作物杂志,2025, 第4期: 9–18 doi: 10.16035/j.issn.1001-7283.2025.04.002

• 专题综述 • 上一篇    下一篇

纳米材料使用方法及缓解作物非生物胁迫的研究进展

补清1(), 杨开强1, 王添1, 施思1, 信国琛1, 陈勇1, 董朝霞2, 安静1()   

  1. 1华南农业大学农学院,510642,广东广州
    2华南农业大学林学与风景园林学院,510642,广东广州
  • 收稿日期:2023-12-29 修回日期:2024-04-16 出版日期:2025-08-15 发布日期:2025-08-12
  • 通讯作者: 安静,主要从事作物栽培学研究,E-mail:anjing@scau.edu.cn
  • 作者简介:补清,主要从事作物逆境生理研究,E-mail:buqing0706@163.com
  • 基金资助:
    广州市科技计划项目(2023A04J1451)

Research Progress on the Use of Nanomaterials and the Alleviation of Abiotic Stresses in Crops

Bu Qing1(), Yang Kaiqiang1, Wang Tian1, Shi Si1, Xin Guochen1, Chen Yong1, Dong Zhaoxia2, An Jing1()   

  1. 1College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
    2College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, Guangdong, China
  • Received:2023-12-29 Revised:2024-04-16 Online:2025-08-15 Published:2025-08-12

摘要:

随着全球气候及农业生产环境的变化,近年来非生物灾害频发,严重制约着作物生长发育并造成粮食生产安全问题。纳米材料由于其独特的理化特性,有助于改善受污染的生长环境,提高作物抗逆性,并促进现代农业可持续发展。本文综述了作物对纳米材料的吸收方式,分析了纳米材料在缓解温度、水分、盐分及重金属等非生物胁迫的作用机制,为纳米材料在缓解作物非生物胁迫方面的应用提供参考。

关键词: 纳米材料, 作物, 非生物胁迫, 生理机制

Abstract:

With the changes in the global climate and agricultural production environment, abiotic disasters have occurred frequently in recent years, which have severely restricted the growth and development of crops and caused food production security issues. Due to their unique physicochemical properties, nanomaterials can help to improve the polluted growing environment, enhance the stress resistance of crops, and promote the sustainable development of modern agriculture. The article reviewed the different ways of crop uptake nanomaterials in detail and analyzed the mechanism of nanomaterials in alleviating abiotic stresses such as temperature, moisture, salinity and heavy metals, which provided a reference for the application of nanomaterials in alleviating abiotic stresses in crops.

Key words: Nanomaterials, Crops, Abiotic stress, Physiological mechanisms

图1

NMs在作物中的不同吸收途径 (a) 种子引发;(b) 根系吸收;(c) 叶片吸收。

表1

非生物胁迫下NPs提高作物抗逆性的作用方式

非生物胁迫
Abiotic stress
纳米颗粒
NPs
浓度、大小
Concentration, size
使用方式
Usage
作物
Crop
作用
Impact
参考文献
Reference
高温
High temperature
AgNPs
10 mg/L,11.2 nm
土壤根系吸收
小麦
增加根冠比、植株鲜重、植株干重、叶面积,促进ROS水平下降 [50]
MWCNT 100 μg/mL,10~20 nm
叶面喷施
芝麻
降低丙二醛(MDA)和H2O2浓度,提高POD活性,增强不饱和脂肪酸比例 [51]
TiO2-NPs
SeNPs

10 mg/L,5~70 nm

叶面喷施

小麦

提高CAT、SOD、抗坏血酸过氧化物酶(APX)活性,改善光合速率、气体交换和蒸腾速率,调节PIP1LEA-1HSP70基因表达,增强耐热性 [52]

低温
Low temperature
CTS-GB-NPs
5、10 g/L,150 nm
果实涂抹
李子
减少储存过程中的重量损失和组织软化,提高抗氧化酶活性 [53]
TiO2-NPs
5 mg/L,7~40 nm
种子引发
鹰嘴豆
增加叶绿素结合蛋白的编码基因表达量和磷酸烯醇丙酮酸羧化酶活性,促进光合作用 [54]
盐分Salinity GO 12.5、25 mg/L,5 nm 种子引发 小麦 提高种子在胁迫下的萌发率 [2]
CeO2-NPs
200 mg/L,620.7 nm
水培根系吸收
水稻
调节抗氧化系统酶活性,降低8-OHdG含量(水稻遗传毒性的重要指标) [27]
ZnO-NPs 50 mg/L,9.4 nm 叶面喷施 蚕豆 提高脯氨酸和总可溶性糖含量 [55]
ZnO-NPs 20、50 mg/L 叶面喷施 小麦 促进植株渗透液的形成和养分吸收 [56]
CeO2-NPs
0.9 mmol/L,8.04 nm
叶面注射
棉花
调控KORSOS等离子转运基因表达,增加K+/Na+比例,促使Na+最小化吸收 [57]
CeO2-NPs
500 mg/kg,52.6 nm
土壤根系吸收
油菜
缩短植株根外质体的屏障,促进更多Na+从根部转移到茎部 [38]
FeSO4-NPs
2 g/L,90 nm
叶面喷施
向日葵
提高CAT、POD和多酚氧化酶(PPO)活性,减少胁迫下羟自由基的产生 [58]
镉胁迫Cd stress CeO2-NPs 200 mg/L,620.7 nm 水培根系吸收 水稻 增加幼苗叶绿素含量,降低脯氨酸含量 [27]
ZnO-NPs
100 mg/L,20~30 nm
叶面喷施
水稻
显著降低植株根茎的Cd浓度,土壤pH从8.03提高到8.23,土壤可吸收Cd显著降低 [48]
Fe3O4-NPs 0.5 g/kg,10~50 nm 土壤根系吸收 水稻 降低植株中Cd积累以及在土壤中的迁移率 [59]
SiNPs

1 mmol/L,19 nm

土壤根系吸收

水稻

与Cd2+结合形成络合物,减少重金属从根到茎的运输,刺激Si吸收基因OsLsi1表达以提供更多Si,增强Cd胁迫抗性 [60]

Fe3O4-NPs
10 mg/L,15~25 nm
种子引发

菜豆

提高K+含量,促进多胺的生物合成,降低MDA含量和电解质的泄漏 [61]

SiNPs 20 mg/L,40~100 nm 促进多胺生物合成,降低MDA含量和电解质泄漏
SiNPs

10、30 mg/L,30 nm

水培根系吸收

苦瓜

降低植株茎和根的Cd2+浓度,提高叶绿素含量、光合速率、蒸腾速率和气孔导度,增加抗氧化酶活性,降低黄酮和可溶性糖的含量,以增强耐Cd抗性 [62]

砷胁迫As stress SeNPs 30 mmol/L,20 nm 土壤根系吸收 水稻 与As结合形成络合物,减少重金属从根到茎的运输 [63]
铬胁迫Cr stress CuNPs 50 mg/kg,19~47.5 nm 土壤根系吸收 小麦 增加植株根长和茎长,增加了细胞抗氧化物的水平 [64]
干旱Drought AgNPs 10 mg/L,11.2 nm 种子引发 水稻 增强水分吸收,重启ROS系统,促进陈化种子的萌发 [13]
CaO-NPs
75 mg/L,160 nm
种子引发
油菜
降低MDA含量,改善抗氧化酶水平,增加幼苗鲜重、叶片数、叶绿素含量和产量构成因素 [14]
SeNPs
20 mg/L,10 nm
叶面喷施
石榴
提高抗氧化酶活性,降低H2O2和MDA的水平,增强光合色素的生物合成速率 [65]
ZnO-NPs

100 mg/L,20 nm

种子引发

玉米

提高净光合速率、水分利用效率、可溶性糖含量以及碳代谢关键酶活性,增强叶片蔗糖和淀粉合成以及糖酵解代谢 [66]

GO

100 μg/mL

土壤根系吸收

大豆

增加作物防御酶、激素含量以及GmP5CSGmGOLSGmDREB1GmNCED1等干旱基因的表达,提高抗旱性 [67]

淹水
Flooding
AgNPs

5 mg/L,15 nm

水培根系吸收

大豆

增加大豆钙连结蛋白、钙网蛋白和糖蛋白的积累,提高蛋白质的降解相关蛋白丰度,调控错误折叠蛋白或严重受损蛋白质 [68]

图2

NMs调节作物非生物胁迫的影响机制

[1] Imran Q M, Falak N, Hussain A, et al. Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy, 2021, 11(8):1579.
[2] 曹慧芬, 谢建义, 姚建忠, 等. 氧化石墨烯对盐胁迫下小麦种子萌发及幼苗生长的影响. 山西农业大学学报(自然科学版), 2022, 42(5):84-92.
[3] Wu H H, Tito N, Giraldo J P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano, 2017, 11(11):11283-11297.
doi: 10.1021/acsnano.7b05723 pmid: 29099581
[4] Arora S, Murmu G, Mukherjee K, et al. A comprehensive overview of nanotechnology in sustainable agriculture. Journal of Biotechnology, 2022, 355:21-41.
[5] Auffan M, Rose J, Bottero J Y, et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 2009, 4(10):634-641.
doi: 10.1038/nnano.2009.242 pmid: 19809453
[6] Ghorbanpour M, Manika K, Varma A. Nanoscience and plant-soil systems. Cham Switzerland: Springer, 2017.
[7] Pramanik B, Sar P, Bharti R, et al. Multifactorial role of nanoparticles in alleviating environmental stresses for sustainable crop production and protection. Plant Physiology and Biochemistry, 2023, 201:107831.
[8] Dam P, Paret M L, Mondal R, et al. Advancement of noble metallic nanoparticles in agriculture: a promising future. Pedosphere, 2023, 33(1):116-128.
[9] Shaw D S, Honeychurch K C. Nanosensor applications in plant science. Biosensors-Basel, 2022, 12(9):675.
[10] Khan I, Awan S A, Rizwan M, et al. Nanoparticleʼs uptake and translocation mechanisms in plants via seed priming, foliar treatment, and root exposure: a review. Environmental Science and Pollution Research, 2022, 29(60):89823-89833.
[11] Lee J H J, Kasote D M. Nano-priming for inducing salinity tolerance, disease resistance, yield attributes, and alleviating heavy metal toxicity in plants. Plants-Basel, 2024, 13(3):446.
[12] An J, Hu P G, Li F J, et al. Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science: Nano, 2020, 7(8):2214-2228.
[13] Mahakham W, Sarmah A K, Maensiri S, et al. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports, 2017,7:8263.
[14] Mazhar M W, Ishtiaq M, Maqbool M, et al. Seed priming with calcium oxide nanoparticles improves germination, biomass, antioxidant defence and yield traits of canola plants under drought stress. South African Journal of Botany, 2022, 151:889-899.
[15] Pirzada T, de Farias B V, Mathew R, et al. Recent advances in biodegradable matrices for active ingredient release in crop protection: towards attaining sustainability in agriculture. Current Opinion in Colloid and Interface Science, 2020, 48:121-136.
[16] Xu L, Zhu Z W, Sun D W. Bioinspired nanomodification strategies: moving from chemical‐based agrosystems to sustainable agriculture. ACS Nano, 2021, 15(8):12655-12686.
[17] Guha T, Ravikumar K V G, Mukherjee A, et al. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiology and Biochemistry, 2018, 127:403-413.
[18] Khan M N, Li Y H, Khan Z, et al. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and alpha-amylase activities. Journal of Nanobiotechnology, 2021, 19(1):276.
[19] Khan M N, Fu C C, Li J Q, et al. Seed nanopriming: How do nanomaterials improve seed tolerance to salinity and drought?. Chemosphere, 2023, 310:136911.
[20] Sundaria N, Singh M, Upreti P, et al. Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains. Journal of Plant Growth Regulation, 2019, 38(1):122-131.
doi: 10.1007/s00344-018-9818-7
[21] Avellan A, Schwab F, Masion A, et al. Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environmental Science & Technology, 2017, 51(15):8682-8691.
[22] Butova V V, Bauer T V, Polyakov V A, et al. Advances in nanoparticle and organic formulations for prolonged controlled release of auxins. Plant Physiology and Biochemistry, 2023, 201:107808.
[23] Kim J H, Oh Y, Yoon H, et al. Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environmental Science & Technology, 2015, 49(2):1113-1119.
[24] Sabo-Attwood T, Unrine J M, Stone J W, et al. Uptake,distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology, 2012, 6(4):353-360.
doi: 10.3109/17435390.2011.579631 pmid: 21574812
[25] Taylor A F, Rylott E L, Anderson C W N, et al. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE, 2014, 9(4):e93793.
[26] Oliveira L S B L, Ristroph K D. Critical review: uptake and translocation of organic nanodelivery vehicles in plants. Environmental Science & Technology, 2024, 58(13):5646-5669.
[27] Wang Y Y, Wang L Q, Ma C X, et al. Effects of cerium oxide on rice seedlings as affected by co-exposure of cadmium and salt. Environmental Pollution, 2019, 252:1087-1096.
doi: S0269-7491(18)35750-6 pmid: 31252106
[28] Guleria G, Thakur S, Shandilya M, et al. Nanotechnology for sustainable agro-food systems: the need and role of nanoparticles in protecting plants and improving crop productivity. Plant Physiology and Biochemistry, 2023, 194:533-549.
[29] Chavan S, Sarangdhar V, Vigneshwaran N. Nanopore-based metagenomic analysis of the impact of nanoparticles on soil microbial communities. Heliyon, 2022, 8(6):e09693.
[30] Macůrková A, Maryška L, Jindřichová B, et al. Effect of round-shaped silver nanoparticles on the genetic and functional diversity of soil microbial community in soil and “soil-plant” systems. Applied Soil Ecology, 2021, 168:104165.
[31] McGee C F, Clipson N, Doyle E. Exploring the influence of raising soil pH on the ecotoxicological effects of silver nanoparticles and micron particles on soil microbial communities. Water Air and Soil Pollution, 2020, 231(4):174.
[32] Liu J, Williams P C, Goodson B M, et al. TiO2 nanoparticles in irrigation water mitigate impacts of aged Ag nanoparticles on soil microorganisms, Arabidopsis thaliana plants, and Eisenia fetida earthworms. Environmental Research, 2019, 172:202-215.
doi: 10.1016/j.envres.2019.02.010
[33] Kulikova N A, Volkov D S, Volikov A B, et al. Silver nanoparticles stabilized by humic substances adversely affect wheat plants and soil. Journal of Nanoparticle Research, 2020, 22(5):100.
[34] Handa M, Kalia A. Exploring the dynamics of nanoparticle-plant- microbe interactions to realize the goal of improved crop productivity and food security. Rhizosphere, 2024:100884.
[35] Shen Y, Tang H Y, Wu W H, et al. Role of nano-biochar in attenuating the allelopathic effect from Imperata cylindrica on rice seedlings. Environmental Science: Nano, 2020, 7(1):116-126.
[36] Zhao L J, Ortiz C, Adeleye A S, et al. Metabolomics to detect response of lettuce (Lactuca sativa) to Cu(OH)2 nanopesticides: oxidative stress response and detoxification mechanisms. Environmental Science & Technology, 2016, 50(17):9697-9707.
[37] Milewska-Hendel A, Gepfert W, Zubko M, et al. Morphological, histological and ultrastructural changes in Hordeum vulgare (L.) roots that have been exposed to negatively charged gold nanoparticles. Applied Sciences-Basel, 2022, 12(7):3265.
[38] Rossi L, Zhang W L, Ma X M. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environmental Pollution, 2017, 229:132-138.
[39] Hu P G, An J, Faulkner M M, et al. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano, 2020, 14(7):7970-7986.
doi: 10.1021/acsnano.9b09178 pmid: 32628442
[40] Ali S, Mehmood A, Khan N. Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. Journal of Nanomaterials, 2021(1):6677616.
[41] Sembada A A, Lenggoro I W. Transport of nanoparticles into plants and their detection methods. Nanomaterials, 2024, 14(2):131.
[42] Miyamoto T, Numata K. Advancing biomolecule delivery in plants: harnessing synthetic nanocarriers to overcome multiscale barriers for cutting-edge plant bioengineering. Bulletin of the Chemical Society of Japan, 2023, 96(9):1026-1044.
[43] Avellan A, Yun J, Zhang Y L, et al. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano, 2019, 13(5):5291-5305.
doi: 10.1021/acsnano.8b09781 pmid: 31074967
[44] Raliya R, Franke C, Chavalmane S, et al. Quantitative understanding of nanoparticle uptake in watermelon plants. Frontiers in Plant Science, 2016,7:1288.
[45] Lowry G V, Avellan A, Gilbertson L M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature Nanotechnology, 2019, 14(6):517-522.
doi: 10.1038/s41565-019-0461-7 pmid: 31168073
[46] Francis D V, Sood N, Gokhale T. Biogenic CuO and ZnO nanoparticles as nanofertilizers for sustainable growth of Amaranthus hybridus. Plants, 2022, 11(20):2776.
[47] Xin X P, Nepal J, Wright A L, et al. Carbon nanoparticles improve corn (Zea mays L.) growth and soil quality: comparison of foliar spray and soil drench application. Journal of Cleaner Production, 2022, 363:132630.
[48] Ali S, Rizwan M, Noureen S, et al. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environmental Science and Pollution Research, 2019, 26(11):11288-11299.
[49] Ahmed R, Abd Samad M Y, Uddin M K, et al. Recent trends in the foliar spraying of zinc nutrient and zinc oxide nanoparticles in tomato production. Agronomy-Basel, 2021, 11(10):2074.
[50] Iqbal M, Raja N I, Mashwani Z, et al. Effect of silver nanoparticles on growth of wheat under heat stress. Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43:387-395.
[51] Mahmoud N E, Abdelhameed R M. Use of titanium dioxide doped multi-wall carbon nanotubes as promoter for the growth, biochemical indices of Sesamum indicum L. under heat stress conditions. Plant Physiology and Biochemistry, 2023, 201:107844.
[52] Omar A A, Heikal Y M, Zayed E M, et al. Conferring of drought and heat stress tolerance in wheat (Triticum aestivum L.) genotypes and their response to selenium nanoparticles application. Nanomaterials, 2023, 13(6):998.
[53] Mahmoudi R, Razavi F, Rabiei V, et al. Application of glycine betaine coated chitosan nanoparticles alleviate chilling injury and maintain quality of plum (Prunus domestica L.) fruit. International Journal of Biological Macromolecules, 2022, 207:965-977.
[54] Hasanpour H, Maali-Amir R, Zeinali H. Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea. Russian Journal of Plant Physiology, 2015, 62(6):779-787.
[55] Mogazy A M, Hanafy R S. Foliar spray of biosynthesized zinc oxide nanoparticles alleviate salinity stress effect on Vicia faba plants. Journal of Soil Science and Plant Nutrition, 2022, 22(2):2647-2662.
[56] Lalarukh I, Zahra N, Al Huqail A A, et al. Exogenously applied ZnO nanoparticles induced salt tolerance in potentially high yielding modern wheat (Triticum aestivum L.) cultivars. Environmental Technology & Innovation, 2022, 27:102799.
[57] Liu J H, Li G J, Chen L L, et al. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio. Journal of Nanobiotechnology, 2021, 19(1):153.
[58] Torabian S, Farhangi-Abriz S, Zahedi M. Efficacy of FeSO4 nano formulations on osmolytes and antioxidative enzymes of sunflower under salt stress. Indian Journal of Plant Physiology, 2018, 23(2):305-315.
[59] Sebastian A, Nangia A, Prasad M N V. Cadmium and sodium adsorption properties of magnetite nanoparticles synthesized from Hevea brasiliensis Muell. Arg. bark: relevance in amelioration of metal stress in rice. Journal of Hazardous Materials, 2019, 371:261-272.
doi: S0304-3894(19)30276-6 pmid: 30856436
[60] Ma J, Cai H M, He C W, et al. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytologist, 2015, 206(3):1063-1074.
doi: 10.1111/nph.13276 pmid: 25645894
[61] Koleva L, Umar A, Yasin N A, et al. Iron oxide and silicon nanoparticles modulate mineral nutrient homeostasis and metabolism in cadmium-stressed Phaseolus vulgaris. Frontiers in Plant Science, 2022, 13:806781.
[62] Sun H Y, He S J, Liu T L, et al. Alleviation of cadmium toxicity by nano-silicon dioxide in Momordica charantia L. seedlings. Journal of Soil Science and Plant Nutrition, 2023, 23(1):1060-1069.
[63] Wang K, Wang Y Q, Wan Y N, et al. The fate of arsenic in rice plants (Oryza sativa L.): influence of different forms of selenium. Chemosphere, 2021, 264(1):128417.
[64] Noman M, Shahid M, Ahmed T, et al. Green copper nanoparticles from a native Klebsiella pneumoniae strain alleviated oxidative stress impairment of wheat plants by reducing the chromium bioavailability and increasing the growth. Ecotoxicology and Environmental Safety, 2020, 192:110303.
[65] Zahedi S M, Hosseini M S, Meybodi N D H, et al. Mitigation of the effect of drought on growth and yield of pomegranates by foliar spraying of different sizes of selenium nanoparticles. Journal of the Science of Food and Agriculture, 2021, 101(12):5202-5213.
[66] Sun L Y, Song F B, Li X N, et al. Nano-ZnO alleviates drought stress via modulating plant water use and carbohydrate metabolism in maize. Archives of Agronomy and Soil Science, 2021, 67(2):245-259.
[67] Zhao L, Wang W, Fu X H, et al. Graphene oxide, a novel nanomaterial as soil water retention agent, dramatically enhances drought stress tolerance in soybean plants. Frontiers in Plant Science, 2022, 13:810905.
[68] Hashimoto T, Mustafa G, Nishiuchi T, et al. Comparative analysis of the effect of inorganic and organic chemicals with silver nanoparticles on soybean under flooding stress. International Journal of Molecular Sciences, 2020, 21(4):1300.
[69] Bhattacharjya S, Adhikari T, Sahu A, et al. Ecotoxicological effect of TiO2 nano particles on different soil enzymes and microbial community. Ecotoxicology, 2021, 30(4):719-732.
doi: 10.1007/s10646-021-02398-2 pmid: 33797020
[70] Ratajczak K, Sulewska H, Panasiewicz K, et al. Phytostimulator application after cold stress for better maize (Zea mays L.) plant recovery. Agriculture-Basel, 2023, 13(3):569.
[71] 胡炎, 杨帆, 杨宁, 等. 盐碱地资源分析及利用研究展望. 土壤通报, 2023, 54(2):489-494.
[72] Zia-ur-Rehman M, Anayatullah S, Irfan E, et al. Nanoparticles assisted regulation of oxidative stress and antioxidant enzyme system in plants under salt stress: a review. Chemosphere, 2023, 314:137649.
[73] Zhou P F, Adeel M, Shakoor N, et al. Application of nanoparticles alleviates heavy metals stress and promotes plant growth: an overview. Nanomaterials, 2021, 11(1):26.
[74] Cui J H, Liu T X, Li F B, et al. Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects. Environmental Pollution, 2017, 228:363-369.
doi: S0269-7491(16)31848-6 pmid: 28551566
[75] Wang J, Wu H H, Wang Y C, et al. Small particles, big effects: how nanoparticles can enhance plant growth in favorable and harsh conditions. Journal of Integrative Plant Biology, 2024, 66(7):1274-1294.
doi: 10.1111/jipb.13652
[76] Iqbal S, Hussain M, Sadiq S, et al. Silicon nanoparticles confer hypoxia tolerance in citrus rootstocks by modulating antioxidant activities and carbohydrate metabolism. Heliyon, 2024, 10(1):e22960.
[77] Mustafa G, Komatsu S. Insights into the response of soybean mitochondrial proteins to various sizes of aluminum oxide nanoparticles under flooding stress. Journal of Proteome Research, 2016, 15(12):4464-4475.
pmid: 27780359
[1] 贺新春, 杜何为, 黄敏. 玉米ZmCaM1基因的克隆和表达分析[J]. 作物杂志, 2025, (4): 19–28
[2] 黄承建, 李祥, 刘小康, 潘庭杰, 雷宁, 罗芳, 赵思毅. 不同农作物种植对土壤和作物重金属的影响[J]. 作物杂志, 2025, (2): 180–188
[3] 卢玉, 张妍妍, 陈海涛, 李满鑫, 白润娥, 雷彩燕. 外源亚精胺对烟粉虱―黄瓜互作的影响[J]. 作物杂志, 2025, (2): 256–264
[4] 李新如, 谢晏芬, 朱宣全, 王戈, 白羽祥, 杜宇, 周鹏, 赵宇婷, 朱红琼, 杨帆, 肖志文, 王文波, 方志鹏, 韩家宝, 王娜. 不同前作植烟土壤质量评价及其与烟叶质量的相关性研究[J]. 作物杂志, 2024, (5): 167–174
[5] 顾怀应, 胡诗钦, 赵晴, 刘长华, 孟丽君. 根际微生物增强水稻耐盐性研究进展[J]. 作物杂志, 2024, (4): 8–13
[6] 李红艳, 姚晓华, 姚有华, 李新, 吴昆仑. 麦类作物蓝粒性状遗传与调控机制研究进展[J]. 作物杂志, 2024, (2): 9–14
[7] 杜明, 王阿红, 冯旗, 方玉. 我国作物设计育种体系发展及挑战[J]. 作物杂志, 2024, (1): 1–7
[8] 白菁华, 贾晓梅, 吴艳清, 王悦坤, 宋伟扬, 刘伊诺. DSE抵抗非生物胁迫及增强马铃薯抗旱效应[J]. 作物杂志, 2023, (6): 150–159
[9] 边晓萌, 李华锋, 陈彦宾. “十三五”国家重点研发计划“经作”专项杂粮领域资助情况及实施进展概述[J]. 作物杂志, 2023, (4): 1–6
[10] 翟鑫娜, 杨佳伟, 许春江, 祁利潘, 田再民, 冯琰, 尹江, 龚学臣. 嫁接对马铃薯种间杂交亲和性的影响及生理调控机制[J]. 作物杂志, 2023, (4): 182–187
[11] 孟亚轩, 姚旭航, 孙颖琦, 赵心月, 王凤霞, 瓮巧云, 刘颖慧. 主要禾谷类作物DGAT基因家族比较分析[J]. 作物杂志, 2023, (1): 20–29
[12] 王雪茹, 陈海飞, 张振华. 硝酸盐缓解油菜铵毒害的生理机制[J]. 作物杂志, 2022, (6): 124–131
[13] 张东霞, 秦安振. 冬小麦-夏玉米作物蒸散量及其水热关系研究[J]. 作物杂志, 2022, (6): 145–151
[14] 庞星月, 万林, 李素, 王宇航, 刘晨, 肖晓璐, 李心昊, 马霓. 外源SLs和纳米K2MoO4对干旱胁迫下油菜种子萌发的影响[J]. 作物杂志, 2022, (4): 214–220
[15] 严圣吉, 尚子吟, 邓艾兴, 张卫建. 我国农田氧化亚氮排放的时空特征及减排途径[J]. 作物杂志, 2022, (3): 1–8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!