和SS(蔗糖合成方向)活性显著降低,SS(蔗糖分解方向)和AI活性显著升高,AGPase、SSS、GBSS和SBE活性均显著降低,这说明拔节期Fn189叶片的蔗糖合成能力减弱,而蔗糖分解加速,淀粉合成速率降低,酶活与叶片蔗糖和淀粉含量的变化趋势一致。叶片碳水化合物尤其是蔗糖合成受阻势必影响后期的生殖发育和籽粒灌浆,具体表现在Fn189的穗粒数虽然有所增加,但有效穗数、千粒重和结实率均极显著地低于野生型Tz65,使突变体产量也极显著降低。

4 结论

以BR受体OsBRI1功能缺失突变体Fn189为研究对象,通过对其拔节期生长发育及碳代谢相关指标的研究分析,初步解析了BR对拔节期水稻形态和光合碳代谢的调控机制。BR突变体Fn189的试验结果反向预示了BR可能通过增加水稻的株高和分蘖数促进地上部生长,改变拔节期水稻的株型结构。在光合作用中,BR可通过提高拔节期叶片的Rubisco活性,增强水稻叶片固定CO2的能力,促进光合暗反应;在蔗糖、淀粉代谢中,BR可通过提高SPS、SS(蔗糖合成方向)、AGPase、SSS、GBSS和SBE活性,降低AI和SS(蔗糖分解方向)活性,从而促进叶片蔗糖和淀粉合成,增加可溶性糖和非结构性碳水化合物积累,为后期穗粒的生长发育积累充足的物质,进而提高产量。

参考文献

申春芳.

水稻栽培技术对稻米品质的影响

世界热带农业信息, 2022(5):84-86.

[本文引用: 1]

刘奇华, 蔡建, 李天.

水稻籽粒中的淀粉合成关键酶及其与籽粒灌浆和稻米品质的关系

植物生理学通讯, 2006, 42(6):1211-1216.

[本文引用: 1]

张国伟, 李凯, 李思嘉, .

减库对大豆叶片碳代谢的影响

作物学报, 2022, 48(2):529-537.

DOI:10.3724/SP.J.1006.2022.14024      [本文引用: 3]

植物的碳代谢过程与植株生长和产量形成密切相关, 是受源库关系影响最明显的生理过程之一。研究减库对大豆叶片碳代谢的影响, 可为明确源库关系失衡导致的减产机理研究提供理论依据。以早熟大豆品种苏豆13为材料, 于2019年和2020年在江苏省农业科学院大豆试验站进行池栽试验, 在大豆R4期设置减库处理(去除全部豆荚、去掉1/2豆荚和全部种子损伤处理), 以正常植株为对照, 研究减库对大豆碳代谢的影响。结果表明, 减库处理延缓了叶片衰老和脱落, 导致叶片持绿。减库处理显著抑制了短期内的净光合速率(P<sub>n</sub>), 但是未影响初始羧化速率(a)。P<sub>n</sub>降低主要受气孔限制, 随时间延长, 光合抑制作用逐渐减弱并转为促进作用, 在生育后期, 减库处理的叶片仍能保持相对较高的a、蔗糖磷酸合成酶(SPS)、蔗糖合成酶(SuSy)和酸性转化酶(SAI)活性及光合色素、可溶性糖、淀粉、蔗糖和果糖含量, 利于维持相对较高的光合性能。减库处理导致更多的光合产物向营养器官分配, 茎、叶片和叶柄在一定程度上成为新的库器官, 利于生育后期的叶片光合产物输出并保持相对较高的碳代谢水平。去除全部豆荚和种子损伤处理延缓叶片衰老和脱落、光合性能和碳代谢水平降低的作用显著高于去除1/2豆荚。总之, 在同等的源条件下, 减小库容量可以诱导大豆出现持绿现象, 减库程度越大, 持绿现象越重, 减库处理显著影响大豆叶片碳代谢, 虽然短期内抑制了&#x0201C;源&#x0201D;叶片的光合性能, 但是生育后期叶片仍能保持相对较高的光合活性和碳代谢关键酶活性利于合成较多的碳水化合物, 且刺激茎、叶和叶柄转化为新的库器官。

Xiong M, Yu J W, Wang J D, et al.

Brassinosteroids regulate rice seed germination through the BZR1-RAmy3D transcriptional module

Plant Physiology, 2022, 189(1):402-418.

DOI:10.1093/plphys/kiac043      PMID:35139229      [本文引用: 1]

Seed dormancy and germination, two physiological processes unique to seed-bearing plants, are critical for plant growth and crop production. The phytohormone brassinosteroid (BR) regulates many aspects of plant growth and development, including seed germination. The molecular mechanisms underlying BR control of rice (Oryza sativa) seed germination are mostly unknown. We investigated the molecular regulatory cascade of BR in promoting rice seed germination and post-germination growth. Physiological assays indicated that blocking BR signaling, including introducing defects into the BR insensitive 1 (BRI1) receptor or overexpressing the glycogen synthase kinase 2 (GSK2) kinase, delayed seed germination and suppressed embryo growth. Our results also indicated that brassinazole-resistant 1 (BZR1) is the key downstream transcription factor that mediates BR regulation of seed germination by binding to the alpha-Amylase 3D (RAmy3D) promoter, which affects α-amylase expression and activity and the degradation of starch in the endosperm. The BZR1-RAmy3D module functions independently from the established Gibberellin MYB (GAMYB)-alpha-amylase 1A (RAmy1A) module of the gibberellin (GA) pathway. We demonstrate that the BZR1-RAmy3D module also functions in embryo-related tissues. Moreover, RNA-sequencing (RNA-seq) analysis identified more potential BZR1-responsive genes, including those involved in starch and sucrose metabolism. Our study successfully identified the role of the BZR1-RAmy3D transcriptional module in regulating rice seed germination.© American Society of Plant Biologists 2022. All rights reserved. for permissions, please email: journals.permissions@oup.com.

Tong H N, Chu C C.

Functional specificities of brassinosteroid and potential utilization for crop improvement

Trends in Plant Science, 2018, 23(11):1016-1028.

DOI:S1360-1385(18)30187-0      PMID:30220494      [本文引用: 1]

Brassinosteroid (BR) regulates many important agronomic traits and thus has great potential in agriculture. However, BR application is limited due to its complex effects on plants. The identification of specific downstream BR components and pathways in the crop plant rice (Oryza sativa) further demonstrates the feasibility of modulating BR responses to obtain desirable traits for breeding. Here, we review advances on how BR regulates various biological processes or agronomic traits such as plant architecture and grain yield in rice. We discuss how these functional specificities of BR can and could be utilized to enhance plant performance and productivity. We propose that unraveling the mechanisms underlying the diverse BR functions will favor BR application in molecular design for crop improvement.Copyright © 2018 Elsevier Ltd. All rights reserved.

郭彤, 李亚静.

油菜素内酯影响小麦种子萌发的生理机制

广东蚕业, 2021, 55(8):23-24.

[本文引用: 1]

王士银, 陈冉冉, 石庆华, .

开花期外施表油菜素内酯(epi-BR)对水稻的影响

作物杂志, 2012(4):83-86.

[本文引用: 1]

Thussagunpanit J, Jutamanee K, Sonjaroon W, et al.

Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress

Photosynthetica, 2015, 53(2):312-320.

[本文引用: 1]

宁金花, 陆魁东, 霍治国, .

拔节期淹涝胁迫对水稻形态和产量构成因素的影响

生态学杂志, 2014, 33(7):1818-1825.

[本文引用: 1]

以常规稻湘早籼45为供试材料,在拔节期设计不同淹水深度(2/3淹和全淹)及淹水持续时间(3、5、7和9 d)的淹涝胁迫试验,分析不同淹涝胁迫处理对水稻绿叶数、卷叶长度、叶鞘长度、高位分蘖等形态因子以及产量构成因子的影响。结果表明:不同淹水深度处理,绿叶数与淹水持续时间呈负相关,且2/3淹较全淹更明显;全淹处理,茎变化明显;2/3淹处理,叶变化明显;高位分蘖率与淹水持续时间呈正相关;卷叶长度变化,在2/3淹时,与淹水持续时间呈负相关,全淹时,两者呈正相关;叶鞘的变化,不同处理之间差异不大,均表现为伸长生长。不同淹涝胁迫处理对产量构成因子的影响均表现为空壳率高、穗结实粒数低和千粒重低,2/3淹持续9 d处理的影响最大,结实粒数最低,仅有34粒。探讨了不同淹涝胁迫环境,水稻茎、叶等形态特征变化的适应机制和可能原因。研究结果可为长江中下游地区水稻洪涝灾害防灾减灾以及抗灾品种选育提供科学依据。&nbsp;

程建峰, 戴廷波, 蒋海燕, .

水稻拔节期叶片碳氮代谢基因型差异及与氮素利用效率的关系

中国水稻科学, 2012, 26 (1):101-108.

[本文引用: 1]

李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.

[本文引用: 3]

张志良, 瞿伟菁. 植物生理学实验指导. 3版. 北京: 高等教育出版社, 2003.

[本文引用: 1]

Choix F J, Bashan Y, Mendoza A, et al.

Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris

Journal of Biotechnology, 2014, 177:22-34.

[本文引用: 1]

Jiang H W, Dian W M, Wu P.

Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme

Phytochemistry, 2003, 63(1):53-59.

PMID:12657298      [本文引用: 1]

Rice (Oryza sativa L.) grain quality is affected by the environmental temperature it experiences. To investigate the physiological molecular mechanisms of the effect of high temperatures on rice grain, a non-waxy indica rice was grown under two temperature conditions, (29/35 degrees C) and (22/28 degrees C), during the ripening stage in two phytotrons. The activities and gene expression of key enzymes for the biosynthesis of amylose and amylopectin were examined. The activity and expression levels of soluble endosperm starch synthase I were higher at 29/35 degrees C than that at 22/28 degrees C. In contrast, the activities and expression levels of the rice branching enzyme1, the branching enzyme3 and the granule bound starch synthase of the endosperm were lower at 29/35 degrees C than those at 22/28 degrees C. These results suggest that the decreased activity of starch branching enzyme reduces the branching frequency of the branches of amylopectin, which results in the increased amount of long chains of amylopectin of endosperm in rice grain at high temperature.

Pan J, Lin S, Woodbury N W.

Bacteriochlorophyll excited-state quenching pathways in bacterial reaction centers with the primary donor oxidized

The Journal of Physical Chemistry B, 2012, 116 (6):2014-2022.

[本文引用: 1]

Makino A.

Photosynthesis, grain yield, and nitrogen utilization in rice and wheat

Plant Physiology, 2011, 155(1):125-129.

DOI:10.1104/pp.110.165076      PMID:20959423      [本文引用: 1]

Sweetlove L J, Müller-Röber B, Willmitzer L, et al.

The contribution of adenosine 5′-diphosphoglucose pyrophosphorylase to the control of starch synthesis in potato tubers

Planta, 1999, 209(3):330-337.

DOI:10.1007/s004250050640      PMID:10502100      [本文引用: 1]

The aim of this work was to investigate the extent to which starch synthesis in potato (Solanum tuberosum L.) tubers is controlled by the activity of ADPglucose pyrophosphorylase (EC 2.7.7.27; AGPase). In order to do this, fluxes of carbohydrate metabolism were measured in tubers that had reduced AGPase activity as a result of the expression of a cDNA encoding the B subunit in the antisense orientation. Reduction in AGPase activity led to a reduction in starch accumulation, and an increase in sucrose accumulation. The control coefficient of AGPase on starch accumulation in intact plants was estimated to be around 0.3. The fluxes of carbohydrate metabolism were measured in tuber discs from wild-type and transgenic plants by investigating the metabolism of [U-(14)C]glucose. In tuber discs, the control coefficient of AGPase over starch synthesis was estimated as 0.55, while the control coefficient of the enzyme over sucrose synthesis was -0.47. The values obtained suggest that AGPase activity exerts appreciable control over tuber metabolism in potato.

唐煜杰, 苗欢, 冯茜, .

合理施磷量提高水稻拔节期对大气增温的抵御能力

植物营养与肥料学报, 2023, 29(8):1461- 1470.

[本文引用: 1]

Coll Y, Coll F, Amorós A, et al.

Brassinosteroids roles and applications: an up-date

Biológia, 2015, 70(6):726-732.

[本文引用: 1]

Castorina G, Consonni G.

The role of brassinosteroids in controlling plant height in poaceae: a genetic perspective

International Journal of Molecular Sciences, 2020, 21(4):1191.

[本文引用: 1]

Tong H N, Xiao Y H, Liu D P, et al.

Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice

The Plant Cell, 2014, 26(11):4376-4393.

DOI:10.1105/tpc.114.132092      PMID:25371548      [本文引用: 1]

Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana. © 2014 American Society of Plant Biologists. All rights reserved.

Tian P, Liu J F, Yan B H, et al.

BRASSINOSTEROID- SIGNALING KINASE1-1, a positive regulator of brassinosteroid signalling, modulates plant architecture and grain size in rice

Journal of Experimental Botany, 2023, 74(1):238-295.

[本文引用: 1]

Zhiponova M K, Vanhoutte I, Véronique B, et al.

Brassinosteroid production and signaling differentially control cell division and expansion in the leaf

New Phytologist, 2013, 197(2):490-502.

DOI:10.1111/nph.12036      PMID:23253334      [本文引用: 3]

Brassinosteroid (BR) hormones control plant growth through acting on both cell expansion and division. Here, we examined the role of BRs in leaf growth using the Arabidopsis BR-deficient mutant constitutive photomorphogenesis and dwarfism (cpd). We show that the reduced size of cpd leaf blades is a result of a decrease in cell size and number, as well as in venation length and complexity. Kinematic growth analysis and tissue-specific marker gene expression revealed that the leaf phenotype of cpd is associated with a prolonged cell division phase and delayed differentiation. cpd-leaf-rescue experiments and leaf growth analysis of BR biosynthesis and signaling gain-of-function mutants showed that BR production and BR receptor-dependent signaling differentially control the balance between cell division and expansion in the leaf. Investigation of cell cycle markers in leaves of cpd revealed the accumulation of mitotic proteins independent of transcription. This correlated with an increase in cyclin-dependent kinase activity, suggesting a role for BRs in control of mitosis.© 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

Tong H N, Liu L C, Jin Y, et al.

DWARF and LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice

The Plant Cell, 2012, 24(6):2562-2577.

DOI:10.1105/tpc.112.097394      PMID:22685166      [本文引用: 1]

In Arabidopsis thaliana, the GSK3/SHAGGY-like kinase BRASSINOSTEROID-INSENSITIVE2 (BIN2) plays a critical role in the brassinosteroid (BR) signaling pathway by negatively regulating the activities of bri1-EMS-SUPPRESSOR1/BRASSINAZOLE-RESISTANT1 family transcription factors that regulate the expression of downstream BR-responsive genes. In this study, we analyzed the function of a rice (Oryza sativa) GSK3/SHAGGY-like kinase (GSK2), which is one of the orthologs of BIN2. Overexpression of GSK2 (Go) led to plants with typical BR loss-of-function phenotypes, and suppression of GSK2 resulted in enhanced BR signaling phenotypes. DWARF AND LOW-TILLERING (DLT) is a positive regulator that mediates several BR responses in rice. Suppression of DLT can enhance the phenotypes of BR receptor mutant d61-1, and overexpression of DLT obviously suppressed the BR loss-of-function phenotypes of both d61-1 and Go, suggesting that DLT functions downstream of GSK2 to modulate BR responses. Indeed, GSK2 can interact with DLT and phosphorylate DLT. Moreover, brassinolide treatment can induce the dephosphorylation of DLT, leading to the accumulation of dephosphorylated DLT protein. In GSK2 transgenic plants, the DLT phosphorylation level is dictated by the GSK2 level. These results demonstrate that DLT is a GSK2 substrate, further reinforcing that the BIN2/GSK2 kinase has multiple substrates that carry out various BR responses.

Fujikawa Y, Sakurai N, Sendo S, et al.

Sugar metabolism in expanding husk leaves of flint corn (Zea mays L.) genotypes differing in husk leaf size

Journal of Agricultural Science, 2002, 139(1):37-45.

[本文引用: 1]

Salas F, Maria G, Philip W, et al.

From dwarves to giants? Plant height manipulation for biomass yield

Trends in Plant Science, 2009, 14(8):454-461.

DOI:10.1016/j.tplants.2009.06.005      PMID:19616467      [本文引用: 1]

The increasing demand for lignocellulosic biomass for the production of biofuels provides value to vegetative plant tissue and leads to a paradigm shift for optimizing plant architecture in bioenergy crops. Plant height (PHT) is among the most important biomass yield components and is the focus of this review, with emphasis on the energy grasses maize (Zea mays) and sorghum (Sorghum bicolor). We discuss the scientific advances in the identification of PHT quantitative trait loci (QTLs) and the understanding of pathways and genes controlling PHT, especially gibberellins and brassinosteroids. We consider pleiotropic effects of QTLs or genes affecting PHT on other agronomically important traits and, finally, we discuss strategies for applying this knowledge to the improvement of dual-purpose or dedicated bioenergy crops.

Wu C Y, Trieu A, Radhakrishnan P, et al.

Brassinosteroids regulate grain filling in rice

The Plant Cell, 2008, 20(8):2130- 2145.

[本文引用: 1]

Xia X J, Huang L F, Zhou Y H, et al.

Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus

Planta, 2009, 230(6):1185-1196.

[本文引用: 2]

何迷, 李小波, 黄静, .

水稻叶面积指数与产量关系研究进展

农学学报, 2022, 12(8):1-5.

DOI:10.11923/j.issn.2095-4050.cjas2020-0269      [本文引用: 1]

叶片作为水稻器官建成的物质基础,与水稻群体中光环境的优劣和光能利用率的高低关系密切。而叶面积指数(LAI)的大小直接与水稻最终产量相关,且水稻冠层中光合有效辐射吸收系数与叶面积指数相关性极显著。文章综述了水稻在生长的各个阶段叶面积指数和产量之间的关系,同时通过优化品种、改善栽培措施等手段增加水稻最适叶面积指数,提高水稻产量,以期为高产水稻适宜叶面积指数的预测及合理冠层结构的调控提供理论依据。

尹林芝, 向焱赟, 伍湘, .

不同氮素水平下超级稻叶面积指数及产量变化特征

分子植物育种. (2022-03-23) [2024-03-10]. http://kns.cnki.net/kcms/detail/46.1068.s.20220322.1718.008.html.

URL     [本文引用: 3]

Sammar A M R, Arif M I, Allah D, et al.

Exploring the recuperative potential of brassinosteroids and nano-biochar on growth, physiology, and yield of wheat under drought stress

Scientific Reports, 2023, 13(1):15015.

[本文引用: 1]

Yuan L Y, Shu S, Sun J, et al.

Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress

Photosynthesis Research, 2012, 112(3):205-214.

[本文引用: 1]

董登峰, 李杨瑞, 江立庚.

油菜素内酯对铝胁迫大豆光合特性的影响

作物学报, 2008, 34(9):1673-1678.

[本文引用: 1]

Jutamanee K, Sonjaroon W, Pankean P, et al.

Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress

Photosynthetica, 2015, 53(2):312-320.

[本文引用: 1]

Li X J, Guo X, Zhou Y H, et al.

Overexpression of a brassinosteroid biosynthetic gene Dwarf enhances photosynthetic capacity through activation of Calvin cycle enzymes in tomato

BMC Plant Biology, 2016, 16(27):33.

[本文引用: 1]

Gao Y, Jiang T, Xiang Y, et al.

Epi-brassinolide positively affects chlorophyll content and dark-reaction enzymes of maize seedlings

Phyton (Buenos Aires), 2021, 90(5):1465-1476.

[本文引用: 1]

李赞堂, 王士银, 姜雯宇, .

穗分化期外施24-表油菜素内酯(EBR)促进水稻源、库及籽粒灌浆的生理机制

作物学报, 2018, 44(4):581-590.

[本文引用: 1]

陈燕华, 王亚梁, 朱德峰, .

外源油菜素内酯缓解水稻穗分化期高温伤害的机理研究

中国水稻科学, 2019, 33(5):457- 466.

DOI:10.16819/j.1001-7216.2019.9036      [本文引用: 1]

【目的】 明确水稻穗分化期高温下喷施2,4-表油菜素内酯(2,4-epibrassinolide, EBR)对穗生长及颖花形成的影响,并探究其生理机制。【方法】 以热敏感型水稻IR36为材料,在幼穗分化期设置40℃高温和32℃适温两个处理,并喷施EBR,研究幼穗碳水化合物供应、蔗糖代谢、细胞分裂素代谢及抗氧化能力的变化。【结果】 1)高温和适温喷施EBR,水稻每穗粒数分别比不喷施的对照增加13.7% 和45.7%,其中以喷施0.15 mg/L效果最好,缓解了高温对水稻幼穗生长的抑制,增加颖花分化数和降低颖花退化率。2)喷施EBR对叶片净光合速率无显著影响,但促进幼穗中干物质和非结构性碳水化合物积累。EBR喷施增加高温下幼穗中蔗糖转运基因OsSUT1、OsSUT2和OsSUT4的表达,并显著提高蔗糖代谢相关酶活性,EBR对高温下碳水化合物利用的促进作用大于适温处理。3)喷施EBR降低高温下细胞分裂素氧化酶基因OsCKX5和OsCKX9的表达量,同时促进细胞分裂素合成和信号调节相关基因的表达,并在适温下也表现出类似的效应。4)喷施EBR降低高温下超氧阴离子含量,增强了超氧化物歧化酶、过氧化氢酶和过氧化物酶活性。【结论】 高温下,喷施适宜浓度的EBR促进碳水化合物向幼穗的转运,抑制细胞分裂素分解,同时降低高温引起的过氧化伤害,进而缓解了高温对颖花形成的伤害。适温条件喷施EBR也对颖花形成具有一定的促进作用。

藏金萍, 赵艾佳, 赵亚林, .

油菜素内酯对玉米叶片捕光、CO2固定及有机物运输的影响

中国农业科学, 2017, 50(21):4228-4234.

DOI:10.3864/j.issn.0578-1752.2017.21.017      [本文引用: 1]

【目的】明确油菜素内酯(BR)对玉米光合特性的影响及作用机制,为油菜素内酯在玉米田的高效利用提供理论依据和技术参考。【方法】于玉米8叶期喷施100 nmol&middot;L<sup>-1</sup> BR,对其叶片进行叶绿体结构、淀粉粒积累、叶绿素含量、PEPC活性、光合速率、蔗糖磷酸合成酶(SPS)和蔗糖合成酶(SS)活性的检测与分析。【结果】油菜素内酯处理8叶期玉米15 d后,与对照相比,玉米叶片的净光合速率提高了32.6%,同时,叶绿体中淀粉粒的积累明显变多变大,叶绿素含量高出对照28.57%,以上结果说明BR处理可提高玉米叶片的捕光能力;PEPC是C<sub>4</sub>植物中催化PEP固定CO<sub>2</sub>的酶,本研究结果表明BR处理可提高玉米叶片中PEPC的活性,与对照相比,其活性提高了14.52%,这说明BR处理可提高玉米叶片固定CO<sub>2</sub>的能力;光合产物运输是决定产量的重要因素,通过对玉米叶片疏导组织细胞的超微观察,发现BR处理后韧皮部输导组织的细胞内含物增加;蔗糖是光合产物的主要运输形式,蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)是蔗糖合成的关键酶,其活性可反映同化物向籽粒运输能力和强度,本研究发现BR处理后SS和SPS的活性分别提高了28.26%和30.20%,上述结果说明BR处理可提高玉米光合产物的输出能力。【结论】油菜素内酯通过提高光合色素含量来提高玉米叶片的光能利用率;通过提高PEP羧化酶活性提高玉米叶片固定CO<sub>2</sub>的能力;通过提高蔗糖合成酶和蔗糖磷酸酶活性,促进玉米叶片光作用产生的有机物的运输和分配。

刘海英, 郭天财, 朱云集, .

开花期外施表油菜素内酯(epi-BR)对小麦籽粒淀粉积累及其关键酶活性的影响

作物学报, 2006, 26(1):924-930.

[本文引用: 1]

/