作物杂志,2025, 第4期: 126134 doi: 10.16035/j.issn.1001-7283.2025.04.016
刘宣宣1(), 郭瑞士2, 董蒙蒙1, 朱柯颖1, 朱晓品1, 王丽1, 王宁2(
)
Liu Xuanxuan1(), Guo Ruishi2, Dong Mengmeng1, Zhu Keying1, Zhu Xiaopin1, Wang Li1, Wang Ning2(
)
摘要: 为探究棉花幼苗期耐涝生理响应机理,以耐涝品种中棉9001(ZM9001)和敏涝品种中4847(Z4847)为材料,比较2个品种涝渍及恢复期生理响应的动态变化。结果表明,涝渍处理4 d(恢复0 h)及恢复期(恢复24和72 h),ZM9001的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均显著高于Z4847,叶绿素荧光诱导动力曲线(OJIP曲线)的J点和I点均低于Z4847,脱落酸(ABA)含量显著低于Z4847。涝渍处理4 d时,2个品种间超氧阴离子(O2-. )、丙二醛(MDA)含量和总抗氧化能力无显著差异;涝渍恢复72 h时,ZM9001的O2-. 和MDA含量均显著低于Z4847,抗氧化能力显著高于Z4847。涝渍处理4 d及恢复72 h时,ZM9001的过氧化氢(H2O2)含量显著高于Z4847。涝渍处理4 d及恢复期,ZM9001的过氧化氢酶(CAT)活性均显著高于Z4847。涝渍恢复72 h时,ZM9001的超氧化物歧化酶(SOD)活性显著高于Z4847,且不同组织中类黄酮含量均显著高于Z4847。综上,ZM9001较Z4847在涝渍及恢复期能保持较低的ABA含量和较高的Gs与Tr,同时在恢复期通过增强抗氧化系统活性高效清除活性氧(ROS),使得ZM9001光合作用更强,因此耐涝性更强。
[1] | Zhang Y J, Liu G Y, Dong H Z, et al. Waterlogging stress in cotton: damage, adaptability, alleviation strategies, and mechanisms. The Crop Journal, 2021, 9(2):257-270. |
[2] | Tian L X, Zhang Y C, Chen P L, et al. How does the waterlogging regime affect crop yield? a global meta-analysis. Frontiers in Plant Science, 2021, 12:634898. |
[3] | 何小伟, 童金林, 刘怡鑫, 等. 中国洪涝灾害保险:现状、困境与优化. 中国应急管理科学, 2023(11):15-30. |
[4] | Huang X, Shabala L, Zhang X C, et al. Cation transporters in cell fate determination and plant adaptive responses to a low-oxygen environment. Journal of Experimental Botany, 2022, 73(3):636-645. |
[5] | 赵可夫. 植物对水涝胁迫的适应. 生物学通报, 2003, 38(12):11-14. |
[6] | Cao G, Wang X G, Liu Y, et al. Effect of water logging stress on cotton leaf area index and yield. Procedia Engineering, 2012, 28:202-209. |
[7] | Jiang Z Z, Zhu L, Wang Q Y, et al. Autophagy-related 2 regulates chlorophyll degradation under abiotic stress conditions in Arabidopsis. International Journal of Molecular Sciences, 2020, 21(12):4515. |
[8] |
Wang P, Liu W C, Han C, et al. Reactive oxygen species: multidimensional regulators of plant adaptation to abiotic stress and development. Journal of Integrative Plant Biology, 2024, 66(3):330-367.
doi: 10.1111/jipb.13601 |
[9] |
Wang G Y, Ahmad S, Wang Y, et al. Multivariate analysis compares and evaluates drought and flooding tolerances of maize germplasm. Plant Physiology, 2023, 193(1):339-355.
doi: 10.1093/plphys/kiad317 pmid: 37249039 |
[10] | Dias M C, Pinto D C, Silva A M. Plant flavonoids: chemical characteristics and biological activity. Molecules, 2021, 26(17):5377. |
[11] | 孙小艳, 邹华文. 外源脱落酸对涝渍胁迫下棉花产量的影响. 湖北农业科学, 2015, 54(14):3341-3342. |
[12] |
Cisse E H M, Zhang J, Li D D, et al. Exogenous ABA and IAA modulate physiological and hormonal adaptation strategies in Cleistocalyx operculatus and Syzygium jambos under long-term waterlogging conditions. BMC Plant Biology, 2022, 22(1):523.
doi: 10.1186/s12870-022-03888-z pmid: 36357840 |
[13] |
Yeung E, Bailey-Serres J, Sasidharan R. After the deluge: plant revival post-flooding. Trends in Plant Science, 2019, 24(5):443-454.
doi: S1360-1385(19)30046-9 pmid: 30857921 |
[14] | Yuan L B, Chen M X, Wang L N, et al. Multi-stress resilience in plants recovering from submergence. Plant Biotechnology Journal, 2022, 21(3):466-481. |
[15] | León J, Castillo M C, Gayubas B. The hypoxia-reoxygenation stress in plants. Journal of Experimental Botany, 2021, 72(16):5841-5856. |
[16] | Bange M, Milroy S, Thongbai P. Growth and yield of cotton in response to waterlogging. Field Crops Research, 2004, 88(2/3):129-142. |
[17] |
Wang H M, Liu X Y, Yang P, et al. Potassium application promote cotton acclimation to soil waterlogging stress by regulating endogenous protective enzymes activities and hormones contents. Plant Physiology and Biochemistry, 2022, 185:336-343.
doi: 10.1016/j.plaphy.2022.06.019 pmid: 35750001 |
[18] | Pan J W, Sharif R, Xu X W, et al. Mechanisms of waterlogging tolerance in plants: research progress and prospects. Frontiers in Plant Science, 2021, 11:627331. |
[19] | Niu L F, Jiang F L, Yin J, et al. ROS-mediated waterlogging memory, induced by priming, mitigates photosynthesis inhibition in tomato under waterlogging stress. Frontiers in Plant Science, 2023, 14:1238108. |
[20] | Ge Q, Zhang Y, Wu J R, et al. Exogenous strigolactone alleviates post-waterlogging stress in grapevine. Plant Physiology and Biochemistry, 2024, 216:109124. |
[21] |
Flexas J, Medrano H. Drought‐inhibition of photosynthesis in C3 plants: stomatal and non‐stomatal limitations revisited. Annals of Botany, 2002, 89(2):183-189.
doi: 10.1093/aob/mcf027 pmid: 12099349 |
[22] | Barickman T C, Simpson C R, Sams C E. Waterlogging causes early modification in the physiological performance, carotenoids, chlorophylls, proline, and soluble sugars of cucumber plants. Plants, 2019, 8(6):160. |
[23] | Kashtoh H, Baek K H. Structural and functional insights into the role of guard cell ion channels in abiotic stress-induced stomatal closure. Plants, 2021, 10(12):2774. |
[24] | Ahmed S, Nawata E, Sakuratani T. Changes of endogenous ABA and ACC, and their correlations to photosynthesis and water relations in mungbean (Vigna radiata (L.) Wilczak cv. KPS1) during waterlogging. Environmental and Experimental Botany, 2006, 57(3):278-284. |
[25] | He J X, Wang J, Liang H G. Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves. Physiologia Plantarum, 1995, 93(4):771-777. |
[26] | Chen H, Li K F, Xue C L, et al. A novel method for non-invasive estimation of primary productivity in aquatic ecosystems using a chlorophyll fluorescence-induced dynamic curve. Frontiers in Microbiology, 2021, 12:682250. |
[27] | Yeung E, van Veen H, Vashisht D, et al. A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26):6085-6094. |
[28] |
Małecka A, Konkolewska A, Hanć A, et al. Activation of antioxidative and detoxificative systems in Brassica juncea L. plants against the toxicity of heavy metals. Scientific Reports, 2021, 11(1):22345.
doi: 10.1038/s41598-021-01827-w pmid: 34785730 |
[29] | Zhang F Q, Wang Y S, Lou Z P, et al. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere, 2007, 67(1):44-50. |
[30] | Singh S, Dubey N K, Tripathi D K, et al. Nitric oxide and hydrogen peroxide mediated regulation of chromium (VI) toxicity in wheat seedlings involves alterations in antioxidants and high affinity sulfate transporter. Plant Science, 2023, 332:111697. |
[31] | Zhang X M, Duan S G, Xia Y, et al. Transcriptomic, physiological, and metabolomic response of an alpine plant, Rhododendron delavayi, to waterlogging stress and post- waterlogging recovery. International Journal of Molecular Sciences, 2023, 24(13):10509. |
[32] | Tamang B G, Magliozzi J O, Maroof M S, et al. Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings. Plant, Cell & Environment, 2014, 37(10):2350-2365. |
[33] | Dorion S, Ouellet J C, Rivoal J. Glutathione metabolism in plants under stress: beyond reactive oxygen species detoxification. Metabolites, 2021, 11(9):641. |
[34] | Hasan M M, Ali M A, Soliman M H, et al. Insights into 28-homobrassinolide (HBR)-mediated redox homeostasis, AsA- GSH cycle, and methylglyoxal detoxification in soybean under drought-induced oxidative stress. Journal of Plant Interactions, 2020, 15(1):371-385. |
[35] | Umićević S, Kukavica B, Maksimović I, et al. Stress response in tomato as influenced by repeated waterlogging. Frontiers in Plant Science, 2024, 15:1331281. |
[36] | Zhao N, Li C W, Yan Y J, et al. Comparative transcriptome analysis of waterlogging-sensitive and waterlogging-tolerant Chrysanthemum morifolium cultivars under waterlogging stress and reoxygenation conditions. International Journal of Molecular Sciences, 2018, 19(5):1455. |
[37] | Xiong X W, Tian H, Fan G, et al. Characterization and transformation of a novel ABI3/VP1-1 gene from hot pepper to enhance waterlogging tolerance. Environmental and Experimental Botany, 2024, 220:105708. |
[1] | 侯晓敏, 申惠波, 董守坤, 闫锋, 董扬, 赵富阳, 李清泉, 左月桃. 甲哌鎓缓解大豆幼苗叶片干旱胁迫的生理效应[J]. 作物杂志, 2025, (3): 133140 |
[2] | 邸娜, 郑喜清, 王靖, 韩海军, 李娜. 向日葵应对列当寄生的生理响应差异性研究[J]. 作物杂志, 2025, (2): 123127 |
[3] | 侯晓敏, 闫锋, 董扬, 赵富阳, 李清泉, 季生栋, 刘悦, 兰英. 外源甜菜碱对干旱胁迫下谷子萌发及幼苗生理特性的影响[J]. 作物杂志, 2025, (2): 228233 |
[4] | 刘佩瑶, 冉莉萍, 杨佳庆, 王海博, 熊飞, 余徐润. 小麦穗形态建成和生理特征及外界影响因素的研究进展[J]. 作物杂志, 2025, (1): 19 |
[5] | 马俊美, 窦敏, 刘弟, 杨秀华, 杨勇, 年夫照, 刘雅婷, 李永忠. 烤烟与玉米间作种植对根际土壤养分及作物生长的影响[J]. 作物杂志, 2025, (1): 227234 |
[6] | 李峰, 高宏云, 张翀, 张宝英, 马建富, 郭娜, 白苇, 方爱国, 杨志敏, 李源. 盐胁迫对燕麦生长及生理指标的影响[J]. 作物杂志, 2024, (6): 140146 |
[7] | 王一帆, 林涛, 王冬, 王新翠, 张昊, 刘海军, 陈茂光, 汤秋香. 生物降解地膜和灌溉定额对棉田土壤水热特性的影响[J]. 作物杂志, 2024, (5): 8695 |
[8] | 张薇, 王琦, 闫鹏, 许艳丽, 严洪冬, 李桂英, 陈迪苏, 焦晓燕, 卢霖, 董志强. 聚糠萘合剂对东北地区高粱不同密度群体叶片衰老及产量的影响[J]. 作物杂志, 2024, (5): 96104 |
[9] | 王文霞, 畅博凯, 夏清, 智慧, 杜杰. 叶面喷硒对胡麻生理特性、产量及品质的影响[J]. 作物杂志, 2024, (4): 130137 |
[10] | 吕博, 丁亮, 过聪, 陈锋, 周海平, 汪雪松, 董小林, 向发云. 复合微生物肥对棉田土壤养分及根际细菌群落的影响[J]. 作物杂志, 2024, (4): 209215 |
[11] | 张子怡, 王学虎, 苑莹, 沈志峰. 腐植酸悬浮剂对NaCl胁迫下小麦种子萌发和幼苗生长的影响[J]. 作物杂志, 2024, (4): 263268 |
[12] | 谢章书, 谢学方, 周成轩, 许豆豆, 李佳芮, 屠小菊, 刘爱玉, 李飞, 巩养仓, 贺云新, 魏尚职, 吴碧波, 周仲华. 一种新型棉花种子球化技术及其对棉花出苗、产量和品质的影响[J]. 作物杂志, 2024, (3): 257264 |
[13] | 王晓蕾, 张云鹤, 牟金猛, 高大鹏, 耿艳秋, 曹译文, 卢芬, 关政闻, 邵玺文, 郭丽颖. 苏打盐碱胁迫对水稻光合特性及产量的影响[J]. 作物杂志, 2024, (1): 193203 |
[14] | 王洪博, 唐茂淞, 李国辉, 高阳, 王兴鹏. 基于Logistic模型的南疆无膜滴灌棉花产量模型构建与评价[J]. 作物杂志, 2024, (1): 97103 |
[15] | 吴雪琴, 刘开宇, 韩春华, 阿力木江·克来木, 崔延南, 李江余, 马春梅, 仲文帆, 赵强. 14%噻苯·敌草隆对棉花脱叶催熟及产量和品质的影响[J]. 作物杂志, 2023, (5): 164169 |
|