Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance
3
2021
... 作物在生长发育过程中会受到诸多逆境胁迫的影响,非生物胁迫是指限制作物生长、发育和生产力的环境因素[1].随着全球气候变化的加剧以及城市化和工业化的快速发展,农业环境不断恶化,非生物胁迫对作物的负面影响日益严重.目前,影响农业生产的非生物胁迫因素主要包括温度、盐度、重金属和水分等,作物在受到非生物胁迫后,会通过各种生理生化过程影响植株的生长与发育,最终影响作物的品质和产量[1-3].为了实现农业可持续发展,满足日益增长的全球粮食需求,做到粮食稳产、增产,进而推动粮食安全和可持续发展,缓解非生物胁迫对作物带来的负面影响迫在眉睫,而纳米技术在农业领域的迅速发展为此带来了新思路. ...
... [1-3].为了实现农业可持续发展,满足日益增长的全球粮食需求,做到粮食稳产、增产,进而推动粮食安全和可持续发展,缓解非生物胁迫对作物带来的负面影响迫在眉睫,而纳米技术在农业领域的迅速发展为此带来了新思路. ...
... 由于气候变化和人类活动,高温、盐分、干旱、洪涝和重金属等非生物胁迫对作物的挑战日益严峻[1].NMs因其独特的理化性质,通过与环境和作物相互作用,调节植物的生理生化过程,增强植物的抗逆性并减轻逆境的有害影响,提高植物的生长和繁殖能力,从而显著提高产量和质量,达到调节作物对各种非生物胁迫的适应性的目的(表1). ...
氧化石墨烯对盐胁迫下小麦种子萌发及幼苗生长的影响
2
2022
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... 盐分过多时高浓度离子环境首先对作物产生渗透胁迫.在盐胁迫条件下,在蚕豆(Vicia faba L.)叶面施用ZnO-NPs(50 mg/L,9.4 nm)可显著增加叶片中的脯氨酸和总可溶性糖含量以提高其耐盐性[55],且ZnO-NPs(20和50 mg/L)亦可通过叶面喷施刺激小麦渗透液的形成和养分吸收,改善盐胁迫条件下小麦细胞的渗透保护,增加作物新陈代谢[56].盐胁迫条件下,Na+和Cl-在作物体内过量积累,对其他离子产生竞争性抑制作用,破坏作物体内离子平衡,阻碍作物生长,NMs的应用可以缓解这一现象.如叶面注射CeO2-NPs(0.9 mmol/L,8.04 nm)可以通过调控KOR、SOS等离子转运基因表达,增加棉花K+/Na+比例,促使Na+最小化吸收,以平衡盐胁迫对作物的损害[57].土壤施用500 mg/kg的CeO2-NPs可通过缩短油菜根外质体的屏障,促进更多Na+从根部转移到茎部[38].盐胁迫除了直接的高渗毒害作用以外,还会导致作物细胞内发生氧化胁迫而促使代谢紊乱,NMs可调节作物抗氧化酶活性以缓解胁迫带来的危害[72].如叶面喷施FeSO4-NPs(2 g/L)可提高NaCl胁迫下向日葵(Helianthus annuus)的CAT、脯氨酸氧化酶(proline oxidase,POX)和PPO活性,以减少作物在盐胁迫下羟自由基等ROS的产生[38,56].CeO2-NPs可以降低盐胁迫下棉花植株第1和第2真叶的ROS,提高抗氧化酶活性,从而维持稳定的ROS含量[57].盐胁迫下ZnO-NPs(50 mg/L,9.4 nm)处理,可提高蚕豆植株中次生代谢物(如氨基酸、脯氨酸、甘氨酸、甜菜碱、总可溶性糖等物质)含量,增强其解毒能力,减轻盐胁迫带来的负面影响[55].此外,NMs对作物胁迫的作用存在浓度效应,如低浓度(12.5、25 mg/L)的氧化石墨烯(graphene oxide,GO,5 nm)可促进小麦种子萌发,而高浓度(50、100、200 mg/L)下小麦萌发受阻,并加重盐胁迫对其生长造成的抑制效应[2]. ...
Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species
2
2017
... 作物在生长发育过程中会受到诸多逆境胁迫的影响,非生物胁迫是指限制作物生长、发育和生产力的环境因素[1].随着全球气候变化的加剧以及城市化和工业化的快速发展,农业环境不断恶化,非生物胁迫对作物的负面影响日益严重.目前,影响农业生产的非生物胁迫因素主要包括温度、盐度、重金属和水分等,作物在受到非生物胁迫后,会通过各种生理生化过程影响植株的生长与发育,最终影响作物的品质和产量[1-3].为了实现农业可持续发展,满足日益增长的全球粮食需求,做到粮食稳产、增产,进而推动粮食安全和可持续发展,缓解非生物胁迫对作物带来的负面影响迫在眉睫,而纳米技术在农业领域的迅速发展为此带来了新思路. ...
... NMs的叶片施用方式可分为注射和喷施(图1c).叶片注射是用针头戳伤叶片背面表皮后,用无针注射器轻缓地将NMs溶液注射至叶肉细胞中;叶面喷施是将NMs直接喷涂在作物的叶片表面,喷施时为增加纳米溶液在作物叶片上的着药量和扩散能力,可在溶液中加入表面活性剂[3,39].叶片注射操作繁琐、效率低,但NMs可不受叶片表皮的影响直接进入到叶肉细胞中,多用于初期NMs的作用机制研究;而叶面喷施操作简便,是田间试验更实用的选择. ...
A comprehensive overview of nanotechnology in sustainable agriculture
1
2022
... 纳米材料(nanomaterials,NMs)是指在三维空间中至少有一维的尺寸在1~100 nm范围内,且与相应的非纳米材料对比具有特殊理化性质的材料[4-5].自20世纪90年代初,纳米技术在医药、能源、食品加工等领域迅速发展[6],广泛应用于生物传感器、水净化、光催化和抗菌剂等[7].在农业领域,NMs可以通过作物的种子、根和叶等器官进入植株体内,调控生理生化代谢,以提高作物对生物和非生物胁迫的耐受能力,还能够以农药、肥料、纳米复合材料、纳米传感器等形式应用于农业生产中,可显著提高作物的产量与质量[8-9].而NMs的结构、形状、大小及浓度的不同对不同生长时期的作物呈现不同的效果.本文综述了作物吸收NMs的途径以及NMs对作物非生物胁迫的调控机制,以期为NMs在作物生产和可持续农业发展中的应用提供参考. ...
Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective
1
2009
... 纳米材料(nanomaterials,NMs)是指在三维空间中至少有一维的尺寸在1~100 nm范围内,且与相应的非纳米材料对比具有特殊理化性质的材料[4-5].自20世纪90年代初,纳米技术在医药、能源、食品加工等领域迅速发展[6],广泛应用于生物传感器、水净化、光催化和抗菌剂等[7].在农业领域,NMs可以通过作物的种子、根和叶等器官进入植株体内,调控生理生化代谢,以提高作物对生物和非生物胁迫的耐受能力,还能够以农药、肥料、纳米复合材料、纳米传感器等形式应用于农业生产中,可显著提高作物的产量与质量[8-9].而NMs的结构、形状、大小及浓度的不同对不同生长时期的作物呈现不同的效果.本文综述了作物吸收NMs的途径以及NMs对作物非生物胁迫的调控机制,以期为NMs在作物生产和可持续农业发展中的应用提供参考. ...
2
2017
... 纳米材料(nanomaterials,NMs)是指在三维空间中至少有一维的尺寸在1~100 nm范围内,且与相应的非纳米材料对比具有特殊理化性质的材料[4-5].自20世纪90年代初,纳米技术在医药、能源、食品加工等领域迅速发展[6],广泛应用于生物传感器、水净化、光催化和抗菌剂等[7].在农业领域,NMs可以通过作物的种子、根和叶等器官进入植株体内,调控生理生化代谢,以提高作物对生物和非生物胁迫的耐受能力,还能够以农药、肥料、纳米复合材料、纳米传感器等形式应用于农业生产中,可显著提高作物的产量与质量[8-9].而NMs的结构、形状、大小及浓度的不同对不同生长时期的作物呈现不同的效果.本文综述了作物吸收NMs的途径以及NMs对作物非生物胁迫的调控机制,以期为NMs在作物生产和可持续农业发展中的应用提供参考. ...
... NMs由根系引入的方式有2种,分别是施用于土壤中和加入营养液中(图1b).NMs到达根表皮后,主要通过质外体和共质体2种途径吸收后转运到作物的各个组织中.质外体途径中,水中的NMs通过渗透作用穿过细胞壁孔,然后扩散到细胞膜与细胞壁之间的空间中[6,21];共质体途径中,NMs可以穿过细胞膜进入细胞质,也可以通过胞间连丝进行细胞间的运输[22].NMs亦可从根系的损伤区域(疾病、损伤或幼苗移植的意外损伤)进入细胞间隙[10].研究[23]表明,拟南芥(Arabidopsis thaliana L.)根系吸收nZVI(10 mg/L,54 nm)可激活其质膜H+-ATP酶,促使质子向外质体的排出增加,质外体的pH降低,形成酸性条件,使得细胞壁松弛,从而促进植物的生长,增加叶片面积. ...
Multifactorial role of nanoparticles in alleviating environmental stresses for sustainable crop production and protection
1
2023
... 纳米材料(nanomaterials,NMs)是指在三维空间中至少有一维的尺寸在1~100 nm范围内,且与相应的非纳米材料对比具有特殊理化性质的材料[4-5].自20世纪90年代初,纳米技术在医药、能源、食品加工等领域迅速发展[6],广泛应用于生物传感器、水净化、光催化和抗菌剂等[7].在农业领域,NMs可以通过作物的种子、根和叶等器官进入植株体内,调控生理生化代谢,以提高作物对生物和非生物胁迫的耐受能力,还能够以农药、肥料、纳米复合材料、纳米传感器等形式应用于农业生产中,可显著提高作物的产量与质量[8-9].而NMs的结构、形状、大小及浓度的不同对不同生长时期的作物呈现不同的效果.本文综述了作物吸收NMs的途径以及NMs对作物非生物胁迫的调控机制,以期为NMs在作物生产和可持续农业发展中的应用提供参考. ...
Advancement of noble metallic nanoparticles in agriculture: a promising future
1
2023
... 纳米材料(nanomaterials,NMs)是指在三维空间中至少有一维的尺寸在1~100 nm范围内,且与相应的非纳米材料对比具有特殊理化性质的材料[4-5].自20世纪90年代初,纳米技术在医药、能源、食品加工等领域迅速发展[6],广泛应用于生物传感器、水净化、光催化和抗菌剂等[7].在农业领域,NMs可以通过作物的种子、根和叶等器官进入植株体内,调控生理生化代谢,以提高作物对生物和非生物胁迫的耐受能力,还能够以农药、肥料、纳米复合材料、纳米传感器等形式应用于农业生产中,可显著提高作物的产量与质量[8-9].而NMs的结构、形状、大小及浓度的不同对不同生长时期的作物呈现不同的效果.本文综述了作物吸收NMs的途径以及NMs对作物非生物胁迫的调控机制,以期为NMs在作物生产和可持续农业发展中的应用提供参考. ...
Nanosensor applications in plant science
1
2022
... 纳米材料(nanomaterials,NMs)是指在三维空间中至少有一维的尺寸在1~100 nm范围内,且与相应的非纳米材料对比具有特殊理化性质的材料[4-5].自20世纪90年代初,纳米技术在医药、能源、食品加工等领域迅速发展[6],广泛应用于生物传感器、水净化、光催化和抗菌剂等[7].在农业领域,NMs可以通过作物的种子、根和叶等器官进入植株体内,调控生理生化代谢,以提高作物对生物和非生物胁迫的耐受能力,还能够以农药、肥料、纳米复合材料、纳米传感器等形式应用于农业生产中,可显著提高作物的产量与质量[8-9].而NMs的结构、形状、大小及浓度的不同对不同生长时期的作物呈现不同的效果.本文综述了作物吸收NMs的途径以及NMs对作物非生物胁迫的调控机制,以期为NMs在作物生产和可持续农业发展中的应用提供参考. ...
Nanoparticle?s uptake and translocation mechanisms in plants via seed priming, foliar treatment, and root exposure: a review
2
2022
... 种子引发(seed priming)是将种子预先经过化学试剂或非生物胁迫处理,以激活作物发芽早期阶段的代谢过程[10-11].通过纳米引发(图1a),NMs进入到种子的内种皮、子叶和胚根中,并集中在根尖生长点中[12],这一过程促进种子的水分吸收,提高代谢酶的活性,从而打破休眠,影响种子代谢过程,提高作物出苗率和幼苗的生长速度,达到减少重复播种、加快出苗时间、降低施肥和灌溉成本的目的. ...
... NMs由根系引入的方式有2种,分别是施用于土壤中和加入营养液中(图1b).NMs到达根表皮后,主要通过质外体和共质体2种途径吸收后转运到作物的各个组织中.质外体途径中,水中的NMs通过渗透作用穿过细胞壁孔,然后扩散到细胞膜与细胞壁之间的空间中[6,21];共质体途径中,NMs可以穿过细胞膜进入细胞质,也可以通过胞间连丝进行细胞间的运输[22].NMs亦可从根系的损伤区域(疾病、损伤或幼苗移植的意外损伤)进入细胞间隙[10].研究[23]表明,拟南芥(Arabidopsis thaliana L.)根系吸收nZVI(10 mg/L,54 nm)可激活其质膜H+-ATP酶,促使质子向外质体的排出增加,质外体的pH降低,形成酸性条件,使得细胞壁松弛,从而促进植物的生长,增加叶片面积. ...
Nano-priming for inducing salinity tolerance, disease resistance, yield attributes, and alleviating heavy metal toxicity in plants
2
2024
... 种子引发(seed priming)是将种子预先经过化学试剂或非生物胁迫处理,以激活作物发芽早期阶段的代谢过程[10-11].通过纳米引发(图1a),NMs进入到种子的内种皮、子叶和胚根中,并集中在根尖生长点中[12],这一过程促进种子的水分吸收,提高代谢酶的活性,从而打破休眠,影响种子代谢过程,提高作物出苗率和幼苗的生长速度,达到减少重复播种、加快出苗时间、降低施肥和灌溉成本的目的. ...
... 首先,种子引入NMs后可以增加活性氧(reactive oxygen species,ROS)的积累,而ROS可促进种子内信号传导机制,以致种子胚乳细胞壁松动,进而帮助作物顺利完成萌发[11].与未引发对照和化学引发剂(AgNO3)处理相比,银纳米颗粒(silver nanoparticles,AgNPs,10 mg/L,11.2 nm)可促进水稻(Oryza sativa L.)种子中水通道蛋白基因上调,以增强水分吸收,激活种子的ROS系统,产生羟基自由基进而使细胞壁松动,促进陈化种子的萌发[13].氧化钙纳米颗粒(calcium oxide nanoparticles,CaO-NPs,75 mg/L,160 nm)引发可以通过提高超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和过氧化物酶(peroxidase,POD)活性,降低油菜(Brassica napus L.)种子的ROS水平,从而减少种子细胞损伤[14].其次,种子的纳米引发可提高作物对养分的吸收和水分利用率,为种子提供保护作用,同时提高种子发芽率,促进种子生长和幼苗发育,以此改变作物的生理状态以提高作物对非生物胁迫的耐受性[15-16].在萌发过程中,使用高浓度零价铁NMs(nanoscale zero- valent iron,nZVI,20 mg/L,233 nm,-39 mV)进行香稻种子引发,显著提高了淀粉酶和蛋白酶活性,从而使种子内储存的供能物质得到快速利用,促进胚根提早萌发[17].氧化铈纳米颗粒(cerium oxide nanoparticles,CeO2-NPs,5.8 mg/L,8.5 nm,-43.3 mV)引发可增加控制α-淀粉酶活性的AMY1和AMY2基因的表达,提高可溶性糖的浓度,从而促进淀粉代谢,为呼吸活动和细胞扩张提供能量,直到光合作用能够充分满足幼苗的生长需求[18-19].此外,NMs浸种引发还可以改善作物品质,满足人类膳食需求以及对微量矿物质的摄取,如Fe2O3- NPs(iron oxide nanoparticles,25 mg/L,80 nm,-44 mV)的引发可增加小麦(Triticum aestivum L.)种子对铁的获取与积累[20]. ...
Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles
1
2020
... 种子引发(seed priming)是将种子预先经过化学试剂或非生物胁迫处理,以激活作物发芽早期阶段的代谢过程[10-11].通过纳米引发(图1a),NMs进入到种子的内种皮、子叶和胚根中,并集中在根尖生长点中[12],这一过程促进种子的水分吸收,提高代谢酶的活性,从而打破休眠,影响种子代谢过程,提高作物出苗率和幼苗的生长速度,达到减少重复播种、加快出苗时间、降低施肥和灌溉成本的目的. ...
Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles
2
2017
... 首先,种子引入NMs后可以增加活性氧(reactive oxygen species,ROS)的积累,而ROS可促进种子内信号传导机制,以致种子胚乳细胞壁松动,进而帮助作物顺利完成萌发[11].与未引发对照和化学引发剂(AgNO3)处理相比,银纳米颗粒(silver nanoparticles,AgNPs,10 mg/L,11.2 nm)可促进水稻(Oryza sativa L.)种子中水通道蛋白基因上调,以增强水分吸收,激活种子的ROS系统,产生羟基自由基进而使细胞壁松动,促进陈化种子的萌发[13].氧化钙纳米颗粒(calcium oxide nanoparticles,CaO-NPs,75 mg/L,160 nm)引发可以通过提高超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和过氧化物酶(peroxidase,POD)活性,降低油菜(Brassica napus L.)种子的ROS水平,从而减少种子细胞损伤[14].其次,种子的纳米引发可提高作物对养分的吸收和水分利用率,为种子提供保护作用,同时提高种子发芽率,促进种子生长和幼苗发育,以此改变作物的生理状态以提高作物对非生物胁迫的耐受性[15-16].在萌发过程中,使用高浓度零价铁NMs(nanoscale zero- valent iron,nZVI,20 mg/L,233 nm,-39 mV)进行香稻种子引发,显著提高了淀粉酶和蛋白酶活性,从而使种子内储存的供能物质得到快速利用,促进胚根提早萌发[17].氧化铈纳米颗粒(cerium oxide nanoparticles,CeO2-NPs,5.8 mg/L,8.5 nm,-43.3 mV)引发可增加控制α-淀粉酶活性的AMY1和AMY2基因的表达,提高可溶性糖的浓度,从而促进淀粉代谢,为呼吸活动和细胞扩张提供能量,直到光合作用能够充分满足幼苗的生长需求[18-19].此外,NMs浸种引发还可以改善作物品质,满足人类膳食需求以及对微量矿物质的摄取,如Fe2O3- NPs(iron oxide nanoparticles,25 mg/L,80 nm,-44 mV)的引发可增加小麦(Triticum aestivum L.)种子对铁的获取与积累[20]. ...
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
Seed priming with calcium oxide nanoparticles improves germination, biomass, antioxidant defence and yield traits of canola plants under drought stress
2
2022
... 首先,种子引入NMs后可以增加活性氧(reactive oxygen species,ROS)的积累,而ROS可促进种子内信号传导机制,以致种子胚乳细胞壁松动,进而帮助作物顺利完成萌发[11].与未引发对照和化学引发剂(AgNO3)处理相比,银纳米颗粒(silver nanoparticles,AgNPs,10 mg/L,11.2 nm)可促进水稻(Oryza sativa L.)种子中水通道蛋白基因上调,以增强水分吸收,激活种子的ROS系统,产生羟基自由基进而使细胞壁松动,促进陈化种子的萌发[13].氧化钙纳米颗粒(calcium oxide nanoparticles,CaO-NPs,75 mg/L,160 nm)引发可以通过提高超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和过氧化物酶(peroxidase,POD)活性,降低油菜(Brassica napus L.)种子的ROS水平,从而减少种子细胞损伤[14].其次,种子的纳米引发可提高作物对养分的吸收和水分利用率,为种子提供保护作用,同时提高种子发芽率,促进种子生长和幼苗发育,以此改变作物的生理状态以提高作物对非生物胁迫的耐受性[15-16].在萌发过程中,使用高浓度零价铁NMs(nanoscale zero- valent iron,nZVI,20 mg/L,233 nm,-39 mV)进行香稻种子引发,显著提高了淀粉酶和蛋白酶活性,从而使种子内储存的供能物质得到快速利用,促进胚根提早萌发[17].氧化铈纳米颗粒(cerium oxide nanoparticles,CeO2-NPs,5.8 mg/L,8.5 nm,-43.3 mV)引发可增加控制α-淀粉酶活性的AMY1和AMY2基因的表达,提高可溶性糖的浓度,从而促进淀粉代谢,为呼吸活动和细胞扩张提供能量,直到光合作用能够充分满足幼苗的生长需求[18-19].此外,NMs浸种引发还可以改善作物品质,满足人类膳食需求以及对微量矿物质的摄取,如Fe2O3- NPs(iron oxide nanoparticles,25 mg/L,80 nm,-44 mV)的引发可增加小麦(Triticum aestivum L.)种子对铁的获取与积累[20]. ...
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
Recent advances in biodegradable matrices for active ingredient release in crop protection: towards attaining sustainability in agriculture
1
2020
... 首先,种子引入NMs后可以增加活性氧(reactive oxygen species,ROS)的积累,而ROS可促进种子内信号传导机制,以致种子胚乳细胞壁松动,进而帮助作物顺利完成萌发[11].与未引发对照和化学引发剂(AgNO3)处理相比,银纳米颗粒(silver nanoparticles,AgNPs,10 mg/L,11.2 nm)可促进水稻(Oryza sativa L.)种子中水通道蛋白基因上调,以增强水分吸收,激活种子的ROS系统,产生羟基自由基进而使细胞壁松动,促进陈化种子的萌发[13].氧化钙纳米颗粒(calcium oxide nanoparticles,CaO-NPs,75 mg/L,160 nm)引发可以通过提高超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和过氧化物酶(peroxidase,POD)活性,降低油菜(Brassica napus L.)种子的ROS水平,从而减少种子细胞损伤[14].其次,种子的纳米引发可提高作物对养分的吸收和水分利用率,为种子提供保护作用,同时提高种子发芽率,促进种子生长和幼苗发育,以此改变作物的生理状态以提高作物对非生物胁迫的耐受性[15-16].在萌发过程中,使用高浓度零价铁NMs(nanoscale zero- valent iron,nZVI,20 mg/L,233 nm,-39 mV)进行香稻种子引发,显著提高了淀粉酶和蛋白酶活性,从而使种子内储存的供能物质得到快速利用,促进胚根提早萌发[17].氧化铈纳米颗粒(cerium oxide nanoparticles,CeO2-NPs,5.8 mg/L,8.5 nm,-43.3 mV)引发可增加控制α-淀粉酶活性的AMY1和AMY2基因的表达,提高可溶性糖的浓度,从而促进淀粉代谢,为呼吸活动和细胞扩张提供能量,直到光合作用能够充分满足幼苗的生长需求[18-19].此外,NMs浸种引发还可以改善作物品质,满足人类膳食需求以及对微量矿物质的摄取,如Fe2O3- NPs(iron oxide nanoparticles,25 mg/L,80 nm,-44 mV)的引发可增加小麦(Triticum aestivum L.)种子对铁的获取与积累[20]. ...
Bioinspired nanomodification strategies: moving from chemical‐based agrosystems to sustainable agriculture
1
2021
... 首先,种子引入NMs后可以增加活性氧(reactive oxygen species,ROS)的积累,而ROS可促进种子内信号传导机制,以致种子胚乳细胞壁松动,进而帮助作物顺利完成萌发[11].与未引发对照和化学引发剂(AgNO3)处理相比,银纳米颗粒(silver nanoparticles,AgNPs,10 mg/L,11.2 nm)可促进水稻(Oryza sativa L.)种子中水通道蛋白基因上调,以增强水分吸收,激活种子的ROS系统,产生羟基自由基进而使细胞壁松动,促进陈化种子的萌发[13].氧化钙纳米颗粒(calcium oxide nanoparticles,CaO-NPs,75 mg/L,160 nm)引发可以通过提高超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和过氧化物酶(peroxidase,POD)活性,降低油菜(Brassica napus L.)种子的ROS水平,从而减少种子细胞损伤[14].其次,种子的纳米引发可提高作物对养分的吸收和水分利用率,为种子提供保护作用,同时提高种子发芽率,促进种子生长和幼苗发育,以此改变作物的生理状态以提高作物对非生物胁迫的耐受性[15-16].在萌发过程中,使用高浓度零价铁NMs(nanoscale zero- valent iron,nZVI,20 mg/L,233 nm,-39 mV)进行香稻种子引发,显著提高了淀粉酶和蛋白酶活性,从而使种子内储存的供能物质得到快速利用,促进胚根提早萌发[17].氧化铈纳米颗粒(cerium oxide nanoparticles,CeO2-NPs,5.8 mg/L,8.5 nm,-43.3 mV)引发可增加控制α-淀粉酶活性的AMY1和AMY2基因的表达,提高可溶性糖的浓度,从而促进淀粉代谢,为呼吸活动和细胞扩张提供能量,直到光合作用能够充分满足幼苗的生长需求[18-19].此外,NMs浸种引发还可以改善作物品质,满足人类膳食需求以及对微量矿物质的摄取,如Fe2O3- NPs(iron oxide nanoparticles,25 mg/L,80 nm,-44 mV)的引发可增加小麦(Triticum aestivum L.)种子对铁的获取与积累[20]. ...
Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.)
1
2018
... 首先,种子引入NMs后可以增加活性氧(reactive oxygen species,ROS)的积累,而ROS可促进种子内信号传导机制,以致种子胚乳细胞壁松动,进而帮助作物顺利完成萌发[11].与未引发对照和化学引发剂(AgNO3)处理相比,银纳米颗粒(silver nanoparticles,AgNPs,10 mg/L,11.2 nm)可促进水稻(Oryza sativa L.)种子中水通道蛋白基因上调,以增强水分吸收,激活种子的ROS系统,产生羟基自由基进而使细胞壁松动,促进陈化种子的萌发[13].氧化钙纳米颗粒(calcium oxide nanoparticles,CaO-NPs,75 mg/L,160 nm)引发可以通过提高超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和过氧化物酶(peroxidase,POD)活性,降低油菜(Brassica napus L.)种子的ROS水平,从而减少种子细胞损伤[14].其次,种子的纳米引发可提高作物对养分的吸收和水分利用率,为种子提供保护作用,同时提高种子发芽率,促进种子生长和幼苗发育,以此改变作物的生理状态以提高作物对非生物胁迫的耐受性[15-16].在萌发过程中,使用高浓度零价铁NMs(nanoscale zero- valent iron,nZVI,20 mg/L,233 nm,-39 mV)进行香稻种子引发,显著提高了淀粉酶和蛋白酶活性,从而使种子内储存的供能物质得到快速利用,促进胚根提早萌发[17].氧化铈纳米颗粒(cerium oxide nanoparticles,CeO2-NPs,5.8 mg/L,8.5 nm,-43.3 mV)引发可增加控制α-淀粉酶活性的AMY1和AMY2基因的表达,提高可溶性糖的浓度,从而促进淀粉代谢,为呼吸活动和细胞扩张提供能量,直到光合作用能够充分满足幼苗的生长需求[18-19].此外,NMs浸种引发还可以改善作物品质,满足人类膳食需求以及对微量矿物质的摄取,如Fe2O3- NPs(iron oxide nanoparticles,25 mg/L,80 nm,-44 mV)的引发可增加小麦(Triticum aestivum L.)种子对铁的获取与积累[20]. ...
Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and alpha-amylase activities
1
2021
... 首先,种子引入NMs后可以增加活性氧(reactive oxygen species,ROS)的积累,而ROS可促进种子内信号传导机制,以致种子胚乳细胞壁松动,进而帮助作物顺利完成萌发[11].与未引发对照和化学引发剂(AgNO3)处理相比,银纳米颗粒(silver nanoparticles,AgNPs,10 mg/L,11.2 nm)可促进水稻(Oryza sativa L.)种子中水通道蛋白基因上调,以增强水分吸收,激活种子的ROS系统,产生羟基自由基进而使细胞壁松动,促进陈化种子的萌发[13].氧化钙纳米颗粒(calcium oxide nanoparticles,CaO-NPs,75 mg/L,160 nm)引发可以通过提高超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和过氧化物酶(peroxidase,POD)活性,降低油菜(Brassica napus L.)种子的ROS水平,从而减少种子细胞损伤[14].其次,种子的纳米引发可提高作物对养分的吸收和水分利用率,为种子提供保护作用,同时提高种子发芽率,促进种子生长和幼苗发育,以此改变作物的生理状态以提高作物对非生物胁迫的耐受性[15-16].在萌发过程中,使用高浓度零价铁NMs(nanoscale zero- valent iron,nZVI,20 mg/L,233 nm,-39 mV)进行香稻种子引发,显著提高了淀粉酶和蛋白酶活性,从而使种子内储存的供能物质得到快速利用,促进胚根提早萌发[17].氧化铈纳米颗粒(cerium oxide nanoparticles,CeO2-NPs,5.8 mg/L,8.5 nm,-43.3 mV)引发可增加控制α-淀粉酶活性的AMY1和AMY2基因的表达,提高可溶性糖的浓度,从而促进淀粉代谢,为呼吸活动和细胞扩张提供能量,直到光合作用能够充分满足幼苗的生长需求[18-19].此外,NMs浸种引发还可以改善作物品质,满足人类膳食需求以及对微量矿物质的摄取,如Fe2O3- NPs(iron oxide nanoparticles,25 mg/L,80 nm,-44 mV)的引发可增加小麦(Triticum aestivum L.)种子对铁的获取与积累[20]. ...
Seed nanopriming: How do nanomaterials improve seed tolerance to salinity and drought?
1
2023
... 首先,种子引入NMs后可以增加活性氧(reactive oxygen species,ROS)的积累,而ROS可促进种子内信号传导机制,以致种子胚乳细胞壁松动,进而帮助作物顺利完成萌发[11].与未引发对照和化学引发剂(AgNO3)处理相比,银纳米颗粒(silver nanoparticles,AgNPs,10 mg/L,11.2 nm)可促进水稻(Oryza sativa L.)种子中水通道蛋白基因上调,以增强水分吸收,激活种子的ROS系统,产生羟基自由基进而使细胞壁松动,促进陈化种子的萌发[13].氧化钙纳米颗粒(calcium oxide nanoparticles,CaO-NPs,75 mg/L,160 nm)引发可以通过提高超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和过氧化物酶(peroxidase,POD)活性,降低油菜(Brassica napus L.)种子的ROS水平,从而减少种子细胞损伤[14].其次,种子的纳米引发可提高作物对养分的吸收和水分利用率,为种子提供保护作用,同时提高种子发芽率,促进种子生长和幼苗发育,以此改变作物的生理状态以提高作物对非生物胁迫的耐受性[15-16].在萌发过程中,使用高浓度零价铁NMs(nanoscale zero- valent iron,nZVI,20 mg/L,233 nm,-39 mV)进行香稻种子引发,显著提高了淀粉酶和蛋白酶活性,从而使种子内储存的供能物质得到快速利用,促进胚根提早萌发[17].氧化铈纳米颗粒(cerium oxide nanoparticles,CeO2-NPs,5.8 mg/L,8.5 nm,-43.3 mV)引发可增加控制α-淀粉酶活性的AMY1和AMY2基因的表达,提高可溶性糖的浓度,从而促进淀粉代谢,为呼吸活动和细胞扩张提供能量,直到光合作用能够充分满足幼苗的生长需求[18-19].此外,NMs浸种引发还可以改善作物品质,满足人类膳食需求以及对微量矿物质的摄取,如Fe2O3- NPs(iron oxide nanoparticles,25 mg/L,80 nm,-44 mV)的引发可增加小麦(Triticum aestivum L.)种子对铁的获取与积累[20]. ...
Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains
1
2019
... 首先,种子引入NMs后可以增加活性氧(reactive oxygen species,ROS)的积累,而ROS可促进种子内信号传导机制,以致种子胚乳细胞壁松动,进而帮助作物顺利完成萌发[11].与未引发对照和化学引发剂(AgNO3)处理相比,银纳米颗粒(silver nanoparticles,AgNPs,10 mg/L,11.2 nm)可促进水稻(Oryza sativa L.)种子中水通道蛋白基因上调,以增强水分吸收,激活种子的ROS系统,产生羟基自由基进而使细胞壁松动,促进陈化种子的萌发[13].氧化钙纳米颗粒(calcium oxide nanoparticles,CaO-NPs,75 mg/L,160 nm)引发可以通过提高超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和过氧化物酶(peroxidase,POD)活性,降低油菜(Brassica napus L.)种子的ROS水平,从而减少种子细胞损伤[14].其次,种子的纳米引发可提高作物对养分的吸收和水分利用率,为种子提供保护作用,同时提高种子发芽率,促进种子生长和幼苗发育,以此改变作物的生理状态以提高作物对非生物胁迫的耐受性[15-16].在萌发过程中,使用高浓度零价铁NMs(nanoscale zero- valent iron,nZVI,20 mg/L,233 nm,-39 mV)进行香稻种子引发,显著提高了淀粉酶和蛋白酶活性,从而使种子内储存的供能物质得到快速利用,促进胚根提早萌发[17].氧化铈纳米颗粒(cerium oxide nanoparticles,CeO2-NPs,5.8 mg/L,8.5 nm,-43.3 mV)引发可增加控制α-淀粉酶活性的AMY1和AMY2基因的表达,提高可溶性糖的浓度,从而促进淀粉代谢,为呼吸活动和细胞扩张提供能量,直到光合作用能够充分满足幼苗的生长需求[18-19].此外,NMs浸种引发还可以改善作物品质,满足人类膳食需求以及对微量矿物质的摄取,如Fe2O3- NPs(iron oxide nanoparticles,25 mg/L,80 nm,-44 mV)的引发可增加小麦(Triticum aestivum L.)种子对铁的获取与积累[20]. ...
Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging
1
2017
... NMs由根系引入的方式有2种,分别是施用于土壤中和加入营养液中(图1b).NMs到达根表皮后,主要通过质外体和共质体2种途径吸收后转运到作物的各个组织中.质外体途径中,水中的NMs通过渗透作用穿过细胞壁孔,然后扩散到细胞膜与细胞壁之间的空间中[6,21];共质体途径中,NMs可以穿过细胞膜进入细胞质,也可以通过胞间连丝进行细胞间的运输[22].NMs亦可从根系的损伤区域(疾病、损伤或幼苗移植的意外损伤)进入细胞间隙[10].研究[23]表明,拟南芥(Arabidopsis thaliana L.)根系吸收nZVI(10 mg/L,54 nm)可激活其质膜H+-ATP酶,促使质子向外质体的排出增加,质外体的pH降低,形成酸性条件,使得细胞壁松弛,从而促进植物的生长,增加叶片面积. ...
Advances in nanoparticle and organic formulations for prolonged controlled release of auxins
2
2023
... NMs由根系引入的方式有2种,分别是施用于土壤中和加入营养液中(图1b).NMs到达根表皮后,主要通过质外体和共质体2种途径吸收后转运到作物的各个组织中.质外体途径中,水中的NMs通过渗透作用穿过细胞壁孔,然后扩散到细胞膜与细胞壁之间的空间中[6,21];共质体途径中,NMs可以穿过细胞膜进入细胞质,也可以通过胞间连丝进行细胞间的运输[22].NMs亦可从根系的损伤区域(疾病、损伤或幼苗移植的意外损伤)进入细胞间隙[10].研究[23]表明,拟南芥(Arabidopsis thaliana L.)根系吸收nZVI(10 mg/L,54 nm)可激活其质膜H+-ATP酶,促使质子向外质体的排出增加,质外体的pH降低,形成酸性条件,使得细胞壁松弛,从而促进植物的生长,增加叶片面积. ...
... 叶面喷施NMs后,可以通过气孔或角质层渗透到植物组织中,并通过韧皮部转运到植物器官中移动和积累[40].少部分NMs可直接以非极性溶质的亲脂途径或极性溶质的亲水途径穿过叶片的蜡质角质层[41],但大部分NMs主要是通过气孔途径将其吸收转运到叶片内部组织[42],继而通过质外体途径,与其他大分子、糖和光合产物等物质一同通过韧皮部长距离运输到嫩枝和根部[22,39,43].NMs的组成成分及表征特征如电荷、大小、性状和疏水性均会影响喷施后叶片对其的吸收效率.通过液滴法(使用自动移液器将含NPs的液滴等量滴在成熟叶片表面,等待液滴自然干燥)在叶片输送,可增加低纵横比的AuNPs(球体、立方体和菱形十二面体)向西瓜(Citrullus lanatus)根系的转运,提高根剖面中Au+的累积,但会抑制高纵横比颗粒(长60 nm、直径20 nm的棒状颗粒)的转运;而喷雾法(使用雾化器在成熟叶片表面喷洒NPs)则观察到相反的趋势,棒状NPs向根转移的程度最大[44].因此,不同喷施方法可以影响不同形状的NMs在作物中的吸收和运输. ...
Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana
1
2015
... NMs由根系引入的方式有2种,分别是施用于土壤中和加入营养液中(图1b).NMs到达根表皮后,主要通过质外体和共质体2种途径吸收后转运到作物的各个组织中.质外体途径中,水中的NMs通过渗透作用穿过细胞壁孔,然后扩散到细胞膜与细胞壁之间的空间中[6,21];共质体途径中,NMs可以穿过细胞膜进入细胞质,也可以通过胞间连丝进行细胞间的运输[22].NMs亦可从根系的损伤区域(疾病、损伤或幼苗移植的意外损伤)进入细胞间隙[10].研究[23]表明,拟南芥(Arabidopsis thaliana L.)根系吸收nZVI(10 mg/L,54 nm)可激活其质膜H+-ATP酶,促使质子向外质体的排出增加,质外体的pH降低,形成酸性条件,使得细胞壁松弛,从而促进植物的生长,增加叶片面积. ...
Uptake,distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings
1
2012
... 纳米颗粒(nanoparticles,NPs)的大小、电荷等表征特性会影响作物根系对其的吸收效率.研究[24]表明烟草(Nicotiana xanthi L.)根部可吸收3.5 nm的金纳米颗粒(gold nanoparticles,AuNPs,48 mg/L,-27.5 mV),而18 nm的AuNPs(76 mg/L,-48.79 mV)只能聚集在其根部表面;拟南芥根系可吸收小于5 nm的AuNPs(100 mg/L),对于7~108 nm的AuNPs无法吸收[25].带负电荷的NPs能够顺利转移到植物根系的质外体中,而带正电荷的NPs则吸附在根冠粘液中进一步诱导粘液产生,阻止NPs转移到根的内部组织[26].不同的植物物种在各生长阶段的根系分泌物具有不同的电荷,从而影响NMs的吸收,因此,不同植物在不同生长阶段对NMs的吸收是一个非常复杂的过程. ...
Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold
1
2014
... 纳米颗粒(nanoparticles,NPs)的大小、电荷等表征特性会影响作物根系对其的吸收效率.研究[24]表明烟草(Nicotiana xanthi L.)根部可吸收3.5 nm的金纳米颗粒(gold nanoparticles,AuNPs,48 mg/L,-27.5 mV),而18 nm的AuNPs(76 mg/L,-48.79 mV)只能聚集在其根部表面;拟南芥根系可吸收小于5 nm的AuNPs(100 mg/L),对于7~108 nm的AuNPs无法吸收[25].带负电荷的NPs能够顺利转移到植物根系的质外体中,而带正电荷的NPs则吸附在根冠粘液中进一步诱导粘液产生,阻止NPs转移到根的内部组织[26].不同的植物物种在各生长阶段的根系分泌物具有不同的电荷,从而影响NMs的吸收,因此,不同植物在不同生长阶段对NMs的吸收是一个非常复杂的过程. ...
Critical review: uptake and translocation of organic nanodelivery vehicles in plants
1
2024
... 纳米颗粒(nanoparticles,NPs)的大小、电荷等表征特性会影响作物根系对其的吸收效率.研究[24]表明烟草(Nicotiana xanthi L.)根部可吸收3.5 nm的金纳米颗粒(gold nanoparticles,AuNPs,48 mg/L,-27.5 mV),而18 nm的AuNPs(76 mg/L,-48.79 mV)只能聚集在其根部表面;拟南芥根系可吸收小于5 nm的AuNPs(100 mg/L),对于7~108 nm的AuNPs无法吸收[25].带负电荷的NPs能够顺利转移到植物根系的质外体中,而带正电荷的NPs则吸附在根冠粘液中进一步诱导粘液产生,阻止NPs转移到根的内部组织[26].不同的植物物种在各生长阶段的根系分泌物具有不同的电荷,从而影响NMs的吸收,因此,不同植物在不同生长阶段对NMs的吸收是一个非常复杂的过程. ...
Effects of cerium oxide on rice seedlings as affected by co-exposure of cadmium and salt
3
2019
... 在水培处理下,施用NMs可以促进非生物胁迫下(如重金属和盐胁迫)植物对所需营养元素的吸收,提高植株叶片中叶绿素含量,增强防御能力,减轻胁迫带来的不良影响[27].而在土壤环境中,土壤颗粒中本身含有带电荷的天然NPs,可与土壤中的Mg2+、Ca2+和K+等离子形成静电键,提高土壤的阳离子交换能力[28];外源添加NMs时可通过影响土壤的理化性质,进一步影响土壤微生物的群落结构,为作物根系生长提供营养物质和良好的生长环境.研究[29-30]表明,相比较于二氧化钛纳米颗粒(titanium dioxide nanoparticles,TiO2-NPs,0.5 mg/g,46.9 nm)和氧化锌纳米颗粒(zinc oxide nanoparticles,ZnO-NPs,0.5 mg/g,17~24 nm),AgNPs(11.8 nm,0.01 mg/g)对拟杆菌门和厚壁菌门的相对丰度影响最为显著,拟杆菌门的相对丰度随着剂量增加而上升,厚壁菌门的相对丰度随着剂量的增加而下降,对土壤细菌群落呈抑制的现象.与中性土壤相比,AgNPs(50 mg/kg,19 nm,-56.1 mV)对酸性土壤的微生物群落结构和脱氢酶活性的影响更为显著[31].但不同大小和浓度的NMs作用于不同作物时也会对土壤环境产生负面影响.Liu等[32]分析了NMs对土壤生态系统的影响,结果表明20 μg/L的AgNPs(15 nm)降低了土壤微生物的丰度,并抑制了蚯蚓(Eisenia foetida)和植物的生长,还干扰了有益微生物(如菌根)在植物根部的定植,降低了植物吸收养分和水分的能力.Kulikova等[33]利用含腐殖质的AgNPs(0.2 mmol/L,28 nm)模拟天然NPs对土壤的相互作用,结果表明由于AgNPs的部分溶解导致Ag+的产生,促使土壤有机质被氧化,土壤团聚体部分破裂,进而导致土壤溶液中金属元素(Al、Cr、Cu、Fe等)浓度显著增加,且AgNPs处理后小麦的水分吸收率、地上部和根系生物量都显著下降.因此,土壤处理后,由于NMs的表征特性不同,对农田生态系统中植物、动物和微生物的影响也会有所不同. ...
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... [
27]
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
Nanotechnology for sustainable agro-food systems: the need and role of nanoparticles in protecting plants and improving crop productivity
1
2023
... 在水培处理下,施用NMs可以促进非生物胁迫下(如重金属和盐胁迫)植物对所需营养元素的吸收,提高植株叶片中叶绿素含量,增强防御能力,减轻胁迫带来的不良影响[27].而在土壤环境中,土壤颗粒中本身含有带电荷的天然NPs,可与土壤中的Mg2+、Ca2+和K+等离子形成静电键,提高土壤的阳离子交换能力[28];外源添加NMs时可通过影响土壤的理化性质,进一步影响土壤微生物的群落结构,为作物根系生长提供营养物质和良好的生长环境.研究[29-30]表明,相比较于二氧化钛纳米颗粒(titanium dioxide nanoparticles,TiO2-NPs,0.5 mg/g,46.9 nm)和氧化锌纳米颗粒(zinc oxide nanoparticles,ZnO-NPs,0.5 mg/g,17~24 nm),AgNPs(11.8 nm,0.01 mg/g)对拟杆菌门和厚壁菌门的相对丰度影响最为显著,拟杆菌门的相对丰度随着剂量增加而上升,厚壁菌门的相对丰度随着剂量的增加而下降,对土壤细菌群落呈抑制的现象.与中性土壤相比,AgNPs(50 mg/kg,19 nm,-56.1 mV)对酸性土壤的微生物群落结构和脱氢酶活性的影响更为显著[31].但不同大小和浓度的NMs作用于不同作物时也会对土壤环境产生负面影响.Liu等[32]分析了NMs对土壤生态系统的影响,结果表明20 μg/L的AgNPs(15 nm)降低了土壤微生物的丰度,并抑制了蚯蚓(Eisenia foetida)和植物的生长,还干扰了有益微生物(如菌根)在植物根部的定植,降低了植物吸收养分和水分的能力.Kulikova等[33]利用含腐殖质的AgNPs(0.2 mmol/L,28 nm)模拟天然NPs对土壤的相互作用,结果表明由于AgNPs的部分溶解导致Ag+的产生,促使土壤有机质被氧化,土壤团聚体部分破裂,进而导致土壤溶液中金属元素(Al、Cr、Cu、Fe等)浓度显著增加,且AgNPs处理后小麦的水分吸收率、地上部和根系生物量都显著下降.因此,土壤处理后,由于NMs的表征特性不同,对农田生态系统中植物、动物和微生物的影响也会有所不同. ...
Nanopore-based metagenomic analysis of the impact of nanoparticles on soil microbial communities
1
2022
... 在水培处理下,施用NMs可以促进非生物胁迫下(如重金属和盐胁迫)植物对所需营养元素的吸收,提高植株叶片中叶绿素含量,增强防御能力,减轻胁迫带来的不良影响[27].而在土壤环境中,土壤颗粒中本身含有带电荷的天然NPs,可与土壤中的Mg2+、Ca2+和K+等离子形成静电键,提高土壤的阳离子交换能力[28];外源添加NMs时可通过影响土壤的理化性质,进一步影响土壤微生物的群落结构,为作物根系生长提供营养物质和良好的生长环境.研究[29-30]表明,相比较于二氧化钛纳米颗粒(titanium dioxide nanoparticles,TiO2-NPs,0.5 mg/g,46.9 nm)和氧化锌纳米颗粒(zinc oxide nanoparticles,ZnO-NPs,0.5 mg/g,17~24 nm),AgNPs(11.8 nm,0.01 mg/g)对拟杆菌门和厚壁菌门的相对丰度影响最为显著,拟杆菌门的相对丰度随着剂量增加而上升,厚壁菌门的相对丰度随着剂量的增加而下降,对土壤细菌群落呈抑制的现象.与中性土壤相比,AgNPs(50 mg/kg,19 nm,-56.1 mV)对酸性土壤的微生物群落结构和脱氢酶活性的影响更为显著[31].但不同大小和浓度的NMs作用于不同作物时也会对土壤环境产生负面影响.Liu等[32]分析了NMs对土壤生态系统的影响,结果表明20 μg/L的AgNPs(15 nm)降低了土壤微生物的丰度,并抑制了蚯蚓(Eisenia foetida)和植物的生长,还干扰了有益微生物(如菌根)在植物根部的定植,降低了植物吸收养分和水分的能力.Kulikova等[33]利用含腐殖质的AgNPs(0.2 mmol/L,28 nm)模拟天然NPs对土壤的相互作用,结果表明由于AgNPs的部分溶解导致Ag+的产生,促使土壤有机质被氧化,土壤团聚体部分破裂,进而导致土壤溶液中金属元素(Al、Cr、Cu、Fe等)浓度显著增加,且AgNPs处理后小麦的水分吸收率、地上部和根系生物量都显著下降.因此,土壤处理后,由于NMs的表征特性不同,对农田生态系统中植物、动物和微生物的影响也会有所不同. ...
Effect of round-shaped silver nanoparticles on the genetic and functional diversity of soil microbial community in soil and “soil-plant” systems
1
2021
... 在水培处理下,施用NMs可以促进非生物胁迫下(如重金属和盐胁迫)植物对所需营养元素的吸收,提高植株叶片中叶绿素含量,增强防御能力,减轻胁迫带来的不良影响[27].而在土壤环境中,土壤颗粒中本身含有带电荷的天然NPs,可与土壤中的Mg2+、Ca2+和K+等离子形成静电键,提高土壤的阳离子交换能力[28];外源添加NMs时可通过影响土壤的理化性质,进一步影响土壤微生物的群落结构,为作物根系生长提供营养物质和良好的生长环境.研究[29-30]表明,相比较于二氧化钛纳米颗粒(titanium dioxide nanoparticles,TiO2-NPs,0.5 mg/g,46.9 nm)和氧化锌纳米颗粒(zinc oxide nanoparticles,ZnO-NPs,0.5 mg/g,17~24 nm),AgNPs(11.8 nm,0.01 mg/g)对拟杆菌门和厚壁菌门的相对丰度影响最为显著,拟杆菌门的相对丰度随着剂量增加而上升,厚壁菌门的相对丰度随着剂量的增加而下降,对土壤细菌群落呈抑制的现象.与中性土壤相比,AgNPs(50 mg/kg,19 nm,-56.1 mV)对酸性土壤的微生物群落结构和脱氢酶活性的影响更为显著[31].但不同大小和浓度的NMs作用于不同作物时也会对土壤环境产生负面影响.Liu等[32]分析了NMs对土壤生态系统的影响,结果表明20 μg/L的AgNPs(15 nm)降低了土壤微生物的丰度,并抑制了蚯蚓(Eisenia foetida)和植物的生长,还干扰了有益微生物(如菌根)在植物根部的定植,降低了植物吸收养分和水分的能力.Kulikova等[33]利用含腐殖质的AgNPs(0.2 mmol/L,28 nm)模拟天然NPs对土壤的相互作用,结果表明由于AgNPs的部分溶解导致Ag+的产生,促使土壤有机质被氧化,土壤团聚体部分破裂,进而导致土壤溶液中金属元素(Al、Cr、Cu、Fe等)浓度显著增加,且AgNPs处理后小麦的水分吸收率、地上部和根系生物量都显著下降.因此,土壤处理后,由于NMs的表征特性不同,对农田生态系统中植物、动物和微生物的影响也会有所不同. ...
Exploring the influence of raising soil pH on the ecotoxicological effects of silver nanoparticles and micron particles on soil microbial communities
1
2020
... 在水培处理下,施用NMs可以促进非生物胁迫下(如重金属和盐胁迫)植物对所需营养元素的吸收,提高植株叶片中叶绿素含量,增强防御能力,减轻胁迫带来的不良影响[27].而在土壤环境中,土壤颗粒中本身含有带电荷的天然NPs,可与土壤中的Mg2+、Ca2+和K+等离子形成静电键,提高土壤的阳离子交换能力[28];外源添加NMs时可通过影响土壤的理化性质,进一步影响土壤微生物的群落结构,为作物根系生长提供营养物质和良好的生长环境.研究[29-30]表明,相比较于二氧化钛纳米颗粒(titanium dioxide nanoparticles,TiO2-NPs,0.5 mg/g,46.9 nm)和氧化锌纳米颗粒(zinc oxide nanoparticles,ZnO-NPs,0.5 mg/g,17~24 nm),AgNPs(11.8 nm,0.01 mg/g)对拟杆菌门和厚壁菌门的相对丰度影响最为显著,拟杆菌门的相对丰度随着剂量增加而上升,厚壁菌门的相对丰度随着剂量的增加而下降,对土壤细菌群落呈抑制的现象.与中性土壤相比,AgNPs(50 mg/kg,19 nm,-56.1 mV)对酸性土壤的微生物群落结构和脱氢酶活性的影响更为显著[31].但不同大小和浓度的NMs作用于不同作物时也会对土壤环境产生负面影响.Liu等[32]分析了NMs对土壤生态系统的影响,结果表明20 μg/L的AgNPs(15 nm)降低了土壤微生物的丰度,并抑制了蚯蚓(Eisenia foetida)和植物的生长,还干扰了有益微生物(如菌根)在植物根部的定植,降低了植物吸收养分和水分的能力.Kulikova等[33]利用含腐殖质的AgNPs(0.2 mmol/L,28 nm)模拟天然NPs对土壤的相互作用,结果表明由于AgNPs的部分溶解导致Ag+的产生,促使土壤有机质被氧化,土壤团聚体部分破裂,进而导致土壤溶液中金属元素(Al、Cr、Cu、Fe等)浓度显著增加,且AgNPs处理后小麦的水分吸收率、地上部和根系生物量都显著下降.因此,土壤处理后,由于NMs的表征特性不同,对农田生态系统中植物、动物和微生物的影响也会有所不同. ...
TiO2 nanoparticles in irrigation water mitigate impacts of aged Ag nanoparticles on soil microorganisms, Arabidopsis thaliana plants, and Eisenia fetida earthworms
1
2019
... 在水培处理下,施用NMs可以促进非生物胁迫下(如重金属和盐胁迫)植物对所需营养元素的吸收,提高植株叶片中叶绿素含量,增强防御能力,减轻胁迫带来的不良影响[27].而在土壤环境中,土壤颗粒中本身含有带电荷的天然NPs,可与土壤中的Mg2+、Ca2+和K+等离子形成静电键,提高土壤的阳离子交换能力[28];外源添加NMs时可通过影响土壤的理化性质,进一步影响土壤微生物的群落结构,为作物根系生长提供营养物质和良好的生长环境.研究[29-30]表明,相比较于二氧化钛纳米颗粒(titanium dioxide nanoparticles,TiO2-NPs,0.5 mg/g,46.9 nm)和氧化锌纳米颗粒(zinc oxide nanoparticles,ZnO-NPs,0.5 mg/g,17~24 nm),AgNPs(11.8 nm,0.01 mg/g)对拟杆菌门和厚壁菌门的相对丰度影响最为显著,拟杆菌门的相对丰度随着剂量增加而上升,厚壁菌门的相对丰度随着剂量的增加而下降,对土壤细菌群落呈抑制的现象.与中性土壤相比,AgNPs(50 mg/kg,19 nm,-56.1 mV)对酸性土壤的微生物群落结构和脱氢酶活性的影响更为显著[31].但不同大小和浓度的NMs作用于不同作物时也会对土壤环境产生负面影响.Liu等[32]分析了NMs对土壤生态系统的影响,结果表明20 μg/L的AgNPs(15 nm)降低了土壤微生物的丰度,并抑制了蚯蚓(Eisenia foetida)和植物的生长,还干扰了有益微生物(如菌根)在植物根部的定植,降低了植物吸收养分和水分的能力.Kulikova等[33]利用含腐殖质的AgNPs(0.2 mmol/L,28 nm)模拟天然NPs对土壤的相互作用,结果表明由于AgNPs的部分溶解导致Ag+的产生,促使土壤有机质被氧化,土壤团聚体部分破裂,进而导致土壤溶液中金属元素(Al、Cr、Cu、Fe等)浓度显著增加,且AgNPs处理后小麦的水分吸收率、地上部和根系生物量都显著下降.因此,土壤处理后,由于NMs的表征特性不同,对农田生态系统中植物、动物和微生物的影响也会有所不同. ...
Silver nanoparticles stabilized by humic substances adversely affect wheat plants and soil
1
2020
... 在水培处理下,施用NMs可以促进非生物胁迫下(如重金属和盐胁迫)植物对所需营养元素的吸收,提高植株叶片中叶绿素含量,增强防御能力,减轻胁迫带来的不良影响[27].而在土壤环境中,土壤颗粒中本身含有带电荷的天然NPs,可与土壤中的Mg2+、Ca2+和K+等离子形成静电键,提高土壤的阳离子交换能力[28];外源添加NMs时可通过影响土壤的理化性质,进一步影响土壤微生物的群落结构,为作物根系生长提供营养物质和良好的生长环境.研究[29-30]表明,相比较于二氧化钛纳米颗粒(titanium dioxide nanoparticles,TiO2-NPs,0.5 mg/g,46.9 nm)和氧化锌纳米颗粒(zinc oxide nanoparticles,ZnO-NPs,0.5 mg/g,17~24 nm),AgNPs(11.8 nm,0.01 mg/g)对拟杆菌门和厚壁菌门的相对丰度影响最为显著,拟杆菌门的相对丰度随着剂量增加而上升,厚壁菌门的相对丰度随着剂量的增加而下降,对土壤细菌群落呈抑制的现象.与中性土壤相比,AgNPs(50 mg/kg,19 nm,-56.1 mV)对酸性土壤的微生物群落结构和脱氢酶活性的影响更为显著[31].但不同大小和浓度的NMs作用于不同作物时也会对土壤环境产生负面影响.Liu等[32]分析了NMs对土壤生态系统的影响,结果表明20 μg/L的AgNPs(15 nm)降低了土壤微生物的丰度,并抑制了蚯蚓(Eisenia foetida)和植物的生长,还干扰了有益微生物(如菌根)在植物根部的定植,降低了植物吸收养分和水分的能力.Kulikova等[33]利用含腐殖质的AgNPs(0.2 mmol/L,28 nm)模拟天然NPs对土壤的相互作用,结果表明由于AgNPs的部分溶解导致Ag+的产生,促使土壤有机质被氧化,土壤团聚体部分破裂,进而导致土壤溶液中金属元素(Al、Cr、Cu、Fe等)浓度显著增加,且AgNPs处理后小麦的水分吸收率、地上部和根系生物量都显著下降.因此,土壤处理后,由于NMs的表征特性不同,对农田生态系统中植物、动物和微生物的影响也会有所不同. ...
Exploring the dynamics of nanoparticle-plant- microbe interactions to realize the goal of improved crop productivity and food security
1
... 此外,一些研究[34-35]发现,NMs水培处理和盆栽土壤处理均可缓解胁迫下作物的生长压力,但盆栽土壤处理下NMs对植物的株高、叶长和叶绿素等形态生理指标的提升效果比水培处理效果好.同时,除了根际条件外,作物根形态、根渗透物和根表面等均会影响NMs的根系引入[36-38],因此,还需更进一步研究根际因素在NMs对不同作物的影响和吸收中的作用. ...
Role of nano-biochar in attenuating the allelopathic effect from Imperata cylindrica on rice seedlings
1
2020
... 此外,一些研究[34-35]发现,NMs水培处理和盆栽土壤处理均可缓解胁迫下作物的生长压力,但盆栽土壤处理下NMs对植物的株高、叶长和叶绿素等形态生理指标的提升效果比水培处理效果好.同时,除了根际条件外,作物根形态、根渗透物和根表面等均会影响NMs的根系引入[36-38],因此,还需更进一步研究根际因素在NMs对不同作物的影响和吸收中的作用. ...
Metabolomics to detect response of lettuce (Lactuca sativa) to Cu(OH)2 nanopesticides: oxidative stress response and detoxification mechanisms
1
2016
... 此外,一些研究[34-35]发现,NMs水培处理和盆栽土壤处理均可缓解胁迫下作物的生长压力,但盆栽土壤处理下NMs对植物的株高、叶长和叶绿素等形态生理指标的提升效果比水培处理效果好.同时,除了根际条件外,作物根形态、根渗透物和根表面等均会影响NMs的根系引入[36-38],因此,还需更进一步研究根际因素在NMs对不同作物的影响和吸收中的作用. ...
Morphological, histological and ultrastructural changes in Hordeum vulgare (L.) roots that have been exposed to negatively charged gold nanoparticles
0
2022
Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers
4
2017
... 此外,一些研究[34-35]发现,NMs水培处理和盆栽土壤处理均可缓解胁迫下作物的生长压力,但盆栽土壤处理下NMs对植物的株高、叶长和叶绿素等形态生理指标的提升效果比水培处理效果好.同时,除了根际条件外,作物根形态、根渗透物和根表面等均会影响NMs的根系引入[36-38],因此,还需更进一步研究根际因素在NMs对不同作物的影响和吸收中的作用. ...
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... 盐分过多时高浓度离子环境首先对作物产生渗透胁迫.在盐胁迫条件下,在蚕豆(Vicia faba L.)叶面施用ZnO-NPs(50 mg/L,9.4 nm)可显著增加叶片中的脯氨酸和总可溶性糖含量以提高其耐盐性[55],且ZnO-NPs(20和50 mg/L)亦可通过叶面喷施刺激小麦渗透液的形成和养分吸收,改善盐胁迫条件下小麦细胞的渗透保护,增加作物新陈代谢[56].盐胁迫条件下,Na+和Cl-在作物体内过量积累,对其他离子产生竞争性抑制作用,破坏作物体内离子平衡,阻碍作物生长,NMs的应用可以缓解这一现象.如叶面注射CeO2-NPs(0.9 mmol/L,8.04 nm)可以通过调控KOR、SOS等离子转运基因表达,增加棉花K+/Na+比例,促使Na+最小化吸收,以平衡盐胁迫对作物的损害[57].土壤施用500 mg/kg的CeO2-NPs可通过缩短油菜根外质体的屏障,促进更多Na+从根部转移到茎部[38].盐胁迫除了直接的高渗毒害作用以外,还会导致作物细胞内发生氧化胁迫而促使代谢紊乱,NMs可调节作物抗氧化酶活性以缓解胁迫带来的危害[72].如叶面喷施FeSO4-NPs(2 g/L)可提高NaCl胁迫下向日葵(Helianthus annuus)的CAT、脯氨酸氧化酶(proline oxidase,POX)和PPO活性,以减少作物在盐胁迫下羟自由基等ROS的产生[38,56].CeO2-NPs可以降低盐胁迫下棉花植株第1和第2真叶的ROS,提高抗氧化酶活性,从而维持稳定的ROS含量[57].盐胁迫下ZnO-NPs(50 mg/L,9.4 nm)处理,可提高蚕豆植株中次生代谢物(如氨基酸、脯氨酸、甘氨酸、甜菜碱、总可溶性糖等物质)含量,增强其解毒能力,减轻盐胁迫带来的负面影响[55].此外,NMs对作物胁迫的作用存在浓度效应,如低浓度(12.5、25 mg/L)的氧化石墨烯(graphene oxide,GO,5 nm)可促进小麦种子萌发,而高浓度(50、100、200 mg/L)下小麦萌发受阻,并加重盐胁迫对其生长造成的抑制效应[2]. ...
... [38,56].CeO2-NPs可以降低盐胁迫下棉花植株第1和第2真叶的ROS,提高抗氧化酶活性,从而维持稳定的ROS含量[57].盐胁迫下ZnO-NPs(50 mg/L,9.4 nm)处理,可提高蚕豆植株中次生代谢物(如氨基酸、脯氨酸、甘氨酸、甜菜碱、总可溶性糖等物质)含量,增强其解毒能力,减轻盐胁迫带来的负面影响[55].此外,NMs对作物胁迫的作用存在浓度效应,如低浓度(12.5、25 mg/L)的氧化石墨烯(graphene oxide,GO,5 nm)可促进小麦种子萌发,而高浓度(50、100、200 mg/L)下小麦萌发受阻,并加重盐胁迫对其生长造成的抑制效应[2]. ...
Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles
3
2020
... NMs的叶片施用方式可分为注射和喷施(图1c).叶片注射是用针头戳伤叶片背面表皮后,用无针注射器轻缓地将NMs溶液注射至叶肉细胞中;叶面喷施是将NMs直接喷涂在作物的叶片表面,喷施时为增加纳米溶液在作物叶片上的着药量和扩散能力,可在溶液中加入表面活性剂[3,39].叶片注射操作繁琐、效率低,但NMs可不受叶片表皮的影响直接进入到叶肉细胞中,多用于初期NMs的作用机制研究;而叶面喷施操作简便,是田间试验更实用的选择. ...
... 叶面喷施NMs后,可以通过气孔或角质层渗透到植物组织中,并通过韧皮部转运到植物器官中移动和积累[40].少部分NMs可直接以非极性溶质的亲脂途径或极性溶质的亲水途径穿过叶片的蜡质角质层[41],但大部分NMs主要是通过气孔途径将其吸收转运到叶片内部组织[42],继而通过质外体途径,与其他大分子、糖和光合产物等物质一同通过韧皮部长距离运输到嫩枝和根部[22,39,43].NMs的组成成分及表征特征如电荷、大小、性状和疏水性均会影响喷施后叶片对其的吸收效率.通过液滴法(使用自动移液器将含NPs的液滴等量滴在成熟叶片表面,等待液滴自然干燥)在叶片输送,可增加低纵横比的AuNPs(球体、立方体和菱形十二面体)向西瓜(Citrullus lanatus)根系的转运,提高根剖面中Au+的累积,但会抑制高纵横比颗粒(长60 nm、直径20 nm的棒状颗粒)的转运;而喷雾法(使用雾化器在成熟叶片表面喷洒NPs)则观察到相反的趋势,棒状NPs向根转移的程度最大[44].因此,不同喷施方法可以影响不同形状的NMs在作物中的吸收和运输. ...
... 单子叶与双子叶植物因叶片结构及气孔大小、密度不同对不同表征特性的NMs吸收效率不同.16 nm以下的NMs能够通过气孔和角质层高效地进入双子叶植物叶片中,而NMs进入单子叶植物叶片的大小限制为8 nm,且带正电的NMs比带负电的更容易进入到叶片中[39].AuNPs处理后,植物叶片中Au+含量随着AuNPs尺寸(3、10和50 nm)的增大而降低,表明NMs尺寸是影响NMs进入作物体内的重要因素[43].此外,不同涂层包覆的NMs对作物产生的作用不同,如Au+可抑制植物光合作用,柠檬酸盐包覆的AuNPs主要积累在小麦叶片外部,可促进其呼吸作用,而聚乙烯吡咯烷酮包覆的AuNPs可与叶肉细胞相互作用,不利于小麦光合作用[43]. ...
Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation
1
2021
... 叶面喷施NMs后,可以通过气孔或角质层渗透到植物组织中,并通过韧皮部转运到植物器官中移动和积累[40].少部分NMs可直接以非极性溶质的亲脂途径或极性溶质的亲水途径穿过叶片的蜡质角质层[41],但大部分NMs主要是通过气孔途径将其吸收转运到叶片内部组织[42],继而通过质外体途径,与其他大分子、糖和光合产物等物质一同通过韧皮部长距离运输到嫩枝和根部[22,39,43].NMs的组成成分及表征特征如电荷、大小、性状和疏水性均会影响喷施后叶片对其的吸收效率.通过液滴法(使用自动移液器将含NPs的液滴等量滴在成熟叶片表面,等待液滴自然干燥)在叶片输送,可增加低纵横比的AuNPs(球体、立方体和菱形十二面体)向西瓜(Citrullus lanatus)根系的转运,提高根剖面中Au+的累积,但会抑制高纵横比颗粒(长60 nm、直径20 nm的棒状颗粒)的转运;而喷雾法(使用雾化器在成熟叶片表面喷洒NPs)则观察到相反的趋势,棒状NPs向根转移的程度最大[44].因此,不同喷施方法可以影响不同形状的NMs在作物中的吸收和运输. ...
Transport of nanoparticles into plants and their detection methods
1
2024
... 叶面喷施NMs后,可以通过气孔或角质层渗透到植物组织中,并通过韧皮部转运到植物器官中移动和积累[40].少部分NMs可直接以非极性溶质的亲脂途径或极性溶质的亲水途径穿过叶片的蜡质角质层[41],但大部分NMs主要是通过气孔途径将其吸收转运到叶片内部组织[42],继而通过质外体途径,与其他大分子、糖和光合产物等物质一同通过韧皮部长距离运输到嫩枝和根部[22,39,43].NMs的组成成分及表征特征如电荷、大小、性状和疏水性均会影响喷施后叶片对其的吸收效率.通过液滴法(使用自动移液器将含NPs的液滴等量滴在成熟叶片表面,等待液滴自然干燥)在叶片输送,可增加低纵横比的AuNPs(球体、立方体和菱形十二面体)向西瓜(Citrullus lanatus)根系的转运,提高根剖面中Au+的累积,但会抑制高纵横比颗粒(长60 nm、直径20 nm的棒状颗粒)的转运;而喷雾法(使用雾化器在成熟叶片表面喷洒NPs)则观察到相反的趋势,棒状NPs向根转移的程度最大[44].因此,不同喷施方法可以影响不同形状的NMs在作物中的吸收和运输. ...
Advancing biomolecule delivery in plants: harnessing synthetic nanocarriers to overcome multiscale barriers for cutting-edge plant bioengineering
1
2023
... 叶面喷施NMs后,可以通过气孔或角质层渗透到植物组织中,并通过韧皮部转运到植物器官中移动和积累[40].少部分NMs可直接以非极性溶质的亲脂途径或极性溶质的亲水途径穿过叶片的蜡质角质层[41],但大部分NMs主要是通过气孔途径将其吸收转运到叶片内部组织[42],继而通过质外体途径,与其他大分子、糖和光合产物等物质一同通过韧皮部长距离运输到嫩枝和根部[22,39,43].NMs的组成成分及表征特征如电荷、大小、性状和疏水性均会影响喷施后叶片对其的吸收效率.通过液滴法(使用自动移液器将含NPs的液滴等量滴在成熟叶片表面,等待液滴自然干燥)在叶片输送,可增加低纵横比的AuNPs(球体、立方体和菱形十二面体)向西瓜(Citrullus lanatus)根系的转运,提高根剖面中Au+的累积,但会抑制高纵横比颗粒(长60 nm、直径20 nm的棒状颗粒)的转运;而喷雾法(使用雾化器在成熟叶片表面喷洒NPs)则观察到相反的趋势,棒状NPs向根转移的程度最大[44].因此,不同喷施方法可以影响不同形状的NMs在作物中的吸收和运输. ...
Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat
3
2019
... 叶面喷施NMs后,可以通过气孔或角质层渗透到植物组织中,并通过韧皮部转运到植物器官中移动和积累[40].少部分NMs可直接以非极性溶质的亲脂途径或极性溶质的亲水途径穿过叶片的蜡质角质层[41],但大部分NMs主要是通过气孔途径将其吸收转运到叶片内部组织[42],继而通过质外体途径,与其他大分子、糖和光合产物等物质一同通过韧皮部长距离运输到嫩枝和根部[22,39,43].NMs的组成成分及表征特征如电荷、大小、性状和疏水性均会影响喷施后叶片对其的吸收效率.通过液滴法(使用自动移液器将含NPs的液滴等量滴在成熟叶片表面,等待液滴自然干燥)在叶片输送,可增加低纵横比的AuNPs(球体、立方体和菱形十二面体)向西瓜(Citrullus lanatus)根系的转运,提高根剖面中Au+的累积,但会抑制高纵横比颗粒(长60 nm、直径20 nm的棒状颗粒)的转运;而喷雾法(使用雾化器在成熟叶片表面喷洒NPs)则观察到相反的趋势,棒状NPs向根转移的程度最大[44].因此,不同喷施方法可以影响不同形状的NMs在作物中的吸收和运输. ...
... 单子叶与双子叶植物因叶片结构及气孔大小、密度不同对不同表征特性的NMs吸收效率不同.16 nm以下的NMs能够通过气孔和角质层高效地进入双子叶植物叶片中,而NMs进入单子叶植物叶片的大小限制为8 nm,且带正电的NMs比带负电的更容易进入到叶片中[39].AuNPs处理后,植物叶片中Au+含量随着AuNPs尺寸(3、10和50 nm)的增大而降低,表明NMs尺寸是影响NMs进入作物体内的重要因素[43].此外,不同涂层包覆的NMs对作物产生的作用不同,如Au+可抑制植物光合作用,柠檬酸盐包覆的AuNPs主要积累在小麦叶片外部,可促进其呼吸作用,而聚乙烯吡咯烷酮包覆的AuNPs可与叶肉细胞相互作用,不利于小麦光合作用[43]. ...
... [43]. ...
Quantitative understanding of nanoparticle uptake in watermelon plants
1
2016
... 叶面喷施NMs后,可以通过气孔或角质层渗透到植物组织中,并通过韧皮部转运到植物器官中移动和积累[40].少部分NMs可直接以非极性溶质的亲脂途径或极性溶质的亲水途径穿过叶片的蜡质角质层[41],但大部分NMs主要是通过气孔途径将其吸收转运到叶片内部组织[42],继而通过质外体途径,与其他大分子、糖和光合产物等物质一同通过韧皮部长距离运输到嫩枝和根部[22,39,43].NMs的组成成分及表征特征如电荷、大小、性状和疏水性均会影响喷施后叶片对其的吸收效率.通过液滴法(使用自动移液器将含NPs的液滴等量滴在成熟叶片表面,等待液滴自然干燥)在叶片输送,可增加低纵横比的AuNPs(球体、立方体和菱形十二面体)向西瓜(Citrullus lanatus)根系的转运,提高根剖面中Au+的累积,但会抑制高纵横比颗粒(长60 nm、直径20 nm的棒状颗粒)的转运;而喷雾法(使用雾化器在成熟叶片表面喷洒NPs)则观察到相反的趋势,棒状NPs向根转移的程度最大[44].因此,不同喷施方法可以影响不同形状的NMs在作物中的吸收和运输. ...
Opportunities and challenges for nanotechnology in the agri-tech revolution
1
2019
... NMs不同的施用方式对其作用效率也不同,叶面施用NMs与根部施用相比有更高的利用效率,可降低材料施用量,并减少其对环境产生的不利影响[45].研究[46]证明,水培和叶面施用ZnO-NPs(0.24 µmol/L,42.64 nm)均可提高苋菜(Amaranthus hybridus L.)的抗氧化活性,而氧化铜纳米颗粒(copper oxide nanoparticles,CuO-NPs,0.12 µmol/L,38.96 nm)只有在叶面处理时可提高苋菜抗氧化活性,水培处理对其没有明显影响.同时叶面喷施NMs可促进光合作用[47],缓解金属污染[48],并在改善植物种植参数和土壤质量[49]等方面有积极作用. ...
Biogenic CuO and ZnO nanoparticles as nanofertilizers for sustainable growth of Amaranthus hybridus
1
2022
... NMs不同的施用方式对其作用效率也不同,叶面施用NMs与根部施用相比有更高的利用效率,可降低材料施用量,并减少其对环境产生的不利影响[45].研究[46]证明,水培和叶面施用ZnO-NPs(0.24 µmol/L,42.64 nm)均可提高苋菜(Amaranthus hybridus L.)的抗氧化活性,而氧化铜纳米颗粒(copper oxide nanoparticles,CuO-NPs,0.12 µmol/L,38.96 nm)只有在叶面处理时可提高苋菜抗氧化活性,水培处理对其没有明显影响.同时叶面喷施NMs可促进光合作用[47],缓解金属污染[48],并在改善植物种植参数和土壤质量[49]等方面有积极作用. ...
Carbon nanoparticles improve corn (Zea mays L.) growth and soil quality: comparison of foliar spray and soil drench application
1
2022
... NMs不同的施用方式对其作用效率也不同,叶面施用NMs与根部施用相比有更高的利用效率,可降低材料施用量,并减少其对环境产生的不利影响[45].研究[46]证明,水培和叶面施用ZnO-NPs(0.24 µmol/L,42.64 nm)均可提高苋菜(Amaranthus hybridus L.)的抗氧化活性,而氧化铜纳米颗粒(copper oxide nanoparticles,CuO-NPs,0.12 µmol/L,38.96 nm)只有在叶面处理时可提高苋菜抗氧化活性,水培处理对其没有明显影响.同时叶面喷施NMs可促进光合作用[47],缓解金属污染[48],并在改善植物种植参数和土壤质量[49]等方面有积极作用. ...
Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant
2
2019
... NMs不同的施用方式对其作用效率也不同,叶面施用NMs与根部施用相比有更高的利用效率,可降低材料施用量,并减少其对环境产生的不利影响[45].研究[46]证明,水培和叶面施用ZnO-NPs(0.24 µmol/L,42.64 nm)均可提高苋菜(Amaranthus hybridus L.)的抗氧化活性,而氧化铜纳米颗粒(copper oxide nanoparticles,CuO-NPs,0.12 µmol/L,38.96 nm)只有在叶面处理时可提高苋菜抗氧化活性,水培处理对其没有明显影响.同时叶面喷施NMs可促进光合作用[47],缓解金属污染[48],并在改善植物种植参数和土壤质量[49]等方面有积极作用. ...
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
Recent trends in the foliar spraying of zinc nutrient and zinc oxide nanoparticles in tomato production
1
2021
... NMs不同的施用方式对其作用效率也不同,叶面施用NMs与根部施用相比有更高的利用效率,可降低材料施用量,并减少其对环境产生的不利影响[45].研究[46]证明,水培和叶面施用ZnO-NPs(0.24 µmol/L,42.64 nm)均可提高苋菜(Amaranthus hybridus L.)的抗氧化活性,而氧化铜纳米颗粒(copper oxide nanoparticles,CuO-NPs,0.12 µmol/L,38.96 nm)只有在叶面处理时可提高苋菜抗氧化活性,水培处理对其没有明显影响.同时叶面喷施NMs可促进光合作用[47],缓解金属污染[48],并在改善植物种植参数和土壤质量[49]等方面有积极作用. ...
Effect of silver nanoparticles on growth of wheat under heat stress
2
2019
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... NMs在作物受到高温胁迫时可以改善作物形态、根际环境、ROS稳态、抗氧化酶活性以及光合特性(图2a).高温胁迫时,小麦盆栽施用AgNPs(50和75 mg/L,34 nm)可以增加根冠比、根数、植株鲜重、植株干重、叶面积和叶片数量等生物量,促进ROS水平下降,改善其发育和耐热特性[50].NMs与温度存在显著的交互作用.相比25 °C,40 °C下土壤施用TiO2-NPs(20 mg/kg,2~50 nm)对土壤酶和土壤微生物群落的毒性作用表现的负面影响更小,对作物根系毒性作用也随之减小[69].叶片喷施浓度为100 μg/mL的多壁碳纳米管(multi-walled carbon nanotube,MWCNT,20~30 nm)和TiO2-NPs(10~20 nm)的纳米复合材料,可减少芝麻(Sesamum indicum L.)植株中自由基的积累,降低MDA和H2O2浓度,提高POD活性,通过改变细胞膜的结构和特性来改变细胞膜脂肪酸的组成,增强不饱和脂肪酸比例,减小热胁迫的有害影响[51].叶片喷施硒纳米颗粒(selenium nanoparticle,SeNPs,5~70 nm,10 mg/L)可通过提高CAT、SOD和APX等抗氧化酶的活性和胁迫响应基因表达量,改善小麦光合色素含量、光合速率、气体交换和蒸腾速率,增强小麦耐热性[52]. ...
Use of titanium dioxide doped multi-wall carbon nanotubes as promoter for the growth, biochemical indices of Sesamum indicum L. under heat stress conditions
2
2023
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... NMs在作物受到高温胁迫时可以改善作物形态、根际环境、ROS稳态、抗氧化酶活性以及光合特性(图2a).高温胁迫时,小麦盆栽施用AgNPs(50和75 mg/L,34 nm)可以增加根冠比、根数、植株鲜重、植株干重、叶面积和叶片数量等生物量,促进ROS水平下降,改善其发育和耐热特性[50].NMs与温度存在显著的交互作用.相比25 °C,40 °C下土壤施用TiO2-NPs(20 mg/kg,2~50 nm)对土壤酶和土壤微生物群落的毒性作用表现的负面影响更小,对作物根系毒性作用也随之减小[69].叶片喷施浓度为100 μg/mL的多壁碳纳米管(multi-walled carbon nanotube,MWCNT,20~30 nm)和TiO2-NPs(10~20 nm)的纳米复合材料,可减少芝麻(Sesamum indicum L.)植株中自由基的积累,降低MDA和H2O2浓度,提高POD活性,通过改变细胞膜的结构和特性来改变细胞膜脂肪酸的组成,增强不饱和脂肪酸比例,减小热胁迫的有害影响[51].叶片喷施硒纳米颗粒(selenium nanoparticle,SeNPs,5~70 nm,10 mg/L)可通过提高CAT、SOD和APX等抗氧化酶的活性和胁迫响应基因表达量,改善小麦光合色素含量、光合速率、气体交换和蒸腾速率,增强小麦耐热性[52]. ...
Conferring of drought and heat stress tolerance in wheat (Triticum aestivum L.) genotypes and their response to selenium nanoparticles application
2
2023
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... NMs在作物受到高温胁迫时可以改善作物形态、根际环境、ROS稳态、抗氧化酶活性以及光合特性(图2a).高温胁迫时,小麦盆栽施用AgNPs(50和75 mg/L,34 nm)可以增加根冠比、根数、植株鲜重、植株干重、叶面积和叶片数量等生物量,促进ROS水平下降,改善其发育和耐热特性[50].NMs与温度存在显著的交互作用.相比25 °C,40 °C下土壤施用TiO2-NPs(20 mg/kg,2~50 nm)对土壤酶和土壤微生物群落的毒性作用表现的负面影响更小,对作物根系毒性作用也随之减小[69].叶片喷施浓度为100 μg/mL的多壁碳纳米管(multi-walled carbon nanotube,MWCNT,20~30 nm)和TiO2-NPs(10~20 nm)的纳米复合材料,可减少芝麻(Sesamum indicum L.)植株中自由基的积累,降低MDA和H2O2浓度,提高POD活性,通过改变细胞膜的结构和特性来改变细胞膜脂肪酸的组成,增强不饱和脂肪酸比例,减小热胁迫的有害影响[51].叶片喷施硒纳米颗粒(selenium nanoparticle,SeNPs,5~70 nm,10 mg/L)可通过提高CAT、SOD和APX等抗氧化酶的活性和胁迫响应基因表达量,改善小麦光合色素含量、光合速率、气体交换和蒸腾速率,增强小麦耐热性[52]. ...
Application of glycine betaine coated chitosan nanoparticles alleviate chilling injury and maintain quality of plum (Prunus domestica L.) fruit
2
2022
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... 在低温条件下(图2b),施用NMs可以调节胁迫及光合作用相关基因表达,平衡ROS稳态,以降低胁迫对作物带来的伤害.成熟李子果实(Prunus domestica L.)用甘氨酸甜菜碱包覆壳聚糖纳米颗粒(glycine betaine coated chitosan nanoparticles,CTS-GB-NPs,5和10 g/L,150 nm)作为涂层处理后,能减少水果在储存过程中的重量损失和组织软化,显著提高水果在冷藏过程中的抗氧化酶活性,平衡ROS水平,提高抗寒性,从而延长其保质期,即使在1 ℃下储存40 d后,水果仍保持较高的品质和营养价值[53].低温胁迫时在鹰嘴豆(Cicer arietinum L.)种子的培养皿中添加TiO2-NPs(5 mg/L,7~40 nm)悬浮液可减少植株中H2O2的含量,提高Rubisco酶的活性,提高CaLRubisco、CaSRubisco和Cachlorophyll a/b结合蛋白基因的转录水平,增加磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase)的活性[54].施用含8%的Zn纳米肥料作为生物刺激剂(biostimulants),可以提高低温胁迫下玉米的光合速率和干重,同时保持细胞膜的完整性,从而减轻低温胁迫产生的负面影响[70].总之,NMs具有独特的生物化学特性、高生物有效性和稳定性,被视为帮助植物抵御极端温度影响的最有潜力的材料. ...
Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea
2
2015
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... 在低温条件下(图2b),施用NMs可以调节胁迫及光合作用相关基因表达,平衡ROS稳态,以降低胁迫对作物带来的伤害.成熟李子果实(Prunus domestica L.)用甘氨酸甜菜碱包覆壳聚糖纳米颗粒(glycine betaine coated chitosan nanoparticles,CTS-GB-NPs,5和10 g/L,150 nm)作为涂层处理后,能减少水果在储存过程中的重量损失和组织软化,显著提高水果在冷藏过程中的抗氧化酶活性,平衡ROS水平,提高抗寒性,从而延长其保质期,即使在1 ℃下储存40 d后,水果仍保持较高的品质和营养价值[53].低温胁迫时在鹰嘴豆(Cicer arietinum L.)种子的培养皿中添加TiO2-NPs(5 mg/L,7~40 nm)悬浮液可减少植株中H2O2的含量,提高Rubisco酶的活性,提高CaLRubisco、CaSRubisco和Cachlorophyll a/b结合蛋白基因的转录水平,增加磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase)的活性[54].施用含8%的Zn纳米肥料作为生物刺激剂(biostimulants),可以提高低温胁迫下玉米的光合速率和干重,同时保持细胞膜的完整性,从而减轻低温胁迫产生的负面影响[70].总之,NMs具有独特的生物化学特性、高生物有效性和稳定性,被视为帮助植物抵御极端温度影响的最有潜力的材料. ...
Foliar spray of biosynthesized zinc oxide nanoparticles alleviate salinity stress effect on Vicia faba plants
3
2022
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... 盐分过多时高浓度离子环境首先对作物产生渗透胁迫.在盐胁迫条件下,在蚕豆(Vicia faba L.)叶面施用ZnO-NPs(50 mg/L,9.4 nm)可显著增加叶片中的脯氨酸和总可溶性糖含量以提高其耐盐性[55],且ZnO-NPs(20和50 mg/L)亦可通过叶面喷施刺激小麦渗透液的形成和养分吸收,改善盐胁迫条件下小麦细胞的渗透保护,增加作物新陈代谢[56].盐胁迫条件下,Na+和Cl-在作物体内过量积累,对其他离子产生竞争性抑制作用,破坏作物体内离子平衡,阻碍作物生长,NMs的应用可以缓解这一现象.如叶面注射CeO2-NPs(0.9 mmol/L,8.04 nm)可以通过调控KOR、SOS等离子转运基因表达,增加棉花K+/Na+比例,促使Na+最小化吸收,以平衡盐胁迫对作物的损害[57].土壤施用500 mg/kg的CeO2-NPs可通过缩短油菜根外质体的屏障,促进更多Na+从根部转移到茎部[38].盐胁迫除了直接的高渗毒害作用以外,还会导致作物细胞内发生氧化胁迫而促使代谢紊乱,NMs可调节作物抗氧化酶活性以缓解胁迫带来的危害[72].如叶面喷施FeSO4-NPs(2 g/L)可提高NaCl胁迫下向日葵(Helianthus annuus)的CAT、脯氨酸氧化酶(proline oxidase,POX)和PPO活性,以减少作物在盐胁迫下羟自由基等ROS的产生[38,56].CeO2-NPs可以降低盐胁迫下棉花植株第1和第2真叶的ROS,提高抗氧化酶活性,从而维持稳定的ROS含量[57].盐胁迫下ZnO-NPs(50 mg/L,9.4 nm)处理,可提高蚕豆植株中次生代谢物(如氨基酸、脯氨酸、甘氨酸、甜菜碱、总可溶性糖等物质)含量,增强其解毒能力,减轻盐胁迫带来的负面影响[55].此外,NMs对作物胁迫的作用存在浓度效应,如低浓度(12.5、25 mg/L)的氧化石墨烯(graphene oxide,GO,5 nm)可促进小麦种子萌发,而高浓度(50、100、200 mg/L)下小麦萌发受阻,并加重盐胁迫对其生长造成的抑制效应[2]. ...
... [55].此外,NMs对作物胁迫的作用存在浓度效应,如低浓度(12.5、25 mg/L)的氧化石墨烯(graphene oxide,GO,5 nm)可促进小麦种子萌发,而高浓度(50、100、200 mg/L)下小麦萌发受阻,并加重盐胁迫对其生长造成的抑制效应[2]. ...
Exogenously applied ZnO nanoparticles induced salt tolerance in potentially high yielding modern wheat (Triticum aestivum L.) cultivars
3
2022
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... 盐分过多时高浓度离子环境首先对作物产生渗透胁迫.在盐胁迫条件下,在蚕豆(Vicia faba L.)叶面施用ZnO-NPs(50 mg/L,9.4 nm)可显著增加叶片中的脯氨酸和总可溶性糖含量以提高其耐盐性[55],且ZnO-NPs(20和50 mg/L)亦可通过叶面喷施刺激小麦渗透液的形成和养分吸收,改善盐胁迫条件下小麦细胞的渗透保护,增加作物新陈代谢[56].盐胁迫条件下,Na+和Cl-在作物体内过量积累,对其他离子产生竞争性抑制作用,破坏作物体内离子平衡,阻碍作物生长,NMs的应用可以缓解这一现象.如叶面注射CeO2-NPs(0.9 mmol/L,8.04 nm)可以通过调控KOR、SOS等离子转运基因表达,增加棉花K+/Na+比例,促使Na+最小化吸收,以平衡盐胁迫对作物的损害[57].土壤施用500 mg/kg的CeO2-NPs可通过缩短油菜根外质体的屏障,促进更多Na+从根部转移到茎部[38].盐胁迫除了直接的高渗毒害作用以外,还会导致作物细胞内发生氧化胁迫而促使代谢紊乱,NMs可调节作物抗氧化酶活性以缓解胁迫带来的危害[72].如叶面喷施FeSO4-NPs(2 g/L)可提高NaCl胁迫下向日葵(Helianthus annuus)的CAT、脯氨酸氧化酶(proline oxidase,POX)和PPO活性,以减少作物在盐胁迫下羟自由基等ROS的产生[38,56].CeO2-NPs可以降低盐胁迫下棉花植株第1和第2真叶的ROS,提高抗氧化酶活性,从而维持稳定的ROS含量[57].盐胁迫下ZnO-NPs(50 mg/L,9.4 nm)处理,可提高蚕豆植株中次生代谢物(如氨基酸、脯氨酸、甘氨酸、甜菜碱、总可溶性糖等物质)含量,增强其解毒能力,减轻盐胁迫带来的负面影响[55].此外,NMs对作物胁迫的作用存在浓度效应,如低浓度(12.5、25 mg/L)的氧化石墨烯(graphene oxide,GO,5 nm)可促进小麦种子萌发,而高浓度(50、100、200 mg/L)下小麦萌发受阻,并加重盐胁迫对其生长造成的抑制效应[2]. ...
... ,56].CeO2-NPs可以降低盐胁迫下棉花植株第1和第2真叶的ROS,提高抗氧化酶活性,从而维持稳定的ROS含量[57].盐胁迫下ZnO-NPs(50 mg/L,9.4 nm)处理,可提高蚕豆植株中次生代谢物(如氨基酸、脯氨酸、甘氨酸、甜菜碱、总可溶性糖等物质)含量,增强其解毒能力,减轻盐胁迫带来的负面影响[55].此外,NMs对作物胁迫的作用存在浓度效应,如低浓度(12.5、25 mg/L)的氧化石墨烯(graphene oxide,GO,5 nm)可促进小麦种子萌发,而高浓度(50、100、200 mg/L)下小麦萌发受阻,并加重盐胁迫对其生长造成的抑制效应[2]. ...
Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio
3
2021
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... 盐分过多时高浓度离子环境首先对作物产生渗透胁迫.在盐胁迫条件下,在蚕豆(Vicia faba L.)叶面施用ZnO-NPs(50 mg/L,9.4 nm)可显著增加叶片中的脯氨酸和总可溶性糖含量以提高其耐盐性[55],且ZnO-NPs(20和50 mg/L)亦可通过叶面喷施刺激小麦渗透液的形成和养分吸收,改善盐胁迫条件下小麦细胞的渗透保护,增加作物新陈代谢[56].盐胁迫条件下,Na+和Cl-在作物体内过量积累,对其他离子产生竞争性抑制作用,破坏作物体内离子平衡,阻碍作物生长,NMs的应用可以缓解这一现象.如叶面注射CeO2-NPs(0.9 mmol/L,8.04 nm)可以通过调控KOR、SOS等离子转运基因表达,增加棉花K+/Na+比例,促使Na+最小化吸收,以平衡盐胁迫对作物的损害[57].土壤施用500 mg/kg的CeO2-NPs可通过缩短油菜根外质体的屏障,促进更多Na+从根部转移到茎部[38].盐胁迫除了直接的高渗毒害作用以外,还会导致作物细胞内发生氧化胁迫而促使代谢紊乱,NMs可调节作物抗氧化酶活性以缓解胁迫带来的危害[72].如叶面喷施FeSO4-NPs(2 g/L)可提高NaCl胁迫下向日葵(Helianthus annuus)的CAT、脯氨酸氧化酶(proline oxidase,POX)和PPO活性,以减少作物在盐胁迫下羟自由基等ROS的产生[38,56].CeO2-NPs可以降低盐胁迫下棉花植株第1和第2真叶的ROS,提高抗氧化酶活性,从而维持稳定的ROS含量[57].盐胁迫下ZnO-NPs(50 mg/L,9.4 nm)处理,可提高蚕豆植株中次生代谢物(如氨基酸、脯氨酸、甘氨酸、甜菜碱、总可溶性糖等物质)含量,增强其解毒能力,减轻盐胁迫带来的负面影响[55].此外,NMs对作物胁迫的作用存在浓度效应,如低浓度(12.5、25 mg/L)的氧化石墨烯(graphene oxide,GO,5 nm)可促进小麦种子萌发,而高浓度(50、100、200 mg/L)下小麦萌发受阻,并加重盐胁迫对其生长造成的抑制效应[2]. ...
... [57].盐胁迫下ZnO-NPs(50 mg/L,9.4 nm)处理,可提高蚕豆植株中次生代谢物(如氨基酸、脯氨酸、甘氨酸、甜菜碱、总可溶性糖等物质)含量,增强其解毒能力,减轻盐胁迫带来的负面影响[55].此外,NMs对作物胁迫的作用存在浓度效应,如低浓度(12.5、25 mg/L)的氧化石墨烯(graphene oxide,GO,5 nm)可促进小麦种子萌发,而高浓度(50、100、200 mg/L)下小麦萌发受阻,并加重盐胁迫对其生长造成的抑制效应[2]. ...
Efficacy of FeSO4 nano formulations on osmolytes and antioxidative enzymes of sunflower under salt stress
1
2018
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
Cadmium and sodium adsorption properties of magnetite nanoparticles synthesized from Hevea brasiliensis Muell. Arg. bark: relevance in amelioration of metal stress in rice
2
2019
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... NMs协助作物克服重金属胁迫有4种策略(图2d).首先,磁性NMs可吸附土壤中的重金属,降低重金属迁移率和生物有效性.土壤中施用Fe3O4-NPs(triiron tetraoxide nanoparticles,0.5 g/kg,10~50 nm)可降低水稻植株中Cd和Na的积累以及其在土壤中的迁移率,增加色素含量,有助于减轻Cd和Na胁迫下的氧化应激[59].其次,非金属NMs在细胞壁与重金属结合于细胞表面形成复合物,阻碍重金属迁移.如SeNPs(30 mmol/L,20 nm)和硅纳米颗粒(silicon nanoparticles,SiNPs,1 mmol/L,19 nm)可分别与As和Cd结合形成络合物,减少重金属从水稻根到茎的运输,减轻重金属对植物地上部分的胁迫反应[74].再次,具有抗氧化酶活性的NMs(Fe3O4-NPs和SiNPs)施用于菜豆(Phaseolus vulgaris Linn.)和苦瓜(Momordica charantia L.)中可以激活其氧化防御系统,提升植株清除ROS的能力,最后将重金属对作物生长和产量的毒性影响降至最低[61-62].此外,NMs可诱导调节重金属吸收及具转运功能的基因表达,抑制作物对重金属的摄取.如施用SiNPs可显著降低Cd吸收和转运基因OsLCT1和OsNramp5的表达水平,且随着SiNPs粒径减少,OsLCT1表达受抑制程度逐渐增大,减少了种子和韧皮部对Cd的吸收,从而增强水稻细胞对Cd的耐受能力,同时SiNPs可以刺激Si转运体OsLsi1的表达,促进植株对Si的吸收,从而增强Cd胁迫抗性[60].在土壤中施用由肺炎克雷伯菌(Klebsiella pneumoniae)绿色合成的CuNPs(50 mg/kg,19~47.5 nm)可缓解土壤中Cr污染对小麦的毒害作用,增加小麦植株中的抗氧化物水平,增加小麦的根长和茎长,但高浓度的CuNPs(100 mg/kg)亦会抑制小麦生长,表现出CuNPs的毒性作用[65]. ...
A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells
2
2015
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... NMs协助作物克服重金属胁迫有4种策略(图2d).首先,磁性NMs可吸附土壤中的重金属,降低重金属迁移率和生物有效性.土壤中施用Fe3O4-NPs(triiron tetraoxide nanoparticles,0.5 g/kg,10~50 nm)可降低水稻植株中Cd和Na的积累以及其在土壤中的迁移率,增加色素含量,有助于减轻Cd和Na胁迫下的氧化应激[59].其次,非金属NMs在细胞壁与重金属结合于细胞表面形成复合物,阻碍重金属迁移.如SeNPs(30 mmol/L,20 nm)和硅纳米颗粒(silicon nanoparticles,SiNPs,1 mmol/L,19 nm)可分别与As和Cd结合形成络合物,减少重金属从水稻根到茎的运输,减轻重金属对植物地上部分的胁迫反应[74].再次,具有抗氧化酶活性的NMs(Fe3O4-NPs和SiNPs)施用于菜豆(Phaseolus vulgaris Linn.)和苦瓜(Momordica charantia L.)中可以激活其氧化防御系统,提升植株清除ROS的能力,最后将重金属对作物生长和产量的毒性影响降至最低[61-62].此外,NMs可诱导调节重金属吸收及具转运功能的基因表达,抑制作物对重金属的摄取.如施用SiNPs可显著降低Cd吸收和转运基因OsLCT1和OsNramp5的表达水平,且随着SiNPs粒径减少,OsLCT1表达受抑制程度逐渐增大,减少了种子和韧皮部对Cd的吸收,从而增强水稻细胞对Cd的耐受能力,同时SiNPs可以刺激Si转运体OsLsi1的表达,促进植株对Si的吸收,从而增强Cd胁迫抗性[60].在土壤中施用由肺炎克雷伯菌(Klebsiella pneumoniae)绿色合成的CuNPs(50 mg/kg,19~47.5 nm)可缓解土壤中Cr污染对小麦的毒害作用,增加小麦植株中的抗氧化物水平,增加小麦的根长和茎长,但高浓度的CuNPs(100 mg/kg)亦会抑制小麦生长,表现出CuNPs的毒性作用[65]. ...
Iron oxide and silicon nanoparticles modulate mineral nutrient homeostasis and metabolism in cadmium-stressed Phaseolus vulgaris
2
2022
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... NMs协助作物克服重金属胁迫有4种策略(图2d).首先,磁性NMs可吸附土壤中的重金属,降低重金属迁移率和生物有效性.土壤中施用Fe3O4-NPs(triiron tetraoxide nanoparticles,0.5 g/kg,10~50 nm)可降低水稻植株中Cd和Na的积累以及其在土壤中的迁移率,增加色素含量,有助于减轻Cd和Na胁迫下的氧化应激[59].其次,非金属NMs在细胞壁与重金属结合于细胞表面形成复合物,阻碍重金属迁移.如SeNPs(30 mmol/L,20 nm)和硅纳米颗粒(silicon nanoparticles,SiNPs,1 mmol/L,19 nm)可分别与As和Cd结合形成络合物,减少重金属从水稻根到茎的运输,减轻重金属对植物地上部分的胁迫反应[74].再次,具有抗氧化酶活性的NMs(Fe3O4-NPs和SiNPs)施用于菜豆(Phaseolus vulgaris Linn.)和苦瓜(Momordica charantia L.)中可以激活其氧化防御系统,提升植株清除ROS的能力,最后将重金属对作物生长和产量的毒性影响降至最低[61-62].此外,NMs可诱导调节重金属吸收及具转运功能的基因表达,抑制作物对重金属的摄取.如施用SiNPs可显著降低Cd吸收和转运基因OsLCT1和OsNramp5的表达水平,且随着SiNPs粒径减少,OsLCT1表达受抑制程度逐渐增大,减少了种子和韧皮部对Cd的吸收,从而增强水稻细胞对Cd的耐受能力,同时SiNPs可以刺激Si转运体OsLsi1的表达,促进植株对Si的吸收,从而增强Cd胁迫抗性[60].在土壤中施用由肺炎克雷伯菌(Klebsiella pneumoniae)绿色合成的CuNPs(50 mg/kg,19~47.5 nm)可缓解土壤中Cr污染对小麦的毒害作用,增加小麦植株中的抗氧化物水平,增加小麦的根长和茎长,但高浓度的CuNPs(100 mg/kg)亦会抑制小麦生长,表现出CuNPs的毒性作用[65]. ...
Alleviation of cadmium toxicity by nano-silicon dioxide in Momordica charantia L. seedlings
2
2023
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... NMs协助作物克服重金属胁迫有4种策略(图2d).首先,磁性NMs可吸附土壤中的重金属,降低重金属迁移率和生物有效性.土壤中施用Fe3O4-NPs(triiron tetraoxide nanoparticles,0.5 g/kg,10~50 nm)可降低水稻植株中Cd和Na的积累以及其在土壤中的迁移率,增加色素含量,有助于减轻Cd和Na胁迫下的氧化应激[59].其次,非金属NMs在细胞壁与重金属结合于细胞表面形成复合物,阻碍重金属迁移.如SeNPs(30 mmol/L,20 nm)和硅纳米颗粒(silicon nanoparticles,SiNPs,1 mmol/L,19 nm)可分别与As和Cd结合形成络合物,减少重金属从水稻根到茎的运输,减轻重金属对植物地上部分的胁迫反应[74].再次,具有抗氧化酶活性的NMs(Fe3O4-NPs和SiNPs)施用于菜豆(Phaseolus vulgaris Linn.)和苦瓜(Momordica charantia L.)中可以激活其氧化防御系统,提升植株清除ROS的能力,最后将重金属对作物生长和产量的毒性影响降至最低[61-62].此外,NMs可诱导调节重金属吸收及具转运功能的基因表达,抑制作物对重金属的摄取.如施用SiNPs可显著降低Cd吸收和转运基因OsLCT1和OsNramp5的表达水平,且随着SiNPs粒径减少,OsLCT1表达受抑制程度逐渐增大,减少了种子和韧皮部对Cd的吸收,从而增强水稻细胞对Cd的耐受能力,同时SiNPs可以刺激Si转运体OsLsi1的表达,促进植株对Si的吸收,从而增强Cd胁迫抗性[60].在土壤中施用由肺炎克雷伯菌(Klebsiella pneumoniae)绿色合成的CuNPs(50 mg/kg,19~47.5 nm)可缓解土壤中Cr污染对小麦的毒害作用,增加小麦植株中的抗氧化物水平,增加小麦的根长和茎长,但高浓度的CuNPs(100 mg/kg)亦会抑制小麦生长,表现出CuNPs的毒性作用[65]. ...
The fate of arsenic in rice plants (Oryza sativa L.): influence of different forms of selenium
1
2021
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
Green copper nanoparticles from a native Klebsiella pneumoniae strain alleviated oxidative stress impairment of wheat plants by reducing the chromium bioavailability and increasing the growth
1
2020
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
Mitigation of the effect of drought on growth and yield of pomegranates by foliar spraying of different sizes of selenium nanoparticles
3
2021
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... NMs协助作物克服重金属胁迫有4种策略(图2d).首先,磁性NMs可吸附土壤中的重金属,降低重金属迁移率和生物有效性.土壤中施用Fe3O4-NPs(triiron tetraoxide nanoparticles,0.5 g/kg,10~50 nm)可降低水稻植株中Cd和Na的积累以及其在土壤中的迁移率,增加色素含量,有助于减轻Cd和Na胁迫下的氧化应激[59].其次,非金属NMs在细胞壁与重金属结合于细胞表面形成复合物,阻碍重金属迁移.如SeNPs(30 mmol/L,20 nm)和硅纳米颗粒(silicon nanoparticles,SiNPs,1 mmol/L,19 nm)可分别与As和Cd结合形成络合物,减少重金属从水稻根到茎的运输,减轻重金属对植物地上部分的胁迫反应[74].再次,具有抗氧化酶活性的NMs(Fe3O4-NPs和SiNPs)施用于菜豆(Phaseolus vulgaris Linn.)和苦瓜(Momordica charantia L.)中可以激活其氧化防御系统,提升植株清除ROS的能力,最后将重金属对作物生长和产量的毒性影响降至最低[61-62].此外,NMs可诱导调节重金属吸收及具转运功能的基因表达,抑制作物对重金属的摄取.如施用SiNPs可显著降低Cd吸收和转运基因OsLCT1和OsNramp5的表达水平,且随着SiNPs粒径减少,OsLCT1表达受抑制程度逐渐增大,减少了种子和韧皮部对Cd的吸收,从而增强水稻细胞对Cd的耐受能力,同时SiNPs可以刺激Si转运体OsLsi1的表达,促进植株对Si的吸收,从而增强Cd胁迫抗性[60].在土壤中施用由肺炎克雷伯菌(Klebsiella pneumoniae)绿色合成的CuNPs(50 mg/kg,19~47.5 nm)可缓解土壤中Cr污染对小麦的毒害作用,增加小麦植株中的抗氧化物水平,增加小麦的根长和茎长,但高浓度的CuNPs(100 mg/kg)亦会抑制小麦生长,表现出CuNPs的毒性作用[65]. ...
... 水分条件对作物的胁迫可以分为干旱和淹水.在干旱条件下,作物会产生过量的ROS,损害脂质、蛋白质和核酸,从而导致脂质过氧化和氧化应激,NMs可通过调节作物体内的光合作用、抗氧化酶活性以及防御基因的表达来缓解水分胁迫带来的不良影响(图2e).首先,NMs可调节种子生理状态,使其达到最佳的ROS和植物激素(如赤霉素、乙烯等)水平,从而触发细胞壁松动和转录组重编程所涉及的生化途径,促进种子在干旱条件下更好地萌发[75].其次,NMs可以调节作物叶片的光合作用,以缓解干旱胁迫.叶面喷施SeNPs(20 mg/L,10 nm)可增加干旱条件下石榴(Punica granatum L.)植株中抗氧化酶活性,降低H2O2和MDA的水平,保护叶绿体酶以及叶绿体结构免受严重氧化损伤,同时通过增加光合色素的生物合成以提高植株光合能力[65].ZnO-NPs(100 mg/L,20 nm)浸种可以提高玉米(Zea mays L.)在干旱处理时的净光合速率、水分利用效率、叶绿素含量、可溶性糖含量以及碳代谢关键酶活性,增强胁迫下玉米叶片蔗糖和淀粉合成以及糖酵解代谢,从而使作物抗旱性增强[66].同时,NMs可以调控作物防御基因,促使作物提高抗旱能力.GO作为一种纳米土壤保水剂,土壤中施用100 µg/mL的GO可增加大豆(Glycine max)植株中防御酶、激素含量,促进GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱相关基因的表达,从而提高大豆的抗旱能力[67]. ...
Nano-ZnO alleviates drought stress via modulating plant water use and carbohydrate metabolism in maize
2
2021
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... 水分条件对作物的胁迫可以分为干旱和淹水.在干旱条件下,作物会产生过量的ROS,损害脂质、蛋白质和核酸,从而导致脂质过氧化和氧化应激,NMs可通过调节作物体内的光合作用、抗氧化酶活性以及防御基因的表达来缓解水分胁迫带来的不良影响(图2e).首先,NMs可调节种子生理状态,使其达到最佳的ROS和植物激素(如赤霉素、乙烯等)水平,从而触发细胞壁松动和转录组重编程所涉及的生化途径,促进种子在干旱条件下更好地萌发[75].其次,NMs可以调节作物叶片的光合作用,以缓解干旱胁迫.叶面喷施SeNPs(20 mg/L,10 nm)可增加干旱条件下石榴(Punica granatum L.)植株中抗氧化酶活性,降低H2O2和MDA的水平,保护叶绿体酶以及叶绿体结构免受严重氧化损伤,同时通过增加光合色素的生物合成以提高植株光合能力[65].ZnO-NPs(100 mg/L,20 nm)浸种可以提高玉米(Zea mays L.)在干旱处理时的净光合速率、水分利用效率、叶绿素含量、可溶性糖含量以及碳代谢关键酶活性,增强胁迫下玉米叶片蔗糖和淀粉合成以及糖酵解代谢,从而使作物抗旱性增强[66].同时,NMs可以调控作物防御基因,促使作物提高抗旱能力.GO作为一种纳米土壤保水剂,土壤中施用100 µg/mL的GO可增加大豆(Glycine max)植株中防御酶、激素含量,促进GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱相关基因的表达,从而提高大豆的抗旱能力[67]. ...
Graphene oxide, a novel nanomaterial as soil water retention agent, dramatically enhances drought stress tolerance in soybean plants
2
2022
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... 水分条件对作物的胁迫可以分为干旱和淹水.在干旱条件下,作物会产生过量的ROS,损害脂质、蛋白质和核酸,从而导致脂质过氧化和氧化应激,NMs可通过调节作物体内的光合作用、抗氧化酶活性以及防御基因的表达来缓解水分胁迫带来的不良影响(图2e).首先,NMs可调节种子生理状态,使其达到最佳的ROS和植物激素(如赤霉素、乙烯等)水平,从而触发细胞壁松动和转录组重编程所涉及的生化途径,促进种子在干旱条件下更好地萌发[75].其次,NMs可以调节作物叶片的光合作用,以缓解干旱胁迫.叶面喷施SeNPs(20 mg/L,10 nm)可增加干旱条件下石榴(Punica granatum L.)植株中抗氧化酶活性,降低H2O2和MDA的水平,保护叶绿体酶以及叶绿体结构免受严重氧化损伤,同时通过增加光合色素的生物合成以提高植株光合能力[65].ZnO-NPs(100 mg/L,20 nm)浸种可以提高玉米(Zea mays L.)在干旱处理时的净光合速率、水分利用效率、叶绿素含量、可溶性糖含量以及碳代谢关键酶活性,增强胁迫下玉米叶片蔗糖和淀粉合成以及糖酵解代谢,从而使作物抗旱性增强[66].同时,NMs可以调控作物防御基因,促使作物提高抗旱能力.GO作为一种纳米土壤保水剂,土壤中施用100 µg/mL的GO可增加大豆(Glycine max)植株中防御酶、激素含量,促进GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱相关基因的表达,从而提高大豆的抗旱能力[67]. ...
Comparative analysis of the effect of inorganic and organic chemicals with silver nanoparticles on soybean under flooding stress
2
2020
... The action modes of NPs in enhancing crop resistance under abiotic stresses
Table 1 非生物胁迫 Abiotic stress | 纳米颗粒 NPs | 浓度、大小 Concentration, size | 使用方式 Usage | 作物 Crop | 作用 Impact | 参考文献 Reference |
高温 High temperature | AgNPs
| 10 mg/L,11.2 nm
| 土壤根系吸收
| 小麦
| 增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 | [50]
|
| MWCNT | 100 μg/mL,10~20 nm
| 叶面喷施
| 芝麻
| 降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 | [51]
|
| TiO2-NPs |
| SeNPs
| 10 mg/L,5~70 nm
| 叶面喷施
| 小麦
| 提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1、LEA-1、HSP70基因表达,增强耐热性 | [52]
|
低温 Low temperature | CTS-GB-NPs
| 5、10 g/L,150 nm
| 果实涂抹
| 李子
| 减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 | [53]
|
| TiO2-NPs
| 5 mg/L,7~40 nm
| 种子引发
| 鹰嘴豆
| 增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 | [54]
|
盐分Salinity | GO | 12.5、25 mg/L,5 nm | 种子引发 | 小麦 | 提高种子在胁迫下的萌发率 | [2] |
| CeO2-NPs
| 200 mg/L,620.7 nm
| 水培根系吸收
| 水稻
| 调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) | [27]
|
| ZnO-NPs | 50 mg/L,9.4 nm | 叶面喷施 | 蚕豆 | 提高脯氨酸和总可溶性糖含量 | [55] |
| ZnO-NPs | 20、50 mg/L | 叶面喷施 | 小麦 | 促进植株渗透液的形成和养分吸收 | [56] |
| CeO2-NPs
| 0.9 mmol/L,8.04 nm
| 叶面注射
| 棉花
| 调控KOR、SOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 | [57]
|
| CeO2-NPs
| 500 mg/kg,52.6 nm
| 土壤根系吸收
| 油菜
| 缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 | [38]
|
| FeSO4-NPs
| 2 g/L,90 nm
| 叶面喷施
| 向日葵
| 提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 | [58]
|
镉胁迫Cd stress | CeO2-NPs | 200 mg/L,620.7 nm | 水培根系吸收 | 水稻 | 增加幼苗叶绿素含量,降低脯氨酸含量 | [27] |
| ZnO-NPs
| 100 mg/L,20~30 nm
| 叶面喷施
| 水稻
| 显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 | [48]
|
| Fe3O4-NPs | 0.5 g/kg,10~50 nm | 土壤根系吸收 | 水稻 | 降低植株中Cd积累以及在土壤中的迁移率 | [59] |
| SiNPs
| 1 mmol/L,19 nm
| 土壤根系吸收
| 水稻
| 与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 | [60]
|
| Fe3O4-NPs
| 10 mg/L,15~25 nm
| 种子引发
| 菜豆
| 提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 | [61]
|
| SiNPs | 20 mg/L,40~100 nm | 促进多胺生物合成,降低MDA含量和电解质泄漏 |
| SiNPs
| 10、30 mg/L,30 nm
| 水培根系吸收
| 苦瓜
| 降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 | [62]
|
砷胁迫As stress | SeNPs | 30 mmol/L,20 nm | 土壤根系吸收 | 水稻 | 与As结合形成络合物,减少重金属从根到茎的运输 | [63] |
铬胁迫Cr stress | CuNPs | 50 mg/kg,19~47.5 nm | 土壤根系吸收 | 小麦 | 增加植株根长和茎长,增加了细胞抗氧化物的水平 | [64] |
干旱Drought | AgNPs | 10 mg/L,11.2 nm | 种子引发 | 水稻 | 增强水分吸收,重启ROS系统,促进陈化种子的萌发 | [13] |
| CaO-NPs
| 75 mg/L,160 nm
| 种子引发
| 油菜
| 降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 | [14]
|
| SeNPs
| 20 mg/L,10 nm
| 叶面喷施
| 石榴
| 提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 | [65]
|
| ZnO-NPs
| 100 mg/L,20 nm
| 种子引发
| 玉米
| 提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 | [66]
|
| GO
| 100 µg/mL
| 土壤根系吸收
| 大豆
| 增加作物防御酶、激素含量以及GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱基因的表达,提高抗旱性 | [67]
|
淹水 Flooding
| AgNPs
| 5 mg/L,15 nm
| 水培根系吸收
| 大豆
| 增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 | [68]
|
2.1 温度胁迫温度条件对作物的胁迫主要分为高温胁迫和低温胁迫.温度胁迫下NMs通过调控作物根际环境、ROS水平及胁迫响应基因等来维持作物生长平衡,进而减少胁迫带来的损害. ...
... 作物处于淹水胁迫时,NMs的应用可通过降低细胞毒性副产物、调节光合代谢途径和营养物质的形成以促进作物的生长(图2f).淹水条件下分别对柑橘(Citrus reticulata Blanco)幼苗的叶面(喷施)和根系(水培营养液)使用SiNPs(250 mg/L,30~50 nm),可以减少由淹水胁迫带来的缺氧胁迫,通过降低糖酵解产生的细胞毒性副产物,提高碳水化合物代谢和抗氧化酶活性来维持氧化还原稳态[76].大豆经过氧化铝纳米颗粒(aluminum oxide nanoparticles,Al2O3-NPs,50 mg/L,30~60 nm)种子引发,可以调节淹水环境下抗坏血酸―谷胱甘肽途径、膜通透性和三羧酸循环活性,保持光合作用稳定,且根系下胚轴长度增加,但在较小(5 nm)和较大(135 nm)的Al2O3-NPs处理时对能量代谢有负面影响[77].此外,淹水胁迫导致植物蔗糖积累、细胞壁松动、线粒体损伤和蛋白酶体介导的蛋白质水解[76],施用NMs可以改善淹水胁迫下作物的生长.淹水条件下混合施用AgNPs(5 mg/L)、烟酸和KNO3,可提高大豆植株中蛋白质合成水平,以增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,AgNPs的施用亦可使大豆蛋白质的降解相关蛋白丰度增加,调控错误折叠蛋白或严重受损蛋白质,从而维持细胞完整性,促进大豆幼苗生长[68]. ...
Ecotoxicological effect of TiO2 nano particles on different soil enzymes and microbial community
1
2021
... NMs在作物受到高温胁迫时可以改善作物形态、根际环境、ROS稳态、抗氧化酶活性以及光合特性(图2a).高温胁迫时,小麦盆栽施用AgNPs(50和75 mg/L,34 nm)可以增加根冠比、根数、植株鲜重、植株干重、叶面积和叶片数量等生物量,促进ROS水平下降,改善其发育和耐热特性[50].NMs与温度存在显著的交互作用.相比25 °C,40 °C下土壤施用TiO2-NPs(20 mg/kg,2~50 nm)对土壤酶和土壤微生物群落的毒性作用表现的负面影响更小,对作物根系毒性作用也随之减小[69].叶片喷施浓度为100 μg/mL的多壁碳纳米管(multi-walled carbon nanotube,MWCNT,20~30 nm)和TiO2-NPs(10~20 nm)的纳米复合材料,可减少芝麻(Sesamum indicum L.)植株中自由基的积累,降低MDA和H2O2浓度,提高POD活性,通过改变细胞膜的结构和特性来改变细胞膜脂肪酸的组成,增强不饱和脂肪酸比例,减小热胁迫的有害影响[51].叶片喷施硒纳米颗粒(selenium nanoparticle,SeNPs,5~70 nm,10 mg/L)可通过提高CAT、SOD和APX等抗氧化酶的活性和胁迫响应基因表达量,改善小麦光合色素含量、光合速率、气体交换和蒸腾速率,增强小麦耐热性[52]. ...
Phytostimulator application after cold stress for better maize (Zea mays L.) plant recovery
1
2023
... 在低温条件下(图2b),施用NMs可以调节胁迫及光合作用相关基因表达,平衡ROS稳态,以降低胁迫对作物带来的伤害.成熟李子果实(Prunus domestica L.)用甘氨酸甜菜碱包覆壳聚糖纳米颗粒(glycine betaine coated chitosan nanoparticles,CTS-GB-NPs,5和10 g/L,150 nm)作为涂层处理后,能减少水果在储存过程中的重量损失和组织软化,显著提高水果在冷藏过程中的抗氧化酶活性,平衡ROS水平,提高抗寒性,从而延长其保质期,即使在1 ℃下储存40 d后,水果仍保持较高的品质和营养价值[53].低温胁迫时在鹰嘴豆(Cicer arietinum L.)种子的培养皿中添加TiO2-NPs(5 mg/L,7~40 nm)悬浮液可减少植株中H2O2的含量,提高Rubisco酶的活性,提高CaLRubisco、CaSRubisco和Cachlorophyll a/b结合蛋白基因的转录水平,增加磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase)的活性[54].施用含8%的Zn纳米肥料作为生物刺激剂(biostimulants),可以提高低温胁迫下玉米的光合速率和干重,同时保持细胞膜的完整性,从而减轻低温胁迫产生的负面影响[70].总之,NMs具有独特的生物化学特性、高生物有效性和稳定性,被视为帮助植物抵御极端温度影响的最有潜力的材料. ...
盐碱地资源分析及利用研究展望
1
2023
... 土壤盐渍化作为影响作物优质高产的主要非生物胁迫之一,是全世界农业生产领域需要解决的棘手问题,除土壤自身盐渍特性外,人类生产活动也加重了土地盐渍程度,根据第三次全国国土调查,截至2019年底,我国盐碱地面积约为7.67×106 hm2[71].作物遭受盐分胁迫会导致渗透胁迫和离子失衡,并由于氧化胁迫引起代谢紊乱,而NMs可促进渗透物质产生以缓解渗透胁迫,调节离子转运促进离子平衡,并提高氧化酶活性以清除过量ROS(图2c). ...
Nanoparticles assisted regulation of oxidative stress and antioxidant enzyme system in plants under salt stress: a review
1
2023
... 盐分过多时高浓度离子环境首先对作物产生渗透胁迫.在盐胁迫条件下,在蚕豆(Vicia faba L.)叶面施用ZnO-NPs(50 mg/L,9.4 nm)可显著增加叶片中的脯氨酸和总可溶性糖含量以提高其耐盐性[55],且ZnO-NPs(20和50 mg/L)亦可通过叶面喷施刺激小麦渗透液的形成和养分吸收,改善盐胁迫条件下小麦细胞的渗透保护,增加作物新陈代谢[56].盐胁迫条件下,Na+和Cl-在作物体内过量积累,对其他离子产生竞争性抑制作用,破坏作物体内离子平衡,阻碍作物生长,NMs的应用可以缓解这一现象.如叶面注射CeO2-NPs(0.9 mmol/L,8.04 nm)可以通过调控KOR、SOS等离子转运基因表达,增加棉花K+/Na+比例,促使Na+最小化吸收,以平衡盐胁迫对作物的损害[57].土壤施用500 mg/kg的CeO2-NPs可通过缩短油菜根外质体的屏障,促进更多Na+从根部转移到茎部[38].盐胁迫除了直接的高渗毒害作用以外,还会导致作物细胞内发生氧化胁迫而促使代谢紊乱,NMs可调节作物抗氧化酶活性以缓解胁迫带来的危害[72].如叶面喷施FeSO4-NPs(2 g/L)可提高NaCl胁迫下向日葵(Helianthus annuus)的CAT、脯氨酸氧化酶(proline oxidase,POX)和PPO活性,以减少作物在盐胁迫下羟自由基等ROS的产生[38,56].CeO2-NPs可以降低盐胁迫下棉花植株第1和第2真叶的ROS,提高抗氧化酶活性,从而维持稳定的ROS含量[57].盐胁迫下ZnO-NPs(50 mg/L,9.4 nm)处理,可提高蚕豆植株中次生代谢物(如氨基酸、脯氨酸、甘氨酸、甜菜碱、总可溶性糖等物质)含量,增强其解毒能力,减轻盐胁迫带来的负面影响[55].此外,NMs对作物胁迫的作用存在浓度效应,如低浓度(12.5、25 mg/L)的氧化石墨烯(graphene oxide,GO,5 nm)可促进小麦种子萌发,而高浓度(50、100、200 mg/L)下小麦萌发受阻,并加重盐胁迫对其生长造成的抑制效应[2]. ...
Application of nanoparticles alleviates heavy metals stress and promotes plant growth: an overview
1
2021
... 由于农药和化肥不断使用、采矿和废物不合理管理等问题,导致重金属污染问题日益突出.重金属可对作物产生直接毒害效应,影响作物生长并造成产量下降,同时富集到作物中的重金属影响作物品质,通过生物链影响人体健康[73]. ...
Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects
1
2017
... NMs协助作物克服重金属胁迫有4种策略(图2d).首先,磁性NMs可吸附土壤中的重金属,降低重金属迁移率和生物有效性.土壤中施用Fe3O4-NPs(triiron tetraoxide nanoparticles,0.5 g/kg,10~50 nm)可降低水稻植株中Cd和Na的积累以及其在土壤中的迁移率,增加色素含量,有助于减轻Cd和Na胁迫下的氧化应激[59].其次,非金属NMs在细胞壁与重金属结合于细胞表面形成复合物,阻碍重金属迁移.如SeNPs(30 mmol/L,20 nm)和硅纳米颗粒(silicon nanoparticles,SiNPs,1 mmol/L,19 nm)可分别与As和Cd结合形成络合物,减少重金属从水稻根到茎的运输,减轻重金属对植物地上部分的胁迫反应[74].再次,具有抗氧化酶活性的NMs(Fe3O4-NPs和SiNPs)施用于菜豆(Phaseolus vulgaris Linn.)和苦瓜(Momordica charantia L.)中可以激活其氧化防御系统,提升植株清除ROS的能力,最后将重金属对作物生长和产量的毒性影响降至最低[61-62].此外,NMs可诱导调节重金属吸收及具转运功能的基因表达,抑制作物对重金属的摄取.如施用SiNPs可显著降低Cd吸收和转运基因OsLCT1和OsNramp5的表达水平,且随着SiNPs粒径减少,OsLCT1表达受抑制程度逐渐增大,减少了种子和韧皮部对Cd的吸收,从而增强水稻细胞对Cd的耐受能力,同时SiNPs可以刺激Si转运体OsLsi1的表达,促进植株对Si的吸收,从而增强Cd胁迫抗性[60].在土壤中施用由肺炎克雷伯菌(Klebsiella pneumoniae)绿色合成的CuNPs(50 mg/kg,19~47.5 nm)可缓解土壤中Cr污染对小麦的毒害作用,增加小麦植株中的抗氧化物水平,增加小麦的根长和茎长,但高浓度的CuNPs(100 mg/kg)亦会抑制小麦生长,表现出CuNPs的毒性作用[65]. ...
Small particles, big effects: how nanoparticles can enhance plant growth in favorable and harsh conditions
1
2024
... 水分条件对作物的胁迫可以分为干旱和淹水.在干旱条件下,作物会产生过量的ROS,损害脂质、蛋白质和核酸,从而导致脂质过氧化和氧化应激,NMs可通过调节作物体内的光合作用、抗氧化酶活性以及防御基因的表达来缓解水分胁迫带来的不良影响(图2e).首先,NMs可调节种子生理状态,使其达到最佳的ROS和植物激素(如赤霉素、乙烯等)水平,从而触发细胞壁松动和转录组重编程所涉及的生化途径,促进种子在干旱条件下更好地萌发[75].其次,NMs可以调节作物叶片的光合作用,以缓解干旱胁迫.叶面喷施SeNPs(20 mg/L,10 nm)可增加干旱条件下石榴(Punica granatum L.)植株中抗氧化酶活性,降低H2O2和MDA的水平,保护叶绿体酶以及叶绿体结构免受严重氧化损伤,同时通过增加光合色素的生物合成以提高植株光合能力[65].ZnO-NPs(100 mg/L,20 nm)浸种可以提高玉米(Zea mays L.)在干旱处理时的净光合速率、水分利用效率、叶绿素含量、可溶性糖含量以及碳代谢关键酶活性,增强胁迫下玉米叶片蔗糖和淀粉合成以及糖酵解代谢,从而使作物抗旱性增强[66].同时,NMs可以调控作物防御基因,促使作物提高抗旱能力.GO作为一种纳米土壤保水剂,土壤中施用100 µg/mL的GO可增加大豆(Glycine max)植株中防御酶、激素含量,促进GmP5CS、GmGOLS、GmDREB1和GmNCED1等干旱相关基因的表达,从而提高大豆的抗旱能力[67]. ...
Silicon nanoparticles confer hypoxia tolerance in citrus rootstocks by modulating antioxidant activities and carbohydrate metabolism
2
2024
... 作物处于淹水胁迫时,NMs的应用可通过降低细胞毒性副产物、调节光合代谢途径和营养物质的形成以促进作物的生长(图2f).淹水条件下分别对柑橘(Citrus reticulata Blanco)幼苗的叶面(喷施)和根系(水培营养液)使用SiNPs(250 mg/L,30~50 nm),可以减少由淹水胁迫带来的缺氧胁迫,通过降低糖酵解产生的细胞毒性副产物,提高碳水化合物代谢和抗氧化酶活性来维持氧化还原稳态[76].大豆经过氧化铝纳米颗粒(aluminum oxide nanoparticles,Al2O3-NPs,50 mg/L,30~60 nm)种子引发,可以调节淹水环境下抗坏血酸―谷胱甘肽途径、膜通透性和三羧酸循环活性,保持光合作用稳定,且根系下胚轴长度增加,但在较小(5 nm)和较大(135 nm)的Al2O3-NPs处理时对能量代谢有负面影响[77].此外,淹水胁迫导致植物蔗糖积累、细胞壁松动、线粒体损伤和蛋白酶体介导的蛋白质水解[76],施用NMs可以改善淹水胁迫下作物的生长.淹水条件下混合施用AgNPs(5 mg/L)、烟酸和KNO3,可提高大豆植株中蛋白质合成水平,以增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,AgNPs的施用亦可使大豆蛋白质的降解相关蛋白丰度增加,调控错误折叠蛋白或严重受损蛋白质,从而维持细胞完整性,促进大豆幼苗生长[68]. ...
... [76],施用NMs可以改善淹水胁迫下作物的生长.淹水条件下混合施用AgNPs(5 mg/L)、烟酸和KNO3,可提高大豆植株中蛋白质合成水平,以增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,AgNPs的施用亦可使大豆蛋白质的降解相关蛋白丰度增加,调控错误折叠蛋白或严重受损蛋白质,从而维持细胞完整性,促进大豆幼苗生长[68]. ...
Insights into the response of soybean mitochondrial proteins to various sizes of aluminum oxide nanoparticles under flooding stress
1
2016
... 作物处于淹水胁迫时,NMs的应用可通过降低细胞毒性副产物、调节光合代谢途径和营养物质的形成以促进作物的生长(图2f).淹水条件下分别对柑橘(Citrus reticulata Blanco)幼苗的叶面(喷施)和根系(水培营养液)使用SiNPs(250 mg/L,30~50 nm),可以减少由淹水胁迫带来的缺氧胁迫,通过降低糖酵解产生的细胞毒性副产物,提高碳水化合物代谢和抗氧化酶活性来维持氧化还原稳态[76].大豆经过氧化铝纳米颗粒(aluminum oxide nanoparticles,Al2O3-NPs,50 mg/L,30~60 nm)种子引发,可以调节淹水环境下抗坏血酸―谷胱甘肽途径、膜通透性和三羧酸循环活性,保持光合作用稳定,且根系下胚轴长度增加,但在较小(5 nm)和较大(135 nm)的Al2O3-NPs处理时对能量代谢有负面影响[77].此外,淹水胁迫导致植物蔗糖积累、细胞壁松动、线粒体损伤和蛋白酶体介导的蛋白质水解[76],施用NMs可以改善淹水胁迫下作物的生长.淹水条件下混合施用AgNPs(5 mg/L)、烟酸和KNO3,可提高大豆植株中蛋白质合成水平,以增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,AgNPs的施用亦可使大豆蛋白质的降解相关蛋白丰度增加,调控错误折叠蛋白或严重受损蛋白质,从而维持细胞完整性,促进大豆幼苗生长[68]. ...