作物杂志,2024, 第6期: 218–225 doi: 10.16035/j.issn.1001-7283.2024.06.029

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

水稻BR受体突变株Fn189拔节期生长发育及碳代谢分析

胡娅晴1,2(), 李春情2, 王冠1, 徐江2()   

  1. 1吉林农业大学农学院,130118,吉林长春
    2中国农业科学院作物科学研究所/农业农村部作物生理生态重点实验室,100081,北京
  • 收稿日期:2024-03-10 修回日期:2024-04-24 出版日期:2024-12-15 发布日期:2024-12-05
  • 通讯作者: 徐江,主要从事作物生理生化研究,E-mail:jiangxu_xj@163.com
  • 作者简介:胡娅晴,主要从事作物生理生化研究,E-mail:huyaqing2021@163.com
  • 基金资助:
    国家自然科学基金(31571589);中国农业科学院创新工程(01-ICS-20)

Analysis of Growth, Development and Carbon Metabolism of Rice BR Receptor Mutant Fn189 at Jointing Stage

Hu Yaqing1,2(), Li Chunqing2, Wang Guan1, Xu Jiang2()   

  1. 1College of Agronomy, Jilin Agricultural University, Changchun 130118, Jilin, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2024-03-10 Revised:2024-04-24 Online:2024-12-15 Published:2024-12-05

摘要:

以水稻油菜素内酯(BR)受体BRI1编码基因(OsBRI1)的突变体Fn189及其野生型Tz65为供试材料,在大田条件下,采取随机区组试验设计,研究BR对拔节期水稻生长发育及碳代谢相关生理指标的影响。结果表明,与野生型相比,Fn189拔节期生长受到抑制,Fn189的株高、分蘖数分别降低了25.07%和15.82%。此外,Fn189拔节期叶片的Rubisco活性降低,叶片固定CO2的能力减弱;在蔗糖―淀粉代谢中,与野生型相比,Fn189拔节期叶片的蔗糖磷酸合成酶、蔗糖合酶、腺苷二磷酸葡萄糖焦磷酸化酶、可溶性淀粉合酶和颗粒结合型淀粉合酶活性降低,酸性转化酶活性增加,说明Fn189叶肉细胞内蔗糖和淀粉合成减弱,而蔗糖分解加速;结果显示Fn189叶片中蔗糖、可溶性糖、淀粉和非结构性碳水化合物含量均显著降低,较野生型分别降低了23.76%、13.46%、9.02%和10.40%。最终,Fn189的产量较野生型降低了71.04%。综上,BR信号转导受阻不仅影响了拔节期水稻的生长发育,还通过影响水稻叶片的光合作用、蔗糖和淀粉代谢,最终影响水稻产量。

关键词: 水稻, 油菜素内酯, 突变体Fn189, 拔节期, 生长发育, 碳代谢

Abstract:

Rice brassinosteroids (BR) receptor BRI1 coding gene (OsBRI1) mutant Fn189 and its wild type Tz65 were used as test materials. Under field conditions, a randomized block design was used to study the effects of BR on growth and development and carbon metabolism-related physiological indexes of rice at jointing stage. The results showed that compared with the wild-type Tz65, the growth of Fn189 was inhibited at jointing stage, and the plant height and tiller number of Fn189 were decreased by 25.07% and 15.82%, respectively. In addition, the Rubisco activity of Fn189 leaves decreased at jointing stage, and the ability of leaves to fix CO2 decreased. Compared with the wild-type, the activities of sucrose phosphate synthetase, sucrose synthase, ADP-glucose pyrophosphorylase, soluble starch synthase and granule-bound starch synthase of Fn189 leaves decreased at jointing stage, and the activity of acid invertase increased, indicating that the synthesis of sucrose and starch in the mesophyll cells of Fn189 decreased, while the decomposition of sucrose accelerated. The results showed that the contents of sucrose, soluble sugar, starch and non-structural carbohydrates in Fn189 leaves were significantly decreased by 23.76%, 13.46%, 9.02% and 10.40%, respectively, compared with the wild-type. Finally, the yield of Fn189 was 71.04% lower than that of wild-type. Therefore, BR signal transduction not only affected the growth and development of rice at jointing stage, it also affected the photosynthesis of rice leaves and the metabolism of sucrose and starch, and ultimately affected the yield of rice.

Key words: Rice, Brassinosteroids, Mutant Fn189, Jointing stage, Growth and development, Carbon metabolism

图1

拔节期Fn189和Tz65形态指标的比较 “*”和“**”分别表示在P < 0.05和P < 0.01水平上差异显著,下同。

图2

拔节期Fn189和Tz65光合相关指标的比较

图3

拔节期Fn189和Tz65蔗糖、淀粉代谢的比较

表1

收获期Fn189和Tz65产量及其构成因素的比较

材料
Material
有效穗数
Effective number of panicles (/m2)
穗粒数
Grains per panicle
千粒重
1000-grain weight (g)
结实率
Seed-setting rate (%)
产量
Yield (kg/hm2)
Tz65 504.00 96.73 26.56 81.56 9818.80
Fn189 381.00** 106.40* 16.97** 42.58** 2843.27**
[1] 申春芳. 水稻栽培技术对稻米品质的影响. 世界热带农业信息, 2022(5):84-86.
[2] 刘奇华, 蔡建, 李天. 水稻籽粒中的淀粉合成关键酶及其与籽粒灌浆和稻米品质的关系. 植物生理学通讯, 2006, 42(6):1211-1216.
[3] 张国伟, 李凯, 李思嘉, 等. 减库对大豆叶片碳代谢的影响. 作物学报, 2022, 48(2):529-537.
doi: 10.3724/SP.J.1006.2022.14024
[4] Xiong M, Yu J W, Wang J D, et al. Brassinosteroids regulate rice seed germination through the BZR1-RAmy3D transcriptional module. Plant Physiology, 2022, 189(1):402-418.
doi: 10.1093/plphys/kiac043 pmid: 35139229
[5] Tong H N, Chu C C. Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends in Plant Science, 2018, 23(11):1016-1028.
doi: S1360-1385(18)30187-0 pmid: 30220494
[6] 郭彤, 李亚静. 油菜素内酯影响小麦种子萌发的生理机制. 广东蚕业, 2021, 55(8):23-24.
[7] 王士银, 陈冉冉, 石庆华, 等. 开花期外施表油菜素内酯(epi-BR)对水稻的影响. 作物杂志, 2012(4):83-86.
[8] Thussagunpanit J, Jutamanee K, Sonjaroon W, et al. Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynthetica, 2015, 53(2):312-320.
[9] 宁金花, 陆魁东, 霍治国, 等. 拔节期淹涝胁迫对水稻形态和产量构成因素的影响. 生态学杂志, 2014, 33(7):1818-1825.
[10] 程建峰, 戴廷波, 蒋海燕, 等. 水稻拔节期叶片碳氮代谢基因型差异及与氮素利用效率的关系. 中国水稻科学, 2012, 26 (1):101-108.
[11] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[12] 张志良, 瞿伟菁. 植物生理学实验指导. 3版. 北京: 高等教育出版社, 2003.
[13] Choix F J, Bashan Y, Mendoza A, et al. Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris. Journal of Biotechnology, 2014, 177:22-34.
[14] Jiang H W, Dian W M, Wu P. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. Phytochemistry, 2003, 63(1):53-59.
pmid: 12657298
[15] Pan J, Lin S, Woodbury N W. Bacteriochlorophyll excited-state quenching pathways in bacterial reaction centers with the primary donor oxidized. The Journal of Physical Chemistry B, 2012, 116 (6):2014-2022.
[16] Makino A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiology, 2011, 155(1):125-129.
doi: 10.1104/pp.110.165076 pmid: 20959423
[17] Sweetlove L J, Müller-Röber B, Willmitzer L, et al. The contribution of adenosine 5′-diphosphoglucose pyrophosphorylase to the control of starch synthesis in potato tubers. Planta, 1999, 209(3):330-337.
doi: 10.1007/s004250050640 pmid: 10502100
[18] 唐煜杰, 苗欢, 冯茜, 等. 合理施磷量提高水稻拔节期对大气增温的抵御能力. 植物营养与肥料学报, 2023, 29(8):1461- 1470.
[19] Coll Y, Coll F, Amorós A, et al. Brassinosteroids roles and applications: an up-date. Biológia, 2015, 70(6):726-732.
[20] Castorina G, Consonni G. The role of brassinosteroids in controlling plant height in poaceae: a genetic perspective. International Journal of Molecular Sciences, 2020, 21(4):1191.
[21] Tong H N, Xiao Y H, Liu D P, et al. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. The Plant Cell, 2014, 26(11):4376-4393.
doi: 10.1105/tpc.114.132092 pmid: 25371548
[22] Tian P, Liu J F, Yan B H, et al. BRASSINOSTEROID- SIGNALING KINASE1-1, a positive regulator of brassinosteroid signalling, modulates plant architecture and grain size in rice. Journal of Experimental Botany, 2023, 74(1):238-295.
[23] Zhiponova M K, Vanhoutte I, Véronique B, et al. Brassinosteroid production and signaling differentially control cell division and expansion in the leaf. New Phytologist, 2013, 197(2):490-502.
doi: 10.1111/nph.12036 pmid: 23253334
[24] Tong H N, Liu L C, Jin Y, et al. DWARF and LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. The Plant Cell, 2012, 24(6):2562-2577.
doi: 10.1105/tpc.112.097394 pmid: 22685166
[25] Fujikawa Y, Sakurai N, Sendo S, et al. Sugar metabolism in expanding husk leaves of flint corn (Zea mays L.) genotypes differing in husk leaf size. Journal of Agricultural Science, 2002, 139(1):37-45.
[26] Salas F, Maria G, Philip W, et al. From dwarves to giants? Plant height manipulation for biomass yield. Trends in Plant Science, 2009, 14(8):454-461.
doi: 10.1016/j.tplants.2009.06.005 pmid: 19616467
[27] Wu C Y, Trieu A, Radhakrishnan P, et al. Brassinosteroids regulate grain filling in rice. The Plant Cell, 2008, 20(8):2130- 2145.
[28] Xia X J, Huang L F, Zhou Y H, et al. Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 2009, 230(6):1185-1196.
[29] 何迷, 李小波, 黄静, 等. 水稻叶面积指数与产量关系研究进展. 农学学报, 2022, 12(8):1-5.
doi: 10.11923/j.issn.2095-4050.cjas2020-0269
[30] 尹林芝, 向焱赟, 伍湘, 等. 不同氮素水平下超级稻叶面积指数及产量变化特征. 分子植物育种. (2022-03-23) [2024-03-10]. http://kns.cnki.net/kcms/detail/46.1068.s.20220322.1718.008.html.
[31] Sammar A M R, Arif M I, Allah D, et al. Exploring the recuperative potential of brassinosteroids and nano-biochar on growth, physiology, and yield of wheat under drought stress. Scientific Reports, 2023, 13(1):15015.
[32] Yuan L Y, Shu S, Sun J, et al. Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress. Photosynthesis Research, 2012, 112(3):205-214.
[33] 董登峰, 李杨瑞, 江立庚. 油菜素内酯对铝胁迫大豆光合特性的影响. 作物学报, 2008, 34(9):1673-1678.
[34] Jutamanee K, Sonjaroon W, Pankean P, et al. Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynthetica, 2015, 53(2):312-320.
[35] Li X J, Guo X, Zhou Y H, et al. Overexpression of a brassinosteroid biosynthetic gene Dwarf enhances photosynthetic capacity through activation of Calvin cycle enzymes in tomato. BMC Plant Biology, 2016, 16(27):33.
[36] Gao Y, Jiang T, Xiang Y, et al. Epi-brassinolide positively affects chlorophyll content and dark-reaction enzymes of maize seedlings. Phyton (Buenos Aires), 2021, 90(5):1465-1476.
[37] 李赞堂, 王士银, 姜雯宇, 等. 穗分化期外施24-表油菜素内酯(EBR)促进水稻源、库及籽粒灌浆的生理机制. 作物学报, 2018, 44(4):581-590.
[38] 陈燕华, 王亚梁, 朱德峰, 等. 外源油菜素内酯缓解水稻穗分化期高温伤害的机理研究. 中国水稻科学, 2019, 33(5):457- 466.
doi: 10.16819/j.1001-7216.2019.9036
[39] 藏金萍, 赵艾佳, 赵亚林, 等. 油菜素内酯对玉米叶片捕光、CO2固定及有机物运输的影响. 中国农业科学, 2017, 50(21):4228-4234.
doi: 10.3864/j.issn.0578-1752.2017.21.017
[40] 刘海英, 郭天财, 朱云集, 等. 开花期外施表油菜素内酯(epi-BR)对小麦籽粒淀粉积累及其关键酶活性的影响. 作物学报, 2006, 26(1):924-930.
[1] 法晓彤, 孟庆好, 王琛, 顾汉柱, 景文疆, 张耗. 水稻根系形态生理对干湿交替灌溉方式的响应研究进展[J]. 作物杂志, 2024, (6): 1–8
[2] 李斐, 边少锋, 徐晨, 赵洪祥, 宋杭霖, 王芙臣, 庄妍. 坡耕地垄侧栽培对玉米生理特性及生长发育的影响[J]. 作物杂志, 2024, (6): 120–125
[3] 汪本福, 余振渊, 宋平原, 张作林, 张枝盛, 李阳, 苏章锋, 郑中春, 程建平. 土壤改良剂对低湖冷浸田土壤特性及水稻生长的影响[J]. 作物杂志, 2024, (6): 126–131
[4] 曾茜倩, 张振远, 马秀娥, 方映涵, 翟金磊, 金涛, 刘冬, 刘章勇. 硅藻土对水稻产量和氮肥利用率的影响[J]. 作物杂志, 2024, (6): 147–152
[5] 孙明茂, 刘丽霞, 孙虎, 崔迪. 水稻重组自交系群体花色苷及重要农艺性状分析[J]. 作物杂志, 2024, (6): 26–38
[6] 孙家猛, 高原, 陈虎, 花芹, 林泉祥, 陈庆全, 李金才, 张海涛. 水稻胚乳突变体cse-2的表型分析及基因定位[J]. 作物杂志, 2024, (5): 1–7
[7] 田琴琴, 卓乐, 陈娜娜, 郑德超, 吴小京, 喻鹏, 陈平平, 易镇邪. 钙镁水滑石施用方式对双季稻糙米镉含量与土壤特性的影响[J]. 作物杂志, 2024, (5): 131–139
[8] 欧英卓, 赵晴, 顾怀应, 周宇阳, 刘长华, 孟丽君. 氯酸盐在水稻硝态氮研究中的应用现状[J]. 作物杂志, 2024, (4): 1–7
[9] 袁帅, 何明娟, 崔璨, 韩羽, 喻鹏, 易镇邪. 早稻基施不同用量钙镁水滑石对湘南双季稻产量和稻米品质影响[J]. 作物杂志, 2024, (4): 113–120
[10] 杜杰, 冯宇, 夏清, 智慧, 王文霞. 外源油菜素内酯缓解谷子穗分化期干旱胁迫的机理研究[J]. 作物杂志, 2024, (4): 144–151
[11] 周舟, 沈炘垭, 王俊, 刘立军. 控释肥与普通尿素组合对水稻产量、氮肥利用率和米质的影响[J]. 作物杂志, 2024, (4): 180–187
[12] 李虎, 吴子帅, 刘广林, 罗群昌, 陈传华, 朱其南. 不同栽培条件对水稻籽粒镉含量及主要性状的影响研究[J]. 作物杂志, 2024, (4): 203–208
[13] 顾怀应, 胡诗钦, 赵晴, 刘长华, 孟丽君. 根际微生物增强水稻耐盐性研究进展[J]. 作物杂志, 2024, (4): 8–13
[14] 陈洛, 朱稳, 李雯慧, 赵均良, 周玲艳, 杨武. 水稻白叶枯病抗性基因的研究及应用进展[J]. 作物杂志, 2024, (3): 1–7
[15] 刘亚军, 逯昀, 王文静, 胡启国, 储凤丽, 李志杰. 有机肥与土壤调理剂对连作甘薯生长发育及土壤肥力的影响[J]. 作物杂志, 2024, (3): 168–174
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!