成熟期蔗叶离区细胞结构特点及PG含量变化分析
Analysis of Cell Structure Characteristics and Polygalacturonase Content Changes in Sugarcane Leaves Abscission Zone at Maturity Stage
通讯作者:
收稿日期: 2023-05-10 修回日期: 2023-10-30 网络出版日期: 2024-07-07
基金资助: |
|
Received: 2023-05-10 Revised: 2023-10-30 Online: 2024-07-07
作者简介 About authors
欧克纬,主要从事作物遗传育种及栽培研究,E-mail:
为筛选脱叶性强的甘蔗优良品种(系),以脱叶性存在差异的3个甘蔗品种(系)的不同叶位叶片为材料,观察蔗叶离区细胞的结构,并测定蔗叶、叶鞘中部、叶鞘基部的多聚半乳糖醛酸酶(PG)含量。结果表明,易脱叶甘蔗的离区组织细胞分解程度最高;3个成熟时期易脱叶甘蔗的+5叶鞘基部、+8叶鞘基部的PG含量均显著高于难脱叶甘蔗。甘蔗成熟早期+8叶鞘基部的PG含量与对应叶位离区细胞的裂解程度呈正相关;灰色关联度分析结果显示,+8叶片、+5叶鞘中部以及+8叶鞘基部中PG的含量与蔗叶的自然脱叶率关联度较大,结合各个时期PG含量,测定成熟早期+8叶鞘基部的PG含量可为筛选脱叶性状优良的甘蔗品种提供参考。
关键词:
In order to screen excellent sugarcane varieties with strong defoliation, the leaves at different positions of three sugarcane varieties (lines) with different defoliation were used as materials to observe the structure of detached cells of sugarcane leaves and determine the polygalacturoncase (PG) content in sugarcane leaves, middle leaf sheath and basal leaf sheath. The results showed that the decomposition degree of leaf sheath abscission tissue cells was the highest in easily defoliated sugarcane. The PG content in the basal part of +5 leaf sheath and +8 leaf sheath of easy-defoliation sugarcane were significantly higher than that of hard-defoliation sugarcane at three different mature stages. The PG content in the basal part of +8 leaf sheath at the early maturity stage of sugarcane was positively correlated with the cleavage degree of the cells in the corresponding leaf abscission zone. The results of grey correlation analysis showed that the content of PG in the +8 leaf, the middle of the +5 leaf sheath and the base of the +8 leaf sheath had a great correlation with the natural defoliation rate of sugarcane leaves. Combined with the measured PG content in each period, the PG content in the base of the +8 leaf sheath at the early maturity can provide reference for screening of sugarcane varieties with good defoliation traits.
Keywords:
本文引用格式
欧克纬, 卢业飞, 农泽梅, 朱鹏锦, 庞新华, 宋奇琦, 吕平.
Ou Kewei, Lu Yefei, Nong Zemei, Zhu Pengjin, Pang Xinhua, Song Qiqi, Lü Ping.
甘蔗(Saccharum officinarum L.)是世界上重要的能源作物。蔗叶作为甘蔗收获时杂质的主要来源之一,无论是对人工砍收还是机械化收获,都十分不利。为适应甘蔗机械化收获的需要,提高甘蔗生产效率,筛选和种植脱叶性强的甘蔗品种显得尤为重要。脱叶是叶片受到内外因素等的诱导,脱落处离区细胞胞间层不断瓦解、细胞壁裂解之后的结果[1-2]。而多聚半乳糖醛酸酶(polygalacturonase,PG)是一类可通过催化果胶分子中的α-(1→4)-D-半乳糖苷键降解[3-4],进而改变细胞壁结构的蛋白[5],是人们研究植物发育的热点[6]。研究[7]表明,离区中PG的活性呈高水平表达。Burns等[8]发现,乙烯诱导的脱落过程中,橙子花萼区的离层细胞中PG含量会显著上升;Qi等[9]对乙烯处理之后的番茄花梗外植体离区PG的细胞和亚细胞定位进行了研究,证实了PG在番茄花梗离区的分布情况以及PG与脱落之间存在密切的相关性;李思嘉[10]在对不同温度处理的棉花叶片离区中的酶活性进行研究发现,低温造成PG活性降低,减缓了叶片的脱落;王雪[11]通过对海棠果实脱落过程中酶活性的测定发现,PG等酶类活性的升高促进了其果实的脱落。
目前,有关甘蔗脱叶方面的研究报道较少。本研究以脱叶性存在差异的甘蔗品种(系)LZ02-169、ROC22、GT47为材料,运用石蜡切片技术观察蔗叶离区细胞的结构,采用酶联免疫技术测定蔗叶、叶鞘中部、叶鞘基部的PG含量。通过对不同品种(系)不同叶位离区细胞的结构观察以及不同叶位叶片的PG含量分析,探讨离区组织的细胞结构及PG含量水平与脱叶性之间的联系,为强脱叶甘蔗品种的选育提供参考。
1 材料与方法
1.1 试验材料
以凉蔗02-169(LZ02-169)、新台糖22号(ROC22)和桂糖47号(GT47)3个甘蔗品种(系)为试验材料,3个甘蔗品种(系)均种植并保存于广西壮族自治区亚热带作物研究所甘蔗种质资源圃试验田。
1.2 测定指标与方法
1.2.1 蔗叶自然脱叶率
在2020年甘蔗成熟早期(11月中下旬)、成熟中期(12月中下旬)及成熟后期(次年1月中下旬)分别对3个品种(系)的8~10株甘蔗的自然脱叶率进行调查,统计自然脱叶率,并于甘蔗成熟早期开始每次统计的同时对已脱落叶片的节间处进行标记,自然脱叶率(%)=自然脱落的叶片数/总节数×100,其中自然脱落的叶片数为蔗叶在自然生长状态下完全脱离蔗茎之后的甘蔗节数,总节数指自甘蔗顶端最高肥厚带可见叶始至地面蔗茎部分的总叶数(包括已脱落的蔗叶)。
1.2.2 甘蔗叶鞘基部离区的细胞学结构观察
于甘蔗成熟早期分别切取3个供试品种(系)甘蔗的+6、+7及+8叶的叶鞘基部与蔗茎的连接处1.0 cm×1.0 cm大小的离区组织,立即放入70% FAA固定液中固定24 h以上,备用。离区组织从固定液取出后依次使用不同梯度的酒精进行脱水、浸蜡(75%酒精4 h,85%酒精2 h,90%酒精2 h,95%酒精1 h,无水乙醇I 30 min,无水乙醇II 30 min,醇苯5~10 min,二甲苯I 5~10 min,二甲苯II 5~10 min,65 ℃融化石蜡I 1h,65 ℃融化石蜡II 1h,65 ℃融化石蜡III 1h)后包埋、切片。将获得的切片进行脱蜡(二甲苯Ⅰ 20 min,二甲苯Ⅱ 20 min,无水乙醇Ⅰ 5 min,无水乙醇Ⅱ 5 min,75%酒精5 min)后用自来水洗净并染色(番红染色液2 h),洗去多余的染料后脱色(切片依次入50%、70%、80%梯度酒精中各3~8 s),再加入植物固绿染色液中染色6~20 s后用无水乙醇脱水,随即封片,在显微镜下镜检,并进行图像的采集和分析。
1.2.3 多聚半乳糖醛酸酶含量
于2020年11月中旬、12月中旬和2021年1月中旬,分别对LZ02-169、ROC22和GT47 3个甘蔗品种(系)进行采样。每个品种(系)随机选取长势良好且相近的10株甘蔗植株,分别取+2、+5和+8叶的叶鞘基部(自鞘基而上约1.0 cm的离区组织)、叶鞘中部和叶片中部组织,迅速置于液氮中,随后保存于-80℃超低温冰箱中备用。称取样本1.0 g,加入PBS(pH 7.4)缓冲液后用液氮迅速冷冻保存备用。标本融化后仍然保持2~8 ℃的温度。加入PBS(pH 7.4,浓度为0.01 mol/L),用匀浆器将标本匀浆化,以1 g组织加9 mL的匀浆液进行匀浆。离心20 min左右(2000~3000转/min)。仔细收集上清分装备用。按照试剂盒说明分别对各甘蔗品种(系)的酶活进行测定,在450 nm波长下测量各孔的吸光度(OD值),每个样品重复3次。以标准物的浓度为横坐标,OD值为纵坐标,在坐标纸上绘出标准曲线,根据样品的OD值由标准曲线查出相应的浓度,再乘以稀释倍数即为样品实际浓度或酶活性。
1.3 数据处理
采用Excel 2013软件进行数据分析及作图,采用SPSS软件进行方差分析,采用DPS V9.01软件进行灰色关联度分析。
2 结果与分析
2.1 3个甘蔗品种(系)的自然脱叶率比较
由表1可见,LZ02-169在成熟早期即表现出较高的自然脱叶性,其脱叶率为49.49%,极显著高于ROC22及GT47。成熟中期,LZ02-169的脱叶率达58.67%,较早期增长了18.54%,极显著高于ROC22和GT47,ROC22脱叶率较早期增长了68.15%,而GT47成熟早期和中期的脱叶率均为0。到了成熟后期,LZ02-169的脱叶率达69.20%,极显著高于ROC22和GT47;ROC22脱叶率次之,为33.24%;GT47出现轻微脱叶,仅为5.01%。由上述结果可知,甘蔗LZ02-169在成熟早期即表现出较高的脱叶性,为极易自动脱叶的甘蔗品系;ROC22脱叶性较LZ02-169差,3个成熟期其脱叶性均极显著低于LZ02-169;GT47表现为难自动脱叶,成熟早期和中期其脱叶率均为0,到了成熟后期的脱叶率也仅为5.01%。
表1 3个甘蔗品种(系)的自然脱叶率表现
Table 1
品种(系) Variety (line) | 脱叶率Defoliation rate | ||
---|---|---|---|
成熟早期Early mature stage | 成熟中期Mid-mature stage | 成熟后期Late mature stage | |
ROC22 | 8.98±0.02Bb | 15.10±0.02Bb | 33.24±0.03Bb |
GT47 | 0.00±0.00Bb | 0.00±0.00Cc | 5.01±0.04Cc |
LZ02-169 | 49.49±0.05Aa | 58.67±0.03Aa | 69.20±0.26Aa |
不同小写字母表示差异达5%的显著水平,不同大写字母表示差异达1%的极显著水平。
Different lowercase letters indicate significant difference at 5% level, different capital letters indicate extremely significant difference at 1% level.
2.2 不同叶位叶鞘基部离区细胞结构观察
如图1所示,成熟早期的强脱叶甘蔗LZ02- 169在+6叶鞘基部离区细胞结构即出现松散(图1a),但未出现明显裂痕;而ROC22和GT47的+6叶鞘基部离区细胞排列紧密(图1b和图1c),离区细胞未出现裂解迹象。LZ02-169的+7叶鞘基部离区细胞排列松散,细胞间出现缝隙,且出现了明显的裂痕(图1d);ROC22和GT47的+7叶鞘基部离区细胞排列较紧密,仍未出现裂痕(图1e和图1f)。LZ02-169的+8叶鞘基部离区出现明显的细胞间隙,离层细胞大幅裂解,裂痕深度和面积也更大(图1g);ROC22 +8叶也出现明显的间隙,但较LZ02-169而言,细胞的裂解范围小(图1h);GT47 +8叶离区细胞的裂解程度则更低(图1i)。
图1
图1
LZ02-169、ROC22和GT47的离区细胞形态
箭头标注为离区。
Fig.1
Cells morphology of abscission zone of LZ02-169, ROC22 and GT47
The position marked by the arrow is the abscission zone.
2.3 蔗叶不同部位的PG含量在不同成熟期的变化
由结果(图2)可以看出,在甘蔗的成熟早期,GT47 +5叶鞘基部PG含量最高,达211.21 U/L;除+5叶鞘基部外,LZ02-169其他部位PG含量均极显著高于ROC22和GT47;3个品种(系)不同叶位叶片、叶鞘中部和叶鞘基部PG平均含量表现为LZ02-169>GT47>ROC22。
图2
图2
成熟期不同甘蔗品种(系)多聚半乳糖醛酸酶含量的比较
(a):成熟早期;(b):成熟中期;(c):成熟后期。不同小写字母表示差异达5%的显著水平,不同大写字母表示差异达1%的显著水平。
Fig.2
Comparison of polygalacturonase content among different varieties (lines) of sugarcane during maturation
(a): Early maturation; (b): Mid-maturation; (c): Late maturation. Different lowercase letters indicate significant difference at 5% level, different capital letters indicate significant difference at 1% level.
在成熟中期,LZ02-169 +2、+5和+8叶鞘基部、叶鞘中部和叶片中PG含量均极显著高于ROC22;除+2叶鞘基部和中部、+5叶片和+8叶鞘中部的PG含量LZ02-169和GT47差异不显著外,其余部位LZ02-169 PG含量均显著高于GT47。此时期LZ02-169 +8叶鞘基部PG含量最高,达182.75 U/L;其次为LZ02-169 +8叶鞘中部及+2叶片,均为182.15 U/L;3个品种(系)不同叶位叶片、叶鞘中部和叶鞘基部PG平均含量表现为LZ02-169>GT47>ROC22。
到了成熟后期,除+5叶片中PG含量3个品种(系)持平外,其余取材部位LZ02-169 PG含量均极显著高于ROC22,除+2叶鞘中部、+5叶鞘基部、+8叶鞘中部外,LZ02-169 PG含量均极显著高于GT47。此时期LZ02-169 +2叶鞘中部中PG含量达最高,为177.62 U/L;3个品种(系)不同叶位叶片、叶鞘中部和叶鞘基部PG平均含量为LZ02-169>GT47>ROC22。
综合整个成熟期来看,LZ02-169在成熟早期所有检测部位PG均值最高,为190.45 U/L,随即逐步下降,成熟中期为179.96 U/L,成熟末期则为162.96 U/L;GT47则呈现先增后降的趋势,成熟早期为156.53 U/L,成熟中期上升到173.41 U/L,成熟末期再次降至153.28 U/L;ROC22在3个时期则基本维持在130 U/L,为3个品种(系)中最低。成熟早期+8叶鞘基部的PG含量较能代表3个品种(系)甘蔗的自然脱叶率。
2.4 蔗叶自然脱叶率与PG含量之间的关联度分析
运用灰色度关联法,以自然脱叶率为母序列,各部位所测的PG含量为子序列,对其关联度进行分析和排序。结果(表2)显示,关联系数最高的为+8叶片的PG含量,其次为+5叶鞘中部的PG含量,再次为+8叶鞘基部的PG含量;与自然脱叶率关联系数最低的为+5叶片。
表2 自然脱叶率与各部位PG含量之间的关联度
Table 2
因子Factor | 关联系数Correlation coefficient | 排序Ranking |
---|---|---|
叶片(+8)Leaf (+8) | 0.3833 | 1 |
叶鞘中部(+5)Leaf sheath central (+5) | 0.3802 | 2 |
叶鞘基部(+8)Leaf sheath base (+8) | 0.3577 | 3 |
叶鞘基部(+5)Leaf sheath base (+5) | 0.3248 | 4 |
叶鞘基部(+2)Leaf sheath base (+2) | 0.2998 | 5 |
叶片(+2)Leaf (+2) | 0.2936 | 6 |
叶鞘中部(+8)Leaf sheath central (+8) | 0.2881 | 7 |
叶鞘中部(+2)Leaf sheath central (+2) | 0.2880 | 8 |
叶片(+5)Leaf (+5) | 0.2520 | 9 |
3 讨论
植物器官的脱落是植物体适应外界环境的自然生理现象,同时受到多种因素如温度、水分、激素和酶类及相关基因的调控[12⇓-14]。脱落信号刺激离区后启动脱落进程,通过激活离层细胞后促使离层细胞解体并最终完成器官的脱落[15⇓-17]。有研究[18]指出,离区细胞大致可分为3种类型:第1种为离区细胞较周围细胞小但等轴;第2种为离区细胞较周围细胞小但呈椭圆或长方形;第3种为离区细胞与周围细胞大小相似。本试验结果表明,选取的3个甘蔗品种(系)其离区细胞特征较符合上述第1种类型,多为等轴细胞且较周围细胞小。试验中各品种(系)甘蔗+6、+7、+8叶离区细胞的特性及裂解情况与各品种(系)的实际脱落情况相符:LZ02-169在成熟早期即出现明显脱叶,其+8叶离区组织细胞裂解,出现明显间隙;ROC22脱叶不明显,但其叶鞘与茎秆出现倾角,其+8叶离区组织细胞出现部分裂解,但程度较LZ02-169弱;GT47几乎很难自动脱叶,叶鞘紧抱茎秆,其+8叶离区组织细胞裂解现象也不明显。
大量[19-20]证据表明,PG通过催化植物细胞壁中的果胶分解,在器官的脱落过程中发挥重要的作用。Jiang等[21]通过沉默番茄TAPGs基因,导致叶片的延迟脱落;Peng等[22]从荔枝的幼果离区中克隆得到的LcPG1基因其表达水平与幼果的脱落率呈显著正相关;Du等[23]研究发现,棉花叶片离层中GhPG的表达量在受到冠菌素和噻苯隆处理后明显上升;葛廷[24]发现柑橘CitPG34基因与其幼果的脱落存在相关性。本试验结果表明,成熟早期3个品种(系)甘蔗的+8叶离区细胞结构特点与其PG含量呈正相关,推断PG在催化蔗叶离区细胞的分解中发挥了重要作用;强脱叶性甘蔗品系LZ02-169在成熟期相对GT47和ROC22其PG含量均值均较高,在3个成熟时期中LZ02-169成熟早期的PG含量均值为最高;从灰色关联度分析结果来看,+8叶片中的PG含量与蔗叶的自然脱叶率相关性最高,其次为+5叶鞘中部,再次为+8叶鞘基部,而+5叶片中的PG含量与蔗叶的自然脱叶率相关性则最低。结合不同时期不同取材部位PG含量表现为LZ02-169>GT47>ROC22的情况,推断PG在蔗叶脱落早期即在关键部位开始发挥重要作用;加之PG的功能可能存在的多样性和复杂性,其除作用于器官脱落之外,还与多种生命进程有关,如器官的发育、生物和非生物胁迫反应等[25-26]。
4 结论
甘蔗成熟早期+8叶鞘基部的PG含量与3个品种(系)甘蔗对应叶位离区细胞的裂解程度及自然脱叶率相符,成熟早期+8叶鞘基部的PG含量可作为筛选甘蔗脱叶性状优良与否的参考。
参考文献
Molecular mechanisms controlling plant organ abscission
Four shades of detachment: regulation of floral organ abscission
The structural basis for exopolygalacturonase activity in a family 28 glycoside hydrolase
DOI:10.1016/j.jmb.2007.02.083
PMID:17397864
[本文引用: 1]
Family 28 glycoside hydrolases (polygalacturonases) are found in organisms across the plant, fungal and bacterial kingdoms, where they are central to diverse biological functions such as fruit ripening, biomass recycling and plant pathogenesis. The structures of several polygalacturonases have been reported; however, all of these enzymes utilize an endo-mode of digestion, which generates a spectrum of oligosaccharide products with varying degrees of polymerization. The structure of a complementary exo-acting polygalacturonase and an accompanying explanation of the molecular determinants for its specialized activity have been noticeably lacking. We present the structure of an exopolygalacturonase from Yersinia enterocolitica, YeGH28 in a native form (solved to 2.19 A resolution) and a digalacturonic acid product complex (solved to 2.10 A resolution). The activity of YeGH28 is due to inserted stretches of amino acid residues that transform the active site from the open-ended channel observed in the endopolygalacturonases to a closed pocket that restricts the enzyme to the exclusive attack of the non-reducing end of oligogalacturonide substrates. In addition, YeGH28 possesses a fused FN3 domain with unknown function, the first such structure described in pectin active enzymes.
The downregulation of PpPG21 and PpPG22 influences peach fruit texture and softening
The storage temperature affects flesh firmness and gene expression patterns of cell wall- modifying enzymes in stony hard peaches
Endo-1,4-β- glucanase gene expression and cell wall hydrolase activities during abscission in Valencia orange
Ultrastructural localization of polygalacturonase in ethylene-stimulated abscission of tomato pedicel explants
Re-evaluation of the ethylene-dependent and -independent pathways in the regulation of floral and organ abscission
DOI:10.1093/jxb/erz038
PMID:30726930
[本文引用: 1]
Abscission is a developmental process with important implications for agricultural practices. Ethylene has long been considered as a key regulator of the abscission process. The existence of an ethylene-independent abscission pathway, controlled by the complex of INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide and the HAESA (HAE) and HAESA-like2 (HSL2) kinases, has been proposed, based mainly on observations that organ abscission in ethylene-insensitive mutants was delayed but not inhibited. A recent review on plant organ abscission signaling highlighted the IDA-HAE-HSL2 components as the regulators of organ abscission, while the role of auxin and ethylene in this process was hardly addressed. After a careful analysis of the relevant abscission literature, we propose that the IDA-HAE-HSL2 pathway is essential for the final stages of organ abscission, while ethylene plays a major role in its initiation and progression. We discuss the view that the IDA-HAE-HSL2 pathway is ethylene independent, and present recent evidence showing that ethylene activates the IDA-HAE-HSL2 complex. We conclude that the ability of an organ to abscise is tightly linked to cell turgidity in the abscission zone, and suggest that lack of cell turgidity might contribute to the failure of floral organ abscission in the ida mutants.© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Elucidating mechanisms underlying organ abscission
Cutting loose. Abscission and dehiscence in Arabidopsis
DOI:10.1104/pp.126.2.494 PMID:11402180 [本文引用: 1]
龙眼果实脱落特性参数与果柄分离力的相关性分析
DOI:10.3969/j.issn.1000-2561.2021.10.032
[本文引用: 1]
海南反季节龙眼采前落果普遍发生,严重制约了反季节龙眼产业的发展。而果柄分离力可以反映果实离层活动的状况,成为果实脱落进程的重要指标,但未见在龙眼上使用的报道。本研究以DS2-1000 gf和DS2-5000 gf型推拉力仪检测果柄分离力,并分析果实脱落过程中各项生理特性参数,旨在弄清龙眼果实脱落过程中果柄分离力与果实碳水化合物、呼吸速率和离层细胞壁代谢酶活性的关系。数据表明反季节龙眼果实脱落过程中,果柄分离力的变化范围为0~3000 gf,且果柄分离力低于1000 gf会导致果实呈现脱落趋势;落果率与果柄分离力呈现显著负相关性(r=-0.984,P=0.000);果实总糖和淀粉含量与果柄分离力呈现显著正相关性,相关系数分别为0.942(P=0.005)和0.952(P=0.003);果柄呼吸耗氧速率与果柄分离力呈负相关性(r=-0.807,P=0.099);果柄离层纤维素酶和β-甘露聚糖酶活性也与果柄分离力呈显著分负相关性,相关系数分别为-0.936(P=0.019)和-0.954(P=0.002)。结果表明反季节龙眼果实脱落进程可用果柄分离力的变化体现,果实脱落进程伴随着果柄分离力的不断降低,与果柄细胞壁降解酶活性的增加呈线性关系;脱落的发生与碳水化合物含量关系密切,而高的果实呼吸消耗,可能加快果实脱落进程。
Abscission of flowers and floral parts
Silencing polygalacturonase expression inhibits tomato petiole abscission
A polygalacturonase gene clustered into clade E involved in lychee fruitlet abscission
The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton
/
〈 |
|
〉 |
