作物杂志, 2025, 41(4): 126-134 doi: 10.16035/j.issn.1001-7283.2025.04.016

遗传育种·种质资源·生物技术

两个棉花品种幼苗涝渍及恢复期耐涝机理初探

刘宣宣,1, 郭瑞士2, 董蒙蒙1, 朱柯颖1, 朱晓品1, 王丽1, 王宁,2

1河南师范大学生命科学学院,453007,河南新乡

2中国农业科学院棉花研究所/棉花生物育种与综合利用全国重点实验室,455000,河南安阳

Preliminary Study on the Waterlogging Tolerance Mechanisms in Two Cotton Varieties at Seedling Stage during Waterlogging Stress and Recovery Period

Liu Xuanxuan,1, Guo Ruishi2, Dong Mengmeng1, Zhu Keying1, Zhu Xiaopin1, Wang Li1, Wang Ning,2

1College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China

2Institute of Cotton Research, Chinese Academy of Agricultural Sciences / State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Anyang 455000, Henan, China

通讯作者: 王宁,主要从事棉花种质资源创制、新品种选育及其抗逆机理研究,E-mail:wangning_4306202@163.com

收稿日期: 2025-02-28   修回日期: 2025-04-3   网络出版日期: 2025-05-23

基金资助: 智力援疆创新拓展人才计划—援疆小组团(30000190)
棉花生物育种与综合利用全国重点实验室开放课题基金(CB2023A07)
大学生创新创业训练计划项目(202410476035)

Received: 2025-02-28   Revised: 2025-04-3   Online: 2025-05-23

作者简介 About authors

刘宣宣,主要从事作物逆境机理研究,E-mail:liuxuanxuan0127@126.com

摘要

为探究棉花幼苗期耐涝生理响应机理,以耐涝品种中棉9001(ZM9001)和敏涝品种中4847(Z4847)为材料,比较2个品种涝渍及恢复期生理响应的动态变化。结果表明,涝渍处理4 d(恢复0 h)及恢复期(恢复24和72 h),ZM9001的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均显著高于Z4847,叶绿素荧光诱导动力曲线(OJIP曲线)的J点和I点均低于Z4847,脱落酸(ABA)含量显著低于Z4847。涝渍处理4 d时,2个品种间超氧阴离子(O2-. )、丙二醛(MDA)含量和总抗氧化能力无显著差异;涝渍恢复72 h时,ZM9001的O2-. 和MDA含量均显著低于Z4847,抗氧化能力显著高于Z4847。涝渍处理4 d及恢复72 h时,ZM9001的过氧化氢(H2O2)含量显著高于Z4847。涝渍处理4 d及恢复期,ZM9001的过氧化氢酶(CAT)活性均显著高于Z4847。涝渍恢复72 h时,ZM9001的超氧化物歧化酶(SOD)活性显著高于Z4847,且不同组织中类黄酮含量均显著高于Z4847。综上,ZM9001较Z4847在涝渍及恢复期能保持较低的ABA含量和较高的GsTr,同时在恢复期通过增强抗氧化系统活性高效清除活性氧(ROS),使得ZM9001光合作用更强,因此耐涝性更强。

关键词: 棉花; 涝渍胁迫; 涝渍恢复期; 光合作用; 活性氧; 抗氧化酶

Abstract

In order to investigate physiological response mechanisms of waterlogging tolerance in cotton seedlings, the waterlogging tolerant variety Zhongmian 9001 (ZM9001) and the waterlogging sensitive variety Zhong 4847 (Z4847) were used as experimental materials to compare the dynamic physiological responses of the two varieties to waterlogging stress and post-waterlogging recovery. The results showed that under waterlogging for 4 d (recovery 0 h) and post-waterlogging recovery stages (24 and 72 h), ZM9001 exhibited significantly higher net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr), but lower J-point and I-point values of the chlorophyll fluorescence induction kinetic curve (OJIP curve) compared to Z4847. The abscisic acid (ABA) content was significantly lower in ZM9001 than that in Z4847. At four days of waterlogging treatment, there was no significant difference in the contents of superoxide anion (O2-. ), malondialdehyde (MDA), and total antioxidant capacities between the two varieties. At 72 hours of waterlogging recovery, the content of O2-. and MDA of ZM9001 were significantly lower than those of Z4847, and its antioxidant capacity was significantly higher than that of Z4847. The hydrogen peroxide (H2O2) content was higher in ZM9001 than that in Z4847 under waterlogging for 4 d and during 72 h of recovery. At four days after waterlogging and the recovery stages, the catalase (CAT) activity in ZM9001 was significantly higher than that in Z4847. At 72 hours of post-waterlogging recovery, ZM9001 showed higher superoxide dismutase (SOD) activity and higher flavonoid content in different organs than Z4847. In summary, compared to Z4847, ZM9001 maintained lower ABA content and higher Gs and Tr during waterlogging and recovery periods, while efficiently scavenging reactive oxygen species (ROS) by enhancing antioxidant system activity during recovery stage. These enables ZM9001 to sustain superior photosynthetic capacity and waterlogging tolerance.

Keywords: Cotton; Waterlogging stress; Waterlogging recovery period; Photosynthesis; Reactive oxygen; Antioxidant enzyme

PDF (614KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘宣宣, 郭瑞士, 董蒙蒙, 朱柯颖, 朱晓品, 王丽, 王宁. 两个棉花品种幼苗涝渍及恢复期耐涝机理初探. 作物杂志, 2025, 41(4): 126-134 doi:10.16035/j.issn.1001-7283.2025.04.016

Liu Xuanxuan, Guo Ruishi, Dong Mengmeng, Zhu Keying, Zhu Xiaopin, Wang Li, Wang Ning. Preliminary Study on the Waterlogging Tolerance Mechanisms in Two Cotton Varieties at Seedling Stage during Waterlogging Stress and Recovery Period. Crops, 2025, 41(4): 126-134 doi:10.16035/j.issn.1001-7283.2025.04.016

近年来,随着全球气候变暖,洪涝等自然灾害变得愈加频繁且不可预测,对农业生产构成严重威胁[1]。据统计,世界上超过16%的耕地受洪涝灾害影响[1],作物产量平均下降32.9%[2]。我国是世界上洪涝灾害最严重的国家之一,约2/3的国土面临着洪涝灾害的威胁[3]。涝渍造成的植物根部缺氧是影响植物生长发育的关键因素之一[4]。涝渍发生时,由于根部缺氧,植物只能通过无氧呼吸获得能量,但是消耗相同的底物,无氧代谢产能只达到有氧代谢的5.6%[5],能量供应不足,许多生理过程受到抑制,例如根系能量缺乏会显著降低水力传导率、光合速率、水分和矿物质养分吸收效率[6]。此外,涝渍胁迫下,植物体内活性氧(ROS)如过氧化氢(H2O2)和超氧阴离子(O2-. )大量积累,造成叶绿素含量减少、叶绿体损伤、光合电子传递链异常,从而导致光合速率下降,不同植物下降幅度在10%~90%[6-7]。植物可通过一系列机制来适应涝渍胁迫,以减少涝渍胁迫下的植株损伤。抗氧化酶系统由超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)等组成,可以有效抵抗ROS大量积累,维持植株新陈代谢的稳定[8]。Wang等[9]研究表明,涝渍胁迫下玉米通过增强POD、CAT和APX活性增加ROS清除能力。此外,非酶抗氧化物质如类黄酮在ROS的清除中发挥重要作用[10]。脱落酸(ABA)作为一种逆境激素,在调节植物生长发育,尤其是非生物胁迫下的多个生理过程中具有重要作用[11]。Cisse等[12]认为外源施加ABA可通过增强抗氧化系统来提高植物耐涝性。

在涝渍胁迫后的恢复阶段,植物同样会遭遇多重胁迫[13-14]。当洪水消退后,环境很快恢复到正常的大气和光照条件,对已经适应低氧和弱光环境的植物组织造成严重损害。当O2重新进入植物组织时,线粒体中迅速恢复的呼吸能力会导致线粒体电子传递链中的电子泄漏,以及线粒体基质中的质子泄漏,从而导致大量产生ROS[13-15]。强光胁迫下,植物叶绿体中也会产生较多的ROS,光反应系统被破坏,植物受到光抑制[13-15]。涝渍胁迫后植物根功能严重受损,导水率显著降低,在水分退去后,蒸腾速率和水分吸收之间不能保持平衡,导致叶片掉落、枯萎、相对含水量下降[13-15]。此外,恢复期的植物还必须应对涝渍胁迫所造成毒害物质的积累和营养的缺乏[13]。面对上述胁迫,植物是否能修复涝渍和复氧与强光所造成的损害,并重新激活继续生长的生理过程,决定植物是否存活。

棉花(Gossypium hirsutum L.)是世界上重要的纺织作物,同时也是对涝渍较为敏感的作物,间接性涝害会导致棉花减产约38%[16]。涝渍胁迫下,棉花植株ROS产生与清除失衡,生物膜脂质过氧化,丙二醛(MDA)大量积累,光合性能降低,最终导致品质和产量显著降低[17]。棉花主要通过3种机制来适应涝渍胁迫,即逃避适应、静止适应和自我调节补偿[1]。目前,已报道的棉花耐涝性研究大多为棉花涝渍期间形态、生理、代谢方面的变化,对于涝渍恢复期的研究十分有限。因此,本研究以耐涝性不同的棉花品种中棉9001(ZM9001)和中4847(Z4847)为试验材料,模拟涝渍及恢复期环境,比较2个棉花品种在涝渍胁迫及恢复期生理生化变化,旨在为棉花耐涝性研究提供新视角和思路,为探明棉花涝渍及恢复期耐涝机理奠定理论基础。

1 材料与方法

1.1 试验材料

于2021-2022年在河南省安阳市中国农业科学院棉花研究所进行田间试验,筛选耐涝性差异较大的2个棉花品种,即耐涝性较强的ZM9001及耐涝性较差的Z4847。选取颗粒饱满均匀的种子,27 ℃清水恒温浸种12 h,挑选露白一致的种子种入10 cm×10 cm的育苗钵中,培育基质采用营养土与蛭石1:1均匀混合而成,加水控制湿度在15%左右,覆膜避光处理,置于光照/黑暗14 h/10 h,温度为(28±2) ℃/(20±2) ℃、湿度为80%的光照培养室内,3 d后进行棉花脱壳,用去离子水浇灌直至2片真叶展开,改用Hoagland营养液浇灌。

1.2 试验设计

本试验采用双套盆法模拟自然状态下的涝渍胁迫,将生长至4叶期的2个棉花品种幼苗连同育苗钵放入塑料大盆(长46 cm×宽35 cm×高12 cm)中,注水至水面高于土面3 cm;经过前期预试验研究,涝渍处理1~3 d时2个品种间差异不明显,涝渍处理4 d时2个品种的耐涝表型差异显著,因此选取4 d作为涝渍处理时间。涝渍处理4 d后将幼苗去水;对照组(CK)无涝渍胁迫。涝渍胁迫4 d后恢复0(R0)、24(R1)和72 h(R2)分别收集对照组和涝渍处理组棉花幼苗成熟的功能叶片(倒3叶片)进行生理指标的测定。

1.3 测定指标与方法

1.3.1 净光合速率及气体交换参数

在涝渍胁迫解除后0、24和72 h,采用LI-6800便携式光合仪分别测定涝渍处理组与对照组幼苗的净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和胞间CO2浓度(Ci)。测试时,温室的环境温度为28 ℃~30 ℃,采用红蓝光源,光量子通量密度设定为800 μmol/(m2·s),空气相对湿度维持在55%,室内的CO2浓度设定为400 μmol/mol。测量叶片选取倒3叶片,每个处理均设置3次生物重复。

1.3.2 叶绿素荧光参数

采用基于CEF技术的Handy-PEA连续激发式荧光仪(Hansatech,英国)测定叶绿素荧光参数值。具体方法为叶片经30 min暗适应后,由Handy-PEA提供饱和光[3000 μmol/(m2·s)],作用时间为1 s,获取叶绿素荧光诱导动力曲线(OJIP曲线)以及雷达图。

1.3.3 生理指标

取0.1 g鲜叶片剪碎,放入事先预冷的研钵内,研磨成粉末进行测定。分别采用Solarbio公司的编号为BC3590、BC1290、BC0020和BC1330的试剂盒测定O2-. 、H2O2、MDA和类黄酮含量,分别采用Solarbio公司的编号为BC1315、BC5165、BC0095、BC0205、BC0225和BC1165的试剂盒测定抗氧化能力及SOD、POD、CAT、APX和GR活性,采用mlbio公司的编号为ml077235的试剂盒测定ABA含量,各指标测定均设置3次重复。

1.4 数据处理

采用Microsoft Office Excel 2021统计数据,采用IBM SPSS Statistics 21对数据进行单因素方差分析,采用字母标注法表示显著性差异(P<0.05)。

2 结果与分析

2.1 涝渍胁迫及恢复期棉花幼苗叶片Pn及气体交换参数分析

耐涝品种ZM9001与敏感品种Z4847的Pn在CK处理中无显著差异,R0处理时,ZM9001与Z4847的Pn分别较CK降低了36.3%和99.5%(图1a),表明涝渍胁迫下,2个品种的光合作用均受到抑制,但Z4847受抑制程度更大,其光合作用几乎完全丧失。R1和R2处理时,ZM9001的Pn均显著高于Z4847,其中,R2处理时,ZM9001的Pn是Z4847的4.3倍,可见ZM9001的Pn在涝渍胁迫解除后仅在短时间内受到抑制,随后很快恢复,表明ZM9001耐涝性较强。

图1

图1   涝渍胁迫及恢复期棉花幼苗叶片Pn及气体交换参数

不同小写字母表示处理间差异显著(P < 0.05)。下同。

Fig.1   Pn and gas exchange parameters of cotton seedling leaves during waterlogging stress and the recovery period

Different lowercase letters indicate the significant differences among treatments (P < 0.05). The same below.


CK处理中,ZM9001的Tr显著高于Z4847,R0处理时,ZM9001与Z4847的Tr分别较CK降低了60.9%和95.5%;R1和R2处理时,ZM9001的Tr均显著高于Z4847,分别为Z4847的31倍和2.8倍,可见涝渍胁迫及恢复期ZM9001均保持了较高的Tr图1b)。

ZM9001和Z4847的Ci在CK处理中无显著差异,R0处理时,ZM9001和Z4847均显著高于CK,且品种间无显著差异;R1处理时,2个品种与R0处理均无显著差异;R2处理时,ZM9001与R0处理仍无显著差异,而Z4847降低27.5%(图1c)。在涝渍胁迫及恢复期,2个品种Ci波动幅度较小,表明Ci并非是限制光合作用的主要因素。

CK处理中,ZM9001的Gs显著高于Z4847,R0处理时ZM9001和Z4847的Gs较CK分别下降38.5%和90.0%,且ZM9001的Gs是Z4847的8倍。R1和R2处理时,ZM9001的Gs均显著高于Z4847,分别为Z4847的3倍和3.5倍(图1d)。Gs的变化幅度与Pn相一致,可见涝渍胁迫及恢复期Gs下降是植株光合速率下降的重要原因。

2.2 涝渍胁迫及恢复期棉花幼苗叶片叶绿素荧光参数分析

ZM9001和Z4847的OJIP曲线在CK中几乎完全重合(图2),此时2个品种的电子传递速率均正常,R0处理时,ZM9001的J点和I点均低于CK,且光系统Ⅱ受体电子传递体PQ库容量(Sm)大于CK,而Z4847的J点和I点均高于CK,Sm小于CK,表明其电子传递受阻,可能与涝渍胁迫导致的PSⅡ供体侧受损有关。R1和R2处理时,ZM9001的J点和I点均低于Z4847,且Sm大于Z4847,可见ZM9001电子传递速率高于Z4847。

图2

图2   涝渍胁迫及恢复期棉花幼苗叶绿素荧光诱导动力学曲线

Fig.2   Kinetics curve of chlorophyll fluorescence induction in cotton seedlings during waterlogging stress and the recovery period


CK处理中,2个品种大多数荧光参数差别较小(图3a)。R0处理时,Z4847的吸收光能为基础的性能指数(PIABS)、吸收的能量能传递到电子链末端的量子产额(φRo)、用于电子传递的量子产额(φEo)、捕获的光能用于QA下游电子传递的量子产额(ψEo)、最大光化学效率(φPo)和用于电子传递的能量(ETo/RC)均小于ZM9001,而用于热耗散的能量(DIo/RC)和天线色素吸收的能量(ABS/RC)大于ZM9001(图3b)。R1处理时,Z4847的PIABSφRoφEoψEoφPo、ETo/RC和电子传递的能量能传递到电子链末端的推动力(DFTotal)均小于ZM9001,DIo/RC和ABS/RC大于ZM9001(图3c)。以上表明涝渍胁迫及恢复24 h时,ZM9001将更多的能量用于电子传递过程,而Z4847将更多的能量用于热耗散。R2处理时,2个品种雷达图趋势基本一致,而Z4847的DIo/RC远大于ZM9001,而DFTotal远小于ZM9001(图3d),表明随着时间的延长,Z4847光合系统也在逐渐恢复,但相比于ZM9001,其恢复较慢,用于热耗散的能量依然较大。

图3

图3   涝渍胁迫及恢复期棉花幼苗叶绿素荧光参数雷达图

Fig.3   Chlorophyll fluorescence radargram of cotton seedlings during waterlogging stress and the recovery period


2.3 棉花幼苗涝渍胁迫及恢复期O2-. 、H2O2和MDA含量变化

ZM9001和Z4847的O2-. 含量在CK中无显著差异,此时O2-. 的产生与清除处于平衡状态(图4a)。R0处理时,2个品种均较CK显著升高,且2个品种间无显著差异。R1和R2处理时,ZM9001和Z4847的O2-. 含量均较R0处理显著增加,但ZM9001增幅小于Z4847,ZM9001分别增加33.5%和43.8%,Z4847分别增加65.2%和254.8%。

图4

图4   涝渍胁迫及恢复期棉花幼苗O2-. 、H2O2和MDA含量

Fig.4   O2-. , H2O2 and MDA content of cotton seedlings during waterlogging stress and the recovery period


CK处理中,ZM9001的H2O2含量显著高于Z4847,R0处理时,ZM9001的H2O2含量较CK显著增加,Z4847与CK处理无显著差异,R1处理时,2个品种H2O2含量无显著差异,R2处理时,ZM9001的H2O2含量显著高于Z4847(图4b)。

ZM9001和Z4847的MDA含量在CK处理中无显著差异,R0处理时,2个品种均较CK处理显著增加,但品种间无显著差异(图4c);R2处理时,2个品种MDA含量均较R0处理显著降低,但ZM9001降幅大于Z4847。涝渍恢复阶段,ZM9001的MDA含量均显著低于Z4847,表明在胁迫条件下,ZM9001的质膜过氧化损伤程度更低。

2.4 棉花幼苗涝渍胁迫及恢复期抗氧化能力分析

ZM9001和Z4847的总抗氧化能力在CK处理中无显著差异,R0处理时2个品种较CK显著下降,但品种间无显著差异;R1和R2处理时,ZM9001总抗氧化能力均显著高于Z4847,表明主要在涝渍恢复期时ZM9001较Z4847具有更强的抗氧化能力,这与ZM9001此时较低的O2-. 和MDA含量相一致(图5a)。

图5

图5   涝渍胁迫及恢复期棉花幼苗总抗氧化能力和抗氧化酶活性

Fig.5   Total antioxidant capacity and antioxidant enzyme activity of cotton seedlings during waterlogging stress and the recovery period


ZM9001和Z4847的SOD活性在CK中无显著差异,R0处理时,2个品种SOD活性与CK处理均无显著差异(图5b)。R1处理时,2个品种SOD活性较R0处理均显著增加,但品种间无显著差异;R2处理时,2个品种SOD活性继续增加,且ZM9001显著高于Z4847,表明SOD主要在涝渍胁迫恢复期发挥作用,且随着时间的延长,ZM9001的SOD活性增加更明显。

CK处理中,ZM9001的POD活性显著低于Z4847;R0处理时,ZM9001的POD活性显著高于Z4847;R1和R2处理时,ZM9001的POD活性均显著低于Z4847(图5c)。

CK处理中,ZM9001的CAT活性显著低于Z4847;R0处理时,ZM9001的CAT活性较CK显著增加,而Z4847与CK无显著差异。R0、R1和R2处理时,ZM9001的CAT活性均显著高于Z4847,尤其恢复72 h时,ZM9001的CAT活性达Z4847的2倍,表明涝渍胁迫及恢复期ZM9001较Z4847均具有更高的CAT活性(图5d)。

ZM9001和Z4847的APX活性在CK中无显著差异;R0处理时,ZM9001的APX活性显著低于Z4847;R1处理时,ZM9001显著高于Z4847;R2处理时,ZM9001显著低于Z4847(图5e)。

CK处理中,ZM9001的GR活性显著低于Z4847;R0处理时,ZM9001显著高于Z4847;R1和R2处理时,ZM9001均显著低于Z4847(图5f)。

2.5 棉花幼苗涝渍胁迫及恢复期类黄酮和ABA含量变化

在根部,CK处理中ZM9001的类黄酮含量显著高于Z4847,在茎和叶片中,ZM9001和Z4847的类黄酮含量在CK中均无显著差异(图6a)。R2处理时,ZM9001中3个组织部位的类黄酮含量均显著高于Z4847,可见ZM9001在胁迫解除后能保持较高的类黄酮水平。

图6

图6   涝渍胁迫及恢复期棉花幼苗类黄酮和ABA含量

Fig.6   Flavonoid and ABA contents of cotton seedlings during waterlogging stress and the recovery period


CK处理中,ZM9001的ABA含量显著低于Z4847,R0处理时,2个品种较CK处理均显著增加,但ZM9001的ABA含量仍显著低于Z4847。R1处理ZM9001较R0处理下降41.6%,而Z4847与R0处理无显著差异;R2处理2品种均较R0处理显著下降,但ZM9001仍显著低于Z4847,仅为Z4847的1/2,表明涝渍胁迫及恢复期ZM9001较Z4847始终保持较低的ABA水平(图6b)。

3 讨论

随着全球气候变暖,洪涝灾害变得越来越频繁。涝渍对植物的伤害主要分为2个阶段,即涝渍胁迫阶段和涝后恢复阶段[13]。涝渍胁迫阶段,ROS大量积累,植物光合能力显著下降,严重时导致植物死亡;涝渍胁迫后的恢复阶段,植物面临着更大的挑战,如光抑制、复氧损伤、组织衰老等。本研究以耐涝棉花品种ZM9001和涝渍敏感品种Z4847为试验材料,模拟涝渍胁迫的自然状况,通过比较2个品种的光合能力、Gs、叶绿素荧光参数、ROS含量及抗氧化能力,初步解析棉花在涝渍及恢复期的耐涝生理机制。

3.1 涝渍胁迫及恢复期棉花幼苗光合能力及ABA含量变化

洪涝灾害通常会导致植物光合作用下降[18]。据Niu等[19]研究,耐涝番茄和涝渍敏感番茄的Pn在水淹处理下比对照组分别降低42.2%和50.8%。本研究中,R0处理时,ZM9001与Z4847的Pn较CK分别降低36.3%和99.5%,表明涝渍胁迫下ZM9001光合能力强于Z4847。Ge等[20]研究发现,涝渍胁迫后恢复的1、3、5 d,葡萄的Pn均为负值,且均显著低于对照组。本研究中,R1和R2处理时,ZM9001与Z4847的Pn继续受到抑制,但ZM9001显著高于Z4847,其中R2处理时,ZM9001的Pn是Z4847的4.3倍,表明涝后恢复期ZM9001较Z4847能更快地从涝渍胁迫损害中恢复过来。Pn的下降可能由气孔和非气孔限制所致[21]。研究[22-23]表明,涝渍胁迫下,ABA介导保卫细胞膨压降低,引起气孔迅速闭合,从而导致植物Pn下降,此时Pn的下降可归因于气孔限制。本研究中,涝渍处理4 d及涝渍恢复期,ZM9001的ABA含量均显著低于Z4847,而GsTr均显著高于Z4847。因此,在涝渍及恢复期,ZM9001较Z4847保持较低的ABA水平和较高的GsTr可能是其具有较强的光合能力的原因之一。此外,Pn的降低也可归因于非气孔限制。涝渍胁迫下,这种非气孔限制可能与光抑制有关,即涝渍胁迫后的恢复期,强光照射会造成植株光合氧化还原信号通路的不平衡和PSII损伤修复的抑制,从而阻碍光合功能的恢复[14,24]

PSⅡ反应中心是光能转换和利用的主要场所,是涝渍胁迫下光合作用损伤的主要部位[25]。OJIP曲线及其参数能够反映原初光化学反应及电子传递的状态[26]。Yeung等[27]发现,在涝后恢复的第3天,耐涝型拟南芥的φPo高于敏感型拟南芥。本研究中,涝渍处理4 d及涝渍恢复期,Z4847的OJIP曲线J和I点均高于ZM9001,Sm均小于ZM9001,表明Z4847的PSⅡ损伤和电子传递链受阻程度较ZM9001更大。涝渍处理4 d时,Z4847的φEoφPo和ETo/RC均低于ZM9001,但DIo/RC高于ZM9001,表明在涝渍胁迫下,相比于ZM9001,Z4847电子传递受阻较严重,用于电子传递的能量较少,将更多的能量用于热耗散。涝渍恢复24和72 h时,Z4847的DFTotal低于ZM9001,而DIo/RC高于ZM9001,表明涝渍恢复期,相比于ZM9001,Z4847电子传递依然受阻,用于热耗散的能量较多。综上,涝渍胁迫及恢复期ZM9001较Z4847始终能保持较低的ABA水平,故具有较高的GsTr同时PSⅡ损伤更小,电子传递链恢复更快,因此具有更强的光合能力,从而提高了耐涝性。

3.2 涝渍胁迫及恢复期棉花幼苗ROS含量、抗氧化酶活性及类黄酮含量变化

涝渍胁迫促进植物ROS的积累,但ROS过度积累会导致膜损伤和细胞死亡,维持细胞内ROS产生和清除之间的平衡对植物在涝害中保持生存至关重要[28]。过量的ROS会引起膜脂质过氧化分解,此过程伴随着MDA的产生,因此,MDA含量可用于评估脂质过氧化状态及反映植物损伤程度[29]。本研究中,R0处理时ZM9001和Z4847的O2-. 和MDA含量均较CK显著上升,而品种间无显著差异,表明在涝渍胁迫期间低氧和黑暗环境下,ZM9001较Z4847的强耐涝性并非体现在平衡ROS产生和清除上。此现象也发生在其他作物中,Niu等[19]研究发现,涝渍处理2 d时,耐涝番茄品种与涝渍敏感番茄品种的O2-. 含量均较对照组显著上升,但品种间无显著差异;Yeung等[27]研究表明,对拟南芥涝渍处理5 d时,耐涝品种与涝渍敏感品种的MDA含量无显著差异。此外,涝渍处理4 d时,ZM9001的H2O2含量显著高于Z4847,而二者的质膜氧化损伤程度无显著差别,推测此时H2O2可能主要作为信号物质调节抗氧化系统活性[19,30]。相比于涝渍期间低氧和黑暗环境,涝渍恢复期的复氧和强光更容易导致植物体内ROS大量产生[15]。Zhang等[31]研究发现,涝后恢复期的杜鹃花叶片中H2O2大量积累。相关研究报道,在涝后恢复的复氧条件下检测到拟南芥[27]和大豆[32]幼苗中MDA含量较对照组增加。本研究中,涝渍恢复期,ZM9001和Z4847的O2-. 和H2O2含量均显著高于涝渍处理,其中恢复72 h时,ZM9001的O2-. 含量远低于Z4847,H2O2含量显著高于Z4847,但ZM9001的MDA含量在涝渍恢复期均显著低于Z4847,表明在涝渍恢复期ZM9001较Z4847能更有效地抑制O2-. 的积累,而较高的H2O2并未引起质膜严重损伤,H2O2可能作为信号分子调节抗氧化系统活性。因此,在涝渍恢复期的复氧和强光条件下,ZM9001较Z4847能更有效地抑制ROS的积累可能是其具有更强耐涝性的原因之一。

植物通过调节抗氧化酶活性和非酶抗氧化剂含量动态地维持ROS平衡,减少涝渍胁迫下的氧化损伤程度[8]。SOD可将O2-. 催化为O2和H2O2,在所有好氧生物中起着防御氧化应激的中心作用[8]。H2O2的清除由POD、CAT、APX、GR等酶完成[8]。CAT和POD可以直接分解H2O2。GR可以将氧化型谷胱甘肽转化为还原型谷胱甘肽,后者可以直接还原ROS[33]。此外,GR还可以和APX共同参与ASA- GSH循环途径,降低H2O2含量[34]。类黄酮作为酚类化合物的一种,可以通过多种机制清除ROS[35]。本研究中,涝渍恢复期,ZM9001的总抗氧化能力、SOD和CAT活性、类黄酮含量均显著高于Z4847,表明ZM9001较Z4847能更高效地清除涝渍恢复期的ROS,这与ZM9001在涝渍恢复期较低的O2-. 水平相一致。研究发现其他植物如菊花[36]、辣椒[37]和杜鹃[31]的耐涝性品种在涝渍恢复期也具有较高的SOD、CAT活性和类黄酮含量,增强的抗氧化系统能更有效降低ROS对细胞的伤害,提高植物在涝渍胁迫恢复中的生存能力。综上,ZM9001在涝渍恢复期较Z4847具有更强的抗氧化能力,能更有效地抑制ROS的积累,这是其通过增加SOD和CAT活性及类黄酮含量实现的,因而耐涝性更强。

4 结论

通过比较基因型不同的棉花在涝渍及恢复期的生理生化变化,发现耐涝品种ZM9001在涝渍及恢复期的ABA含量较敏感品种Z4847更低,能够保持较高的Gs,同时在涝渍恢复期通过增强抗氧化系统活性高效清除ROS,减小了PSⅡ受损程度,且电子传递链能更快地恢复正常,具有更强的光合能力和耐涝性。

参考文献

Zhang Y J, Liu G Y, Dong H Z, et al.

Waterlogging stress in cotton: damage, adaptability, alleviation strategies, and mechanisms

The Crop Journal, 2021, 9(2):257-270.

[本文引用: 3]

Tian L X, Zhang Y C, Chen P L, et al.

How does the waterlogging regime affect crop yield? a global meta-analysis

Frontiers in Plant Science, 2021, 12:634898.

[本文引用: 1]

何小伟, 童金林, 刘怡鑫, .

中国洪涝灾害保险:现状、困境与优化

中国应急管理科学, 2023(11):15-30.

[本文引用: 1]

Huang X, Shabala L, Zhang X C, et al.

Cation transporters in cell fate determination and plant adaptive responses to a low-oxygen environment

Journal of Experimental Botany, 2022, 73(3):636-645.

[本文引用: 1]

赵可夫.

植物对水涝胁迫的适应

生物学通报, 2003, 38(12):11-14.

[本文引用: 1]

Cao G, Wang X G, Liu Y, et al.

Effect of water logging stress on cotton leaf area index and yield

Procedia Engineering, 2012, 28:202-209.

[本文引用: 2]

Jiang Z Z, Zhu L, Wang Q Y, et al.

Autophagy-related 2 regulates chlorophyll degradation under abiotic stress conditions in Arabidopsis

International Journal of Molecular Sciences, 2020, 21(12):4515.

[本文引用: 1]

Wang P, Liu W C, Han C, et al.

Reactive oxygen species: multidimensional regulators of plant adaptation to abiotic stress and development

Journal of Integrative Plant Biology, 2024, 66(3):330-367.

DOI:10.1111/jipb.13601      [本文引用: 4]

Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.

Wang G Y, Ahmad S, Wang Y, et al.

Multivariate analysis compares and evaluates drought and flooding tolerances of maize germplasm

Plant Physiology, 2023, 193(1):339-355.

DOI:10.1093/plphys/kiad317      PMID:37249039      [本文引用: 1]

Drought and flooding are the two most important environmental factors limiting maize (Zea mays L.) production globally. This study aimed to investigate the physiological mechanisms and accurate evaluation indicators and methods of maize germplasm involved in drought and flooding stresses. The twice replicated pot experiments with 60 varieties, combined with the field validation experiment with three varieties, were conducted under well-watered, drought, and flooding conditions. Most varieties exhibited stronger tolerance to drought than flooding due to higher antioxidant enzyme activities, osmotic adjustment substances, and lower reactive oxygen species. In contrast, flooding stress resulted in higher levels of reactive oxygen species (particularly O2-), ascorbate peroxidase, catalase, peroxidase, and soluble sugars, but lower levels of superoxide dismutase, proline, and soluble protein compared with well-watered conditions. Superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, proline, soluble sugars and protein contents, in addition to plant height, leaf area/plant, and stem diameter, were accurate and representative indicators for evaluating maize tolerance to drought and flooding stresses and could determine a relatively high mean forecast accuracy of 100.0% for the comprehensive evaluation value. Four principal components were extracted, in which different principal components played a vital role in resisting different water stresses. Finally, the accuracy of the three varieties screened by multivariate analysis was verified in the field. This study provides insights into the different physiological mechanisms and accurate evaluation methods of maize germplasm involved in drought and flooding stresses, which could be valuable for further research and breeding.© American Society of Plant Biologists 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Dias M C, Pinto D C, Silva A M.

Plant flavonoids: chemical characteristics and biological activity

Molecules, 2021, 26(17):5377.

[本文引用: 1]

孙小艳, 邹华文.

外源脱落酸对涝渍胁迫下棉花产量的影响

湖北农业科学, 2015, 54(14):3341-3342.

[本文引用: 1]

Cisse E H M, Zhang J, Li D D, et al.

Exogenous ABA and IAA modulate physiological and hormonal adaptation strategies in Cleistocalyx operculatus and Syzygium jambos under long-term waterlogging conditions

BMC Plant Biology, 2022, 22(1):523.

DOI:10.1186/s12870-022-03888-z      PMID:36357840      [本文引用: 1]

The mechanisms of abscisic acid (ABA) and auxin (IAA) in inducing adventitious root (AR) formation, biomass accumulation, and plant development under long-term waterlogging (LT-WL) conditions are largely unexplored. This study aimed to determine the roles of exogenous application of ABA and IAA in two woody plants (Cleistocalyx operculatus and Syzygium jambos) under LT-WL conditions. A pot experiment was conducted using a complete randomized design with two factors: (i) LT-WL and (ii) application of exogenous phytohormones (ABA and IAA) for 120 d.Results revealed that exogenous ABA and IAA promoted LT-WL tolerance in both species. In C. operculatus and S. jambos, plant height, the number of blades, leaf area, and fresh shoot weight were increased by exogenous IAA under LT-WL. However, exogenous ABA affected more the adventitious and primary root in C. operculatus compared to S. jambos. LT-WL decreased drastically the photosynthetic activities in both species, but adding moderate amounts of exogenous ABA or IAA protected the photosynthesis apparatus under LT-WL. Exogenous phytohormones at certain levels decreased the superoxide anion level and malondialdehyde accumulation in plants under LT-WL. Also, the increase of the peroxidases and superoxide dismutase activities by exogenous phytohormones was more marked in C. operculatus compared to S. jambos. Meanwhile, the catalase activity was down-regulated in both species by exogenous phytohormones. Exogenous ABA or IAA positively regulated the jasmonic acid content in ARs under LT-WL. Moderate application of exogenous ABA or IAA in plants under LT-WL decreased the ABA content in the leaves. Lower accumulation of IAA and ABA in the leaves of C. operculatus under LT-WL was positively correlated with a decrease in antioxidant activity.Lastly, C. operculatus which has greater morphology indexes was more tolerant to waterlogging than S. jambos. Moreover, the adaptive strategies via exogenous ABA were more built around the below-ground biomass indexes particularly in C. operculatus, while exogenous IAA backed the above-ground biomass in both species. Overall, the exogenous hormones applied (spraying or watering) influenced differentially the plant's responses to LT-WL. The phytohormonal profile of plants exposed to waterlogging stress varied depending on the species' tolerance level.© 2022. The Author(s).

Yeung E, Bailey-Serres J, Sasidharan R.

After the deluge: plant revival post-flooding

Trends in Plant Science, 2019, 24(5):443-454.

DOI:S1360-1385(19)30046-9      PMID:30857921      [本文引用: 6]

Increasing flooding events have detrimentally impacted food security amid a growing global population. Complete submergence of plants represents the most severe flooding stress and studies have identified underwater responses to low oxygen and light availability. However, knowledge on plant responses during the post-submergence phase is limited. It is important to consider how plants can resume vegetative growth after enduring submergence and post-submergence stress. This review highlights current knowledge on physiological and molecular adaptations following desubmergence. Interplays of reactive oxygen species (ROS), energy depletion, photoinhibition, desiccation stress, and hormonal signaling have been characterized as components of the post-submergence stress response. Active elucidation of key genes and traits enhancing post-submergence adaptations is highly relevant for the improvement of submergence tolerance and ultimately crop yield.Copyright © 2019 Elsevier Ltd. All rights reserved.

Yuan L B, Chen M X, Wang L N, et al.

Multi-stress resilience in plants recovering from submergence

Plant Biotechnology Journal, 2022, 21(3):466-481.

[本文引用: 2]

León J, Castillo M C, Gayubas B.

The hypoxia-reoxygenation stress in plants

Journal of Experimental Botany, 2021, 72(16):5841-5856.

[本文引用: 4]

Bange M, Milroy S, Thongbai P.

Growth and yield of cotton in response to waterlogging

Field Crops Research, 2004, 88(2/3):129-142.

[本文引用: 1]

Wang H M, Liu X Y, Yang P, et al.

Potassium application promote cotton acclimation to soil waterlogging stress by regulating endogenous protective enzymes activities and hormones contents

Plant Physiology and Biochemistry, 2022, 185:336-343.

DOI:10.1016/j.plaphy.2022.06.019      PMID:35750001      [本文引用: 1]

To investigate the effect of potassium application on cotton damage mitigation after waterlogging stress, experiments were conducted under two potassium application levels (0 and 150 kg KO hm) with three types of soil waterlogging treatments (0d, 3d and 6d) during cotton flowering stage. The results showed that: (a) under simple soil waterlogging stress, the increments of endogenous hormones contents of IAA, GA and ZR in cotton leaves were decreased as days of soil waterlogging. On the contrary, the soluble protein, MDA and ABA contents were significantly increased, while ZR/ABA, IAA/ABA and GA/ABA were decreased. CAT and POD enzyme activities were increased although SOD activity decreased with the duration of soil waterlogging. (b) Potassium application combined with soil waterlogging significantly affected the antioxidant enzymes activity and endogenous hormones balance compared with soil waterlogging alone, leading to a significant increase in soluble protein and a pronounced decrease in HO content, O generation rate, and MDA content, a significant increase in IAA, GA and ZR contents while a decrease in ABA content. Besides, it also kept higher SOD, CAT activities and slowly increased POD activity. (c) There was an obvious compensatory effect in cotton after 3d soil waterlogging under potassium application, which promoted rapidly recovery of physiological enzymes activities and ABA content. However, 6d soil waterlogging required a longer time for recovery. These findings were expected to provide a scientific and theoretical basis for reducing flood damage and improving cotton yield.Copyright © 2022 Elsevier Masson SAS. All rights reserved.

Pan J W, Sharif R, Xu X W, et al.

Mechanisms of waterlogging tolerance in plants: research progress and prospects

Frontiers in Plant Science, 2021, 11:627331.

[本文引用: 1]

Niu L F, Jiang F L, Yin J, et al.

ROS-mediated waterlogging memory, induced by priming, mitigates photosynthesis inhibition in tomato under waterlogging stress

Frontiers in Plant Science, 2023, 14:1238108.

[本文引用: 3]

Ge Q, Zhang Y, Wu J R, et al.

Exogenous strigolactone alleviates post-waterlogging stress in grapevine

Plant Physiology and Biochemistry, 2024, 216:109124.

[本文引用: 1]

Flexas J, Medrano H.

Drought‐inhibition of photosynthesis in C3 plants: stomatal and non‐stomatal limitations revisited

Annals of Botany, 2002, 89(2):183-189.

DOI:10.1093/aob/mcf027      PMID:12099349      [本文引用: 1]

There is a long-standing controversy as to whether drought limits photosynthetic CO2 assimilation through stomatal closure or by metabolic impairment in C3 plants. Comparing results from different studies is difficult due to interspecific differences in the response of photosynthesis to leaf water potential and/or relative water content (RWC), the most commonly used parameters to assess the severity of drought. Therefore, we have used stomatal conductance (g) as a basis for comparison of metabolic processes in different studies. The logic is that, as there is a strong link between g and photosynthesis (perhaps co-regulation between them), so different relationships between RWC or water potential and photosynthetic rate and changes in metabolism in different species and studies may be 'normalized' by relating them to g. Re-analysing data from the literature using light-saturated g as a parameter indicative of water deficits in plants shows that there is good correspondence between the onset of drought-induced inhibition of different photosynthetic sub-processes and g. Contents of ribulose bisphosphate (RuBP) and adenosine triphosphate (ATP) decrease early in drought development, at still relatively high g (higher than 150 mmol H20 m(-2) s(-1)). This suggests that RuBP regeneration and ATP synthesis are impaired. Decreased photochemistry and Rubisco activity typically occur at lower g (<100 mmol H20 m(-2) s(-1)), whereas permanent photoinhibition is only occasional, occurring at very low g (<50 mmol H20 m(-2) s(-1)). Sub-stomatal CO2 concentration decreases as g becomes smaller, but increases again at small g. The analysis suggests that stomatal closure is the earliest response to drought and the dominant limitation to photosynthesis at mild to moderate drought. However, in parallel, progressive down-regulation or inhibition of metabolic processes leads to decreased RuBP content, which becomes the dominant limitation at severe drought, and thereby inhibits photosynthetic CO2 assimilation.

Barickman T C, Simpson C R, Sams C E.

Waterlogging causes early modification in the physiological performance, carotenoids, chlorophylls, proline, and soluble sugars of cucumber plants

Plants, 2019, 8(6):160.

[本文引用: 1]

Kashtoh H, Baek K H.

Structural and functional insights into the role of guard cell ion channels in abiotic stress-induced stomatal closure

Plants, 2021, 10(12):2774.

[本文引用: 1]

Ahmed S, Nawata E, Sakuratani T.

Changes of endogenous ABA and ACC, and their correlations to photosynthesis and water relations in mungbean (Vigna radiata (L.) Wilczak cv. KPS1) during waterlogging

Environmental and Experimental Botany, 2006, 57(3):278-284.

[本文引用: 1]

He J X, Wang J, Liang H G.

Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves

Physiologia Plantarum, 1995, 93(4):771-777.

[本文引用: 1]

Chen H, Li K F, Xue C L, et al.

A novel method for non-invasive estimation of primary productivity in aquatic ecosystems using a chlorophyll fluorescence-induced dynamic curve

Frontiers in Microbiology, 2021, 12:682250.

[本文引用: 1]

Yeung E, van Veen H, Vashisht D, et al.

A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana

Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26):6085-6094.

[本文引用: 3]

Małecka A, Konkolewska A, Hanć A, et al.

Activation of antioxidative and detoxificative systems in Brassica juncea L. plants against the toxicity of heavy metals

Scientific Reports, 2021, 11(1):22345.

DOI:10.1038/s41598-021-01827-w      PMID:34785730      [本文引用: 1]

Plant metal hyperaccumulators, to which Brassica juncea belongs, must have very efficient defence mechanisms that enable growth and development in an environment polluted with various heavy metals. B. juncea (Indiana mustard) v. Małopolska was exposed to the activity of trace elements such as cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in combinations: CuPb, CuCd, CuZn, PbCd, PbZn, and ZnCd in a concentration of 25 μM each for 96 h during control cultivation. We observed a clear tendency for metal uptake and accumulation in above-ground parts which is characteristic of hyperaccumulators. The combinations of CuCd, CuZn, and PbCd inhibited the development of the seedlings the most. The used metal combinations increased the levels of reactive oxygen species (ROS) such as: hydrogen peroxide (HO), superoxide anion (O) and oxidized proteins in B. juncea organs, generating oxidative stress conditions in the cells. We determined the level of transcription of the respective defence proteins of the detoxification and antioxidant systems. We have shown that in the first 24 h of stress condiction, activation of glutamylcysteine-γ synthetase (yECS) and glutathione reductase (GR1) enzymes related to the detoxification of heavy metals is important for B. juncea plants. In addition, the data provide important information on how plants respond to the presence of heavy metals in the first days of stress conditions.© 2021. The Author(s).

Zhang F Q, Wang Y S, Lou Z P, et al.

Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza)

Chemosphere, 2007, 67(1):44-50.

[本文引用: 1]

Singh S, Dubey N K, Tripathi D K, et al.

Nitric oxide and hydrogen peroxide mediated regulation of chromium (VI) toxicity in wheat seedlings involves alterations in antioxidants and high affinity sulfate transporter

Plant Science, 2023, 332:111697.

[本文引用: 1]

Zhang X M, Duan S G, Xia Y, et al.

Transcriptomic, physiological, and metabolomic response of an alpine plant, Rhododendron delavayi, to waterlogging stress and post- waterlogging recovery

International Journal of Molecular Sciences, 2023, 24(13):10509.

[本文引用: 2]

Tamang B G, Magliozzi J O, Maroof M S, et al.

Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings

Plant, Cell & Environment, 2014, 37(10):2350-2365.

[本文引用: 1]

Dorion S, Ouellet J C, Rivoal J.

Glutathione metabolism in plants under stress: beyond reactive oxygen species detoxification

Metabolites, 2021, 11(9):641.

[本文引用: 1]

Hasan M M, Ali M A, Soliman M H, et al.

Insights into 28-homobrassinolide (HBR)-mediated redox homeostasis, AsA- GSH cycle, and methylglyoxal detoxification in soybean under drought-induced oxidative stress

Journal of Plant Interactions, 2020, 15(1):371-385.

[本文引用: 1]

Umićević S, Kukavica B, Maksimović I, et al.

Stress response in tomato as influenced by repeated waterlogging

Frontiers in Plant Science, 2024, 15:1331281.

[本文引用: 1]

Zhao N, Li C W, Yan Y J, et al.

Comparative transcriptome analysis of waterlogging-sensitive and waterlogging-tolerant Chrysanthemum morifolium cultivars under waterlogging stress and reoxygenation conditions

International Journal of Molecular Sciences, 2018, 19(5):1455.

[本文引用: 1]

Xiong X W, Tian H, Fan G, et al.

Characterization and transformation of a novel ABI3/VP1-1 gene from hot pepper to enhance waterlogging tolerance

Environmental and Experimental Botany, 2024, 220:105708.

[本文引用: 1]

/