作物杂志,2025, 第1期: 133–138 doi: 10.16035/j.issn.1001-7283.2025.01.016

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

成熟期蔗叶离区细胞结构特点及PG含量变化分析

欧克纬(), 卢业飞, 农泽梅, 朱鹏锦, 庞新华, 宋奇琦, 吕平()   

  1. 广西壮族自治区亚热带作物研究所,530001,广西南宁
  • 收稿日期:2023-05-10 修回日期:2023-10-30 出版日期:2025-02-15 发布日期:2025-02-12
  • 通讯作者: 吕平,主要从事甘蔗遗传育种研究,E-mail:plvgx@126.com
  • 作者简介:欧克纬,主要从事作物遗传育种及栽培研究,E-mail:707008920@qq.com
  • 基金资助:
    广西自然科学基金(2023GXNSFAA026327);广西农科院科技发展基金项目(桂农科2022JM93);广西农业科学院基本科研业务专项项目(桂农科2023YM10);广西科技计划项目(桂科AA22117002-6);广西科技计划项目(桂科AA22117002-7)

Analysis of Cell Structure Characteristics and Polygalacturonase Content Changes in Sugarcane Leaves Abscission Zone at Maturity Stage

Ou Kewei(), Lu Yefei, Nong Zemei, Zhu Pengjin, Pang Xinhua, Song Qiqi, Lü Ping()   

  1. Guangxi Subtropical Crops Research Institute, Nanning 530001, Guangxi, China
  • Received:2023-05-10 Revised:2023-10-30 Online:2025-02-15 Published:2025-02-12

摘要:

为筛选脱叶性强的甘蔗优良品种(系),以脱叶性存在差异的3个甘蔗品种(系)的不同叶位叶片为材料,观察蔗叶离区细胞的结构,并测定蔗叶、叶鞘中部、叶鞘基部的多聚半乳糖醛酸酶(PG)含量。结果表明,易脱叶甘蔗的离区组织细胞分解程度最高;3个成熟时期易脱叶甘蔗的+5叶鞘基部、+8叶鞘基部的PG含量均显著高于难脱叶甘蔗。甘蔗成熟早期+8叶鞘基部的PG含量与对应叶位离区细胞的裂解程度呈正相关;灰色关联度分析结果显示,+8叶片、+5叶鞘中部以及+8叶鞘基部中PG的含量与蔗叶的自然脱叶率关联度较大,结合各个时期PG含量,测定成熟早期+8叶鞘基部的PG含量可为筛选脱叶性状优良的甘蔗品种提供参考。

关键词: 甘蔗, 脱叶率, 离区, 多聚半乳糖醛酸酶

Abstract:

In order to screen excellent sugarcane varieties with strong defoliation, the leaves at different positions of three sugarcane varieties (lines) with different defoliation were used as materials to observe the structure of detached cells of sugarcane leaves and determine the polygalacturoncase (PG) content in sugarcane leaves, middle leaf sheath and basal leaf sheath. The results showed that the decomposition degree of leaf sheath abscission tissue cells was the highest in easily defoliated sugarcane. The PG content in the basal part of +5 leaf sheath and +8 leaf sheath of easy-defoliation sugarcane were significantly higher than that of hard-defoliation sugarcane at three different mature stages. The PG content in the basal part of +8 leaf sheath at the early maturity stage of sugarcane was positively correlated with the cleavage degree of the cells in the corresponding leaf abscission zone. The results of grey correlation analysis showed that the content of PG in the +8 leaf, the middle of the +5 leaf sheath and the base of the +8 leaf sheath had a great correlation with the natural defoliation rate of sugarcane leaves. Combined with the measured PG content in each period, the PG content in the base of the +8 leaf sheath at the early maturity can provide reference for screening of sugarcane varieties with good defoliation traits.

Key words: Sugarcane, Defoliation rate, Abscission zone, Polygalacturonase

表1

3个甘蔗品种(系)的自然脱叶率表现

品种(系)
Variety (line)
脱叶率Defoliation rate
成熟早期Early mature stage 成熟中期Mid-mature stage 成熟后期Late mature stage
ROC22 8.98±0.02Bb 15.10±0.02Bb 33.24±0.03Bb
GT47 0.00±0.00Bb 0.00±0.00Cc 5.01±0.04Cc
LZ02-169 49.49±0.05Aa 58.67±0.03Aa 69.20±0.26Aa

图1

LZ02-169、ROC22和GT47的离区细胞形态 箭头标注为离区。

图2

成熟期不同甘蔗品种(系)多聚半乳糖醛酸酶含量的比较 (a):成熟早期;(b):成熟中期;(c):成熟后期。不同小写字母表示差异达5%的显著水平,不同大写字母表示差异达1%的显著水平。

表2

自然脱叶率与各部位PG含量之间的关联度

因子Factor 关联系数Correlation coefficient 排序Ranking
叶片(+8)Leaf (+8) 0.3833 1
叶鞘中部(+5)Leaf sheath central (+5) 0.3802 2
叶鞘基部(+8)Leaf sheath base (+8) 0.3577 3
叶鞘基部(+5)Leaf sheath base (+5) 0.3248 4
叶鞘基部(+2)Leaf sheath base (+2) 0.2998 5
叶片(+2)Leaf (+2) 0.2936 6
叶鞘中部(+8)Leaf sheath central (+8) 0.2881 7
叶鞘中部(+2)Leaf sheath central (+2) 0.2880 8
叶片(+5)Leaf (+5) 0.2520 9
[1] Nakano T, Ito Y. Molecular mechanisms controlling plant organ abscission. Plant Biotechnology, 2013, 30(3):209-216.
[2] Kim J. Four shades of detachment: regulation of floral organ abscission. Plant Signaling & Behavior, 2014, 9(11):e976154.
[3] Abbott D W, Boraston A B. The structural basis for exopolygalacturonase activity in a family 28 glycoside hydrolase. Journal of Molecular Biology, 2007, 368(5):1215-1222.
doi: 10.1016/j.jmb.2007.02.083 pmid: 17397864
[4] Qian M, Xu Z, Zhang Z H, et al. The downregulation of PpPG21 and PpPG22 influences peach fruit texture and softening. Planta, 2021, 254(2):22.
[5] Tatsuki M, Sawamura Y, Yaegaki H, et al. The storage temperature affects flesh firmness and gene expression patterns of cell wall- modifying enzymes in stony hard peaches. Postharvest Biology and Technology, 2021, 181:111658.
[6] 宋莉萍, 刘金辉, 郑殿峰, 等. 不同时期叶喷植物生长调节剂对大豆花荚脱落率及多聚半乳糖醛酸酶活性的影响. 植物生理学报, 2011, 47(4):356-362.
[7] 齐明芳, 徐杨, 李天来, 等. 与番茄花柄脱落相关的多聚半乳糖醛酸酶的分离纯化和特性. 植物生理学通讯, 2008, 247(3):404-408.
[8] Burns J K, Lewandowski D J, Nairn C J, et al. Endo-1,4-β- glucanase gene expression and cell wall hydrolase activities during abscission in Valencia orange. Physiology Plantarum, 1998, 102 (2):217-225.
[9] Qi M F, Tao X, Chen W Z, et al. Ultrastructural localization of polygalacturonase in ethylene-stimulated abscission of tomato pedicel explants. The Scientific World Journal, 2014, 2014:389896.
[10] 李思嘉. 温度影响棉花化学脱叶的生理机制及其应用研究. 扬州:扬州大学, 2020.
[11] 王雪. 观赏海棠果实脱落相关酶活测定及转录组分析. 秦皇岛:河北科技师范学院, 2021.
[12] 齐明芳, 许涛, 郭泳, 等. 园艺植物器官脱落研究进展. 沈阳农业大学学报, 2010, 41(6):643-648.
[13] Meir S, Philosoph-Hadas S, Riov J, et al. Re-evaluation of the ethylene-dependent and -independent pathways in the regulation of floral and organ abscission. Journal of Experimental Botany, 2019, 70(5):1461-1467.
doi: 10.1093/jxb/erz038 pmid: 30726930
[14] 张亚芬, 许大明, 蒋凯丽, 等. 百山祖常绿阔叶林凋落量的季节变化及其驱动因素. 浙江林业科技, 2021, 41(5):42-49.
[15] Estornell L H, Agusti J, Merelo P, et al. Elucidating mechanisms underlying organ abscission. Plant Science, 2013, 199:48-60.
[16] Patterson S E. Cutting loose. Abscission and dehiscence in Arabidopsis. Plant Physiology, 2001, 126(2):494-500.
doi: 10.1104/pp.126.2.494 pmid: 11402180
[17] 杨子琴, 李建国, 张蕾, 等. 龙眼果实脱落特性参数与果柄分离力的相关性分析. 热带作物学报, 2021, 42(10):2986-2992.
doi: 10.3969/j.issn.1000-2561.2021.10.032
[18] Van Doorn W G, Stead A D. Abscission of flowers and floral parts. Journal of Experimental Botany, 1997, 48(4):821-837.
[19] 葛廷, 黄雪, 谢让金. 多聚半乳糖醛酸基因在果树中的研究进展. 植物生理学报, 2019, 55(8):1075-1088.
[20] 王高奇. 乙烯依赖和非乙烯依赖的花器官脱落途径调控AtDOF4.7的研究. 北京: 中国农业大学, 2015.
[21] Jiang C Z, Lu F, Imsabai W, et al. Silencing polygalacturonase expression inhibits tomato petiole abscission. Journal of Experimental Botany, 2008, 59(4):973.
[22] Peng G, Wu J Y, Lu W J, et al. A polygalacturonase gene clustered into clade E involved in lychee fruitlet abscission. Scientia Horticulturae, 2013, 150:244-250.
[23] Du M W, Li Y, Tian X L, et al. The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton. PLoS ONE, 2014, 9(5):e97652.
[24] 葛廷. 柑橘PG基因的鉴定及其与幼果脱落的相关性分析. 重庆:西南大学, 2020.
[25] 梅眉. 甜瓜多聚半乳糖醛酸酶(PG)基因克隆及其反义序列植物表达载体构建. 兰州:甘肃农业大学, 2006.
[26] 曹永润. 水稻叶尖枯基因OsPG1的克隆与功能验证. 郑州:河南农业大学, 2018.
[1] 安东升, 赵宝山, 刘洋, 严程明, 孔冉, 黄文甫, 苏俊波. 甘蔗新品种的光合表型与叶片表征对干旱胁迫及复水的响应[J]. 作物杂志, 2025, (1): 208–213
[2] 杨丽佩, 韩世健, 韦本辉, 李志刚, 黎瑞玲, 朱水芳, 肖纪铭, 李素丽. 有机肥与粉垄互作对甘蔗光合生理性及组织细胞结构的影响[J]. 作物杂志, 2024, (1): 148–156
[3] 周慧文, 闫海锋, 丘立杭, 范业赓, 周忠凤, 罗霆, 邓宇驰, 张小秋, 梁永检, 陈荣发, 吴建明. 无人机作业参数对伸长期甘蔗雾滴沉积分布的影响研究[J]. 作物杂志, 2023, (6): 121–126
[4] 吴雪琴, 刘开宇, 韩春华, 阿力木江·克来木, 崔延南, 李江余, 马春梅, 仲文帆, 赵强. 14%噻苯·敌草隆对棉花脱叶催熟及产量和品质的影响[J]. 作物杂志, 2023, (5): 164–169
[5] 梁永检, 吴文志, 施泽升, 唐利球, 宋修鹏, 颜梅新, 郭强, 秦昌鲜, 何洪良, 张小秋. 基于无人机RGB遥感的甘蔗株高估测[J]. 作物杂志, 2023, (1): 226–232
[6] 苏利荣, 谭裕模, 秦芳, 李琴, 曾成城, 李忠义, 韦彩会, 董文斌, 梁俊, 何铁光. 绿豆/黑豆压青还田下减量施肥对宿根甘蔗产量和主要农艺性状的影响[J]. 作物杂志, 2022, (6): 105–110
[7] 闫鹏, 董学瑞, 卢霖, 房孟颖, 李毅杰, 王维赞, 董志强. NAA/KT浸种对新植蔗产量、根系发育及抗倒伏能力的影响[J]. 作物杂志, 2022, (4): 99–106
[8] 谭秦亮, 程琴, 潘成列, 朱鹏锦, 李佳慧, 宋奇琦, 农泽梅, 周全光, 庞新华, 吕平. 干旱胁迫对甘蔗新品种桂热2号生理指标的影响[J]. 作物杂志, 2022, (3): 161–167
[9] 程琴, 谭秦亮, 李佳慧, 朱鹏锦, 周全光, 欧克纬, 卢业飞, 吕平, 庞新华. 不同宿根年限甘蔗品种内源激素及酶活性分析[J]. 作物杂志, 2022, (3): 181–186
[10] 刘丽敏, 刘红坚, 李傲梅, 何为中. 光温处理对甘蔗试管苗光合自养生根的影响[J]. 作物杂志, 2022, (2): 153–157
[11] 罗含敏, 熊发前, 丘立杭, 刘菁, 段维兴, 高轶静, 覃夏燕, 吴建明, 李杨瑞, 刘俊仙. 性状相关的分子标记在甘蔗分子育种中的应用研究[J]. 作物杂志, 2022, (2): 35–43
[12] 李佳慧, 程琴, 欧克纬, 谭秦亮, 庞新华, 周全光, 吕平, 宋奇琦, 唐毓玮, 朱鹏锦. 不同蔗区甘蔗品种(系)分蘖性状比较及其对产量和产量构成因子的影响[J]. 作物杂志, 2021, (5): 79–86
[13] 郭强, 马文清, 秦昌鲜, 施泽升, 彭崇, 闭德金, 何洪良, 梁永检, 唐利球. 甘蔗新品系的DTOPSIS法综合评价[J]. 作物杂志, 2021, (4): 32–37
[14] 范业赓, 陈荣发, 闫海锋, 周慧文, 翁梦苓, 黄杏, 罗霆, 周忠凤, 丘立杭, 吴建明. 甘蔗轮作青饲玉米和花生对甘蔗生长和土壤性状的影响[J]. 作物杂志, 2021, (1): 104–111
[15] 徐林, 吴凯朝, 庞天, 邓智年, 张荣华, 黄成丰, 黄海荣, 李毅杰, 刘晓燕, 覃文宪, 王维赞. 促根剂对甘蔗单芽种茎的生长及产量影响[J]. 作物杂志, 2020, (6): 132–136
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!