水稻CYP450家族基因Os78A5的表达分析
1
2
Expression Analysis of the CYP450 Family Gene Os78A5 in Rice
1
2
通讯作者:
收稿日期: 2024-06-14 修回日期: 2024-07-24 网络出版日期: 2024-08-23
| 基金资助: |
|
Received: 2024-06-14 Revised: 2024-07-24 Online: 2024-08-23
作者简介 About authors
植藓闳,研究方向为农艺与种业,E-mail:
关键词:
Cytochrome P450 (CYP450) is widely present in various organisms and plays an essential role in plant secondary metabolism and stress response. A gene encoding the CYP450 protein, Os78A5 (LOC_ Os11g29720), was cloned from rice (Oryza sativa). The gene structure, evolution process and cis-regulatory elements of Os78A5 were analyzed by bioinformatics method, and the expression of Os78A5 in different tissues and response to different plant hormones and abiotic stresses were analyzed by quantitative real-time PCR (qRT-PCR). The results showed that coding region of Os78A5 was 1617 bp, encoding 538 amino acids. Os78A5 has closer evolutionary relationship with the homologous protein CYP78A5 of Setaria viridis and Sorghum bicolor. The promoter region of Os78A5 contained 48 hormone response elements, 23 environmental stress response elements and 35 water response cis-regulatory elements. The expression of Os78A5 in rice leaves was significantly higher than that in other tissues, and it was induced by 6-benzylaminopurine, gibberellic acid, indole acetic acid, abscisic acid, high temperature and low temperature, suggesting that Os78A5 might be involved in abiotic stress response in rice.
Keywords:
本文引用格式
植藓闳, 纪子贤, 许镇旺, 谭恩, 梁日深, 马帅鹏, 唐辉武.
Zhi Xianhong, Ji Zixian, Xu Zhenwang, Tan En, Liang Rishen, Ma Shuaipeng, Tang Huiwu.
细胞色素P450(cytochrome P450,CYP450)是一类以血红素作为辅助因子的单加氧酶,因其在450 nm处有特异吸收峰而得名[1]。CYP450是自然中最大最古老的家族,也是植物基因组中最大的超基因家族[2],对植物的生长发育有着重要的作用。目前,基因数据库中约有3万多个CYP450家族基因[3],P450酶的命名主要基于蛋白质氨基酸序列的相似性。其中,P450蛋白相似性大于40%的蛋白被划归同一家族,相似性大于55%,则归为同一亚家族[4]。按被发现的时间顺序,P450蛋白从CYP71A1命名到CYP7011A1及以上[5]。CYP450酶系包含细胞色素P450、细胞色素b5、NADPH-细胞色素P450还原酶、NADH-细胞色素b5还原酶及磷脂[6]。
CYP450家族基因编码产物是一类在生物体内广泛存在的重要酶系,主要参与多种生化途径和非生物胁迫响应。其中生化途径包括植物产物合成途径,如苯丙素、生物碱、萜类、脂质、发蓝糖苷和硫代葡萄糖苷,以及植物生长调节剂合成途径,如赤霉素(GA)、茉莉酸(JA)和油菜素内酯[7]。研究[8]表明,红花(Carthamus tinctorius)中的CtCYP82G24基因在类黄酮生物合成中具有重要作用,过量表达CtCYP82G24基因能够使植株大量积累黄酮类物质。CsCYP82D102基因在黄瓜(Cucumis sativus)中过表达能够增强植株对白粉病的抗性[9]。在十字花科(Brassicaceae)植物中,CYP72A9可将13-H赤霉素转变为13-OH赤霉素,过表达CYP72A9会引起活性13-H赤霉素含量显著降低[10]。CYP450通过参与外源代谢使植物对抗生素、杀虫剂、除草剂和药物产生耐药性[11];通过增强抗氧化性化合物(如类黄酮)的活性[12],保护植物免受恶劣环境条件的影响[13]。CYP450家族基因KLU通过协同激活细胞分裂素信号传导和促进脯氨酸代谢调节叶片衰老和抗旱性,过表达KLU显著提高了拟南芥的抗旱能力[14]。
近年来,研究人员对水稻CYP基因家族的功能进行了广泛的研究。在水稻中,过表达OsCYP71D8L能调节水稻中GA与细胞分裂素(6-BA)的动态平衡,增加叶绿素和可溶性糖的含量,并减少H2O2的积累,从而提高转化体对干旱和盐胁迫的耐受性[15];CYP94亚家族基因CYP94C2b编码一种催化茉莉酸异亮氨酸(JA-Ile)转化为12OH-JA-Ile和12COOH-JA-Ile的酶,过表达CYP94C2b能促进JA失活,提高水稻植株的耐盐性[16],表明CYP450家族基因在水稻的胁迫响应中发挥着重要的作用。研究[17]还发现,CYP78A亚家族基因BSR2与水稻抗性有关,BSR2基因敲除突变体对茄蚜的敏感性更高;CYP716A亚家族基因CYP716A16过表达可增强水稻对水稻纹枯病菌(Rhizoctonia solani)AG1-IA和Xoo的抗性[18],表明CYP450家族基因能增强水稻植株的抗病性。水稻CYP734As是一种多功能的多底物酶,通过直接灭活油菜素甾酮(CS)和降低油菜素内酯前体水平抑制CS的生物合成来控制内源生物活性油菜素内酯的含量,从而影响水稻植株的生长[19]。此外,细胞色素P450亚家族CYP78As(BG2、GL3.2和BG2L1)与SMG4和COPⅡ存在物理互作,可能通过CYP78As-SMG4-COPⅡ途径调控水稻籽粒大小[20]。Sahoo等[21]研究表明,OsCYP71P6第33位氨基酸的变异(Ser33Leu)与小穗育性密切相关,而且OsCYP71P6-1启动子插入型材料的单株产量、颖花数、穗长、穗重和每穗粒数都增加,说明CYP450家族基因参与水稻的生长发育过程。CYP704B2和CYP703A3参与水稻花药角质层和花粉外壁的发育,杂交水稻中应用最广泛的优良品系9311缺失CYP703A3会导致植株无花粉而雄性不育,而通过互补可完全恢复育性[22-23]。OsCYP86A9是水稻花药发育和根中软木脂合成的关键基因,在花药中,OsCYP86A9受OsMYB80调控而参与花粉外壁发育;而在根中,OsCYP86A9受OsMYB41、OsMYB93a和OsMYB76转录因子调控,参与软木脂合成[24]。CYP450基因ELL1通过影响叶绿体发育来调控水稻中活性氧(ROS)的稳态,进而触发由ROS介导的细胞死亡[25]。以上研究结果表明,CYP450对于植物的生长发育、代谢调控以及逆境应答等方面具有重要的作用。
植物在生长过程中经常暴露在各种非生物/生物胁迫或两者的结合胁迫中[26],这些来自外界的胁迫会破坏植物的自然防御系统,从而影响作物的产量[27]。目前,很多水稻CYP450家族基因功能被研究,但还有很多水稻CYP450基因功能尚未明确。本研究在水稻的转录组中鉴定到一个新的CYP450家族基因LOC_Os11g29720,通过NCBI数据库(
1 材料与方法
1.1 试验材料
水稻材料为粳稻中花11(Zhonghua 11,ZH11)。使用木村B营养液在光照培养箱(12/12 h光照/黑暗,温度28 ℃/25 ℃)中培养用于不同处理的水稻幼苗,培养至3~4叶期时进行各种处理(3个生物学重复)。用于组织特异性表达分析的材料萌发后播种于广东省广州市仲恺农业工程学院试验田中,提取孕穗期的根、茎、不同生育时期的叶片、不同长度幼穗的总RNA,用于表达分析(3个生物学重复)。
1.2 生物信息学分析
在NCBI数据库(
1.3 试验处理与取样
1.3.1 组织特异性表达分析
提取ZH11孕穗期的根、茎、不同生育时期(一叶期、二叶期、三叶期、四叶期、五叶期、分蘖期)的完全展开最新叶、倒二叶、剑叶和不同长度幼穗(0.5~1 cm、1~2 cm、2~3 cm)的总RNA,利用qRT-PCR检测Os78A5在ZH11不同组织部位中的表达情况。
1.3.2 植物激素处理
将培养至3~4叶期水稻幼苗分别移至含有1×10-5 mol/L脱落酸(abscisic acid,ABA)、1×10-5 mol/L GA、1×10-5 mol/L生长素(indole acetic acid,IAA)和1×10-5 mol/L细胞分裂素(6-benzylaminopurine,6-BA)的木村B营养液中培养,处理0、1、2、8、24 h后收取地上部分,并提取RNA,然后利用qRT-PCR技术检测不同激素处理下Os78A5的表达量。
1.3.3 非生物胁迫处理
将培养至3~4叶期的水稻幼苗分别移至4 ℃和42 ℃培养箱中培养,进行低温和高温胁迫处理。将3~4叶期水稻幼苗移至含20% PEG 6000和200 mmol/L NaCl的木村B营养液中培养,进行渗透胁迫和盐胁迫处理。处理时间为0、1、2、8和24 h,提取水稻叶片RNA,利用qRT-PCR技术检测不同胁迫处理下Os78A5的表达量。
1.4 RNA提取和表达分析
使用TRIzol(Glpbio,GK20008)提取总RNA,进一步使用反转录试剂盒(Vazyme,R312-01)获取cDNA,然后在ABI PRISM 7500HT定量PCR仪上进行qRT-PCR检测。qRT-PCR反应体系为20 µL。反应程序为95 ℃预变性3 min;95 ℃变性5 s,60 ℃退火30 s,40个循环。Actin1为内参基因,3个生物学重复,采用2-ΔΔCT计算Os78A5的表达水平。通过单因素方差法进行差异显著性分析,P<0.05视为基因表达量发生显著变化。用于qRT-PCR分析的特异引物如表1所示。
表1 qRT-PCR所用引物序列
Table 1
| 引物名称Primer name | 引物序列(5′-3′)Primer sequence (5′-3′) |
|---|---|
| Os78A5-F | TGCTGTCCTCTGGGAGATGAT |
| Os78A5-R | GAAGGTTGGGGATGTCCGAG |
| Actin1-F | GCATCTCTCAGCACATTCCA |
| Actin1 -R | ACCACAGGTAGCAATAGGTA |
2 结果与分析
2.1 Os78A5基因的序列分析
图1
图1
Os78A5基因结构和蛋白结构域
灰色框为3′ UTR区和5′ UTR区,黑色方框为外显子,黑色细线为内含子,白色框为TMH结构域。
Fig.1
Os78A5 gene structure and protein domain
The gray boxes indicate 3′ UTR region and 5′ UTR region, the black boxes indicate exon, the black thin lines indicate intron, the white boxes indicate TMH domain.
2.2 Os78A5的进化分析
将Os78A5及其同源蛋白进行进化树分析,结果(图2)表明,水稻中的78A5与狗尾草(Sv78A5,XP_034606299.1)和高粱(Sb78A5,XP_002449497.1)的同源蛋白有相对较近的进化关系;与拟南芥(At78A5,NP_177551.1)、花生(Ah78A5,XP_016182528.1)、甜瓜(Cm78A5,XP_008446041.1)、黄褐棉(Gm78A5,TYJ40945.1)、向日葵(Ha78A5,XP_022025738.1)、葡萄(Vv78A5,XP_002271641.2)、番茄(Sl78A5,XP_004239209.1)和烟草(Nt78A5,XP_016483605.1)等的同源蛋白亲缘关系相对较远。
图2
图2
Os78A5的进化分析
百分比数值为进化分支的可靠程度。
Fig.2
Evolutionary analysis of Os78A5
Percentage values are the reliability of evolutionary branches.
2.3 Os78A5基因启动子区域的顺式作用元件分析
启动子顺式作用元件分析结果(表2)表明,Os78A5的启动子区域存在35个水分响应顺式作用元件、15个IAA响应顺式作用元件、7个水杨酸响应元件、6个高温胁迫响应元件、1个6-BA响应元件、25个GA响应顺式作用元件、2个盐胁迫响应元件和15个低温胁迫响应顺式作用元件。
表2 Os78A5启动子顺式作用元件分析
Table 2
| 元件名称 Name of element | 功能 Function | 数量Number | |
|---|---|---|---|
| ABRELATERD1 | 脱水响应 | 2 | |
| ACGTATERD1 | 脱水响应 | 4 | |
| CBFHV | 脱水响应 | 4 | |
| DRECRTCOREAT | 脱水响应 | 2 | |
| MYB1AT | 脱水响应 | 4 | |
| MYB2CONSENSUSAT | 脱水响应 | 2 | |
| MYCCONSENSUSAT | 脱水响应和冷胁迫响应 | 12 | |
| MYBCORE | 水分响应 | 3 | |
| MYB2AT | 水分响应 | 2 | |
| SEBFCONSSTPR10A | IAA响应 | 2 | |
| SURECOREATSULTR11 | IAA响应 | 6 | |
| ARFAT | IAA响应 | 2 | |
| ASF1MOTIFCAMV | IAA、水杨酸响应 | 5 | |
| WBOXATNPR1 | 水杨酸诱导响应 | 2 | |
| GAREAT | GA响应元件 | 1 | |
| MYBGAHV | GA响应 | 1 | |
| PYRIMIDINEBOXOSRAMY1A | GA响应 | 1 | |
| WRKY71OS | GA响应 | 22 | |
| CPBCSPOR | 6-BA响应 | 1 | |
| LTRECOREATCOR15 | 低温响应、ABA响应 | 3 | |
| CCAATBOX1 | 高温胁迫响应 | 6 | |
| GT1GMSCAM4 | 盐胁迫响应 | 2 | |
2.4 Os78A5基因的表达谱分析
2.4.1 Os78A5基因的组织特异性表达
为了研究Os78A5在ZH11不同组织部位中的表达情况,本研究提取ZH11孕穗期时的根、茎、不同时期(一叶期、二叶期、三叶期、四叶期、五叶期、分蘖期)的完全展开最新叶、倒二叶、剑叶和不同长度幼穗(0.5~1 cm、1~2 cm、2~3 cm)的总RNA,然后利用qRT-PCR技术检测ZH11不同组织部位中Os78A5的表达量,结果(图3)显示,Os78A5在各个生育时期叶片中的表达水平都高于其他组织部位,其次为根部和茎部,在不同长度的幼穗中表达水平均很低。
图3
2.4.2 外源激素处理对Os78A5基因的表达影响
生物信息学分析表明,Os78A5的启动子区域包含多个激素响应元件,推测Os78A5的表达可能响应激素调控。本研究对生长到3~4叶期的ZH11幼苗分别进行ABA、GA、IAA和6-BA等激素处理,然后利用qRT-PCR技术检测不同激素处理下Os78A5的表达情况。结果表明,在6-BA、GA、IAA和ABA的处理下,Os78A5的表达量均呈现先上升后下降的趋势。6-BA和GA处理8 h时,Os78A5的表达量达到最高,分别约为处理前的18倍和6倍(图4a~b);IAA处理2 h时,Os78A5基因的表达量达到最高,约为处理前的9倍(图4c);ABA处理1 h时,Os78A5基因的表达量达到最高,约为处理前的3倍(图4d)。
图4
图4
不同激素处理下Os78A5表达水平分析
“*”:P < 0.05,“**”:P < 0.01,“***”:P < 0.001。下同。
Fig.4
Expression level analysis of Os78A5 under different hormone treatments
“*”: P < 0.05,“**”: P < 0.01,“***”: P < 0.001. The same below.
2.4.3 逆境处理对Os78A5基因表达的影响
为研究各种逆境胁迫对Os78A5表达的影响,本研究对生长到3~4叶期的ZH11幼苗分别进行20% PEG 6000、200 mmol/L NaCl、42 ℃、4 ℃的胁迫处理,然后利用qRT-PCR技术检测不同胁迫处理下Os78A5基因的表达情况。结果表明,在4 ℃处理后(图5a),Os78A5基因的表达水平表现为先上升后下降,处理1 h时表达水平达到峰值,为处理前的2.3倍。20% PEG 6000处理后,Os78A5的表达水平整体显著下降,处理8 h时,表达量下降到最低值(图5b)。42 ℃处理后,Os78A5的表达水平先下降后上升,在处理24 h时表达水平达到峰值,约为处理前的3倍(图5c)。200 mmol/L NaCl处理后,Os78A5表达水平整体显著下降,处理8 h时,表达量达到最低值(图5d)。
图5
图5
不同胁迫处理下Os78A5表达水平分析
Fig.5
Expression level analysis of Os78A5 under different stress treatments
3 讨论
CYP450是一类含有血红素的超家族蛋白酶,参与植物生长发育的多个过程,并在胁迫响应过程中发挥重要作用。本研究在水稻中克隆了一个CYP450基因家族成员Os78A5,其编码的氨基酸序列包含血红素结合域FXXGXRXCXG,属于典型的细胞色素CYP450家族基因。系统进化分析表明,Os78A5蛋白与单子叶植物中的同源蛋白具有更近的亲缘关系,与双子叶植物中的同源蛋白具有相对较远的进化关系,形成了有明显差异的亚类,推测Os78A5蛋白在物种进化过程中受到了选择。
研究[28]表明,CYP450通过生物合成和调节激素、脂肪酸、甾醇、细胞壁成分、生物聚合物和其他几种防御化合物(萜类、生物碱、类黄酮、呋喃香豆素、硫代葡萄糖苷和化感化学物质)来保护植物免受非生物和生物胁迫。启动子顺式作用元件分析表明,Os78A5的启动子中存在若干环境胁迫相关的顺式作用元件,推测Os78A5的转录表达可能受到逆境胁迫的调节,并参与各种逆境胁迫响应。在高温或低温胁迫下,黑麦草(Lolium perenne)中参与黄酮类化合物合成的CYP基因CYP73A4(反式肉桂酸4-单加氧酶)、CYP75A(类黄酮3′,5′-羟化酶)和CYP75B(类黄酮3′-单加氧酶)均显著上调,表明这些基因可能在温度响应过程中发挥重要作用[29]。本研究中高温和低温胁迫也能显著诱导Os78A5的表达,且在低温胁迫下,Os78A5的表达量快速升高,随后逐渐下降,推测Os78A5在低温胁迫下的表达可能存在一个反馈调节机制。过量表达TaCYP81D5可加速ROS的清除,从而提高小麦在苗期和生殖期的耐盐性[30];拟南芥中CYP78A5参与表皮蜡质合成,过量表达CYP78A5可以提高转化体的抗旱性、耐热性和耐盐性[31];水稻中CYP96B5也参与表皮蜡质合成,其功能丧失后,导致水稻叶片表面的蜡质晶体变得稀疏,而细胞壁上覆盖的角质层变得更厚实,从而提高突变体的耐旱性[32];Os78A5在PEG 6000和NaCl处理下,Os78A5的表达量均表现为下调,推测Os78A5负调控水稻的耐旱性和耐盐性。
植物CYP450家族基因在植物激素合成和信号转导途径中也扮演着重要角色。例如,CYP79B2和CYP79B3是IAA合成途径中重要的催化酶[33];在拟南芥中,抑制CYP79B2和CYP79B3的表达能显著降低植株的IAA含量[34];在水稻中,细胞色素P450基因OsDSS1通过调节GA-ABA平衡来调节水稻的生长和对干旱胁迫响应[35]。CYP707A家族基因在控制植物ABA水平中起着重要的调控作用[36];细胞色素P450单加氧酶抑制剂烯效唑能够抑制反式玉米素的生物合成,其作用靶点为拟南芥中的CYP735As[37]。在本研究中,Os78A5的启动子区含有多种植物激素响应调控元件,且受6-BA、IAA、GA和ABA等激素诱导表达,推测Os78A5在水稻中可能通过调节激素的平衡来参与各种胁迫响应。
本研究对水稻基因Os78A5的分析表明,Os78A5可能参与胁迫响应以及激素响应,但该基因的内在响应分子机制尚未明确,后续可利用CRISPR/Cas9基因编辑技术以及遗传互补等方法对该基因的功能以及分子机理进行深入的研究,从而为抗性水稻的遗传育种提供基因资源。
4 结论
Os78A5属于CYP450超家族基因,在水稻叶片中的表达水平显著高于其他组织部位。Os78A5启动子区域存在多种与非生物胁迫和植物激素相关的顺式作用元件,且受低温、6-BA、GA、ABA和IAA的诱导表达。本试验为深入研究Os78A5及其同源基因的功能提供了方向和科学依据。
参考文献
Cytochrome P450 research and the journal of biological chemistry
DOI:10.1074/jbc.TM118.004144
PMID:29871932
[本文引用: 1]
In honor of the 100th birthday of Dr. Herbert Tabor, JBC's Editor-in-Chief for 40 years, I will review here JBC's extensive coverage of the field of cytochrome P450 (P450) research. Research on the reactions catalyzed by these enzymes was published in JBC before it was even realized that they were P450s, they have a "pigment" with an absorption maximum at 450 nm. After the P450 pigment discovery, reported in JBC in 1962, the journal proceeded to publish the methods for measuring P450 activities and many seminal findings. Since then, the P450 field has grown extensively, with significant progress in characterizing these enzymes, including structural features, catalytic mechanisms, regulation, and many other aspects of P450 biochemistry. JBC has been the most influential journal in the P450 field. As with many other research areas, Dr. Tabor deserves a great deal of the credit for significantly advancing this burgeoning and important topic of research.© 2019 Guengerich.
Cytochrome P450 diversity in the tree of life
A P450‐centric view of plant evolution
DOI:10.1111/j.1365-313X.2011.04529.x
PMID:21443632
[本文引用: 1]
Being by far the largest family of enzymes to support plant metabolism, the cytochrome P450s (CYPs) constitute an excellent reporter of metabolism architecture and evolution. The huge superfamily of CYPs found in angiosperms is built on the successful evolution of 11 ancestral genes, with very different fates and progenies. Essential functions in the production of structural components (membrane sterols), light harvesting (carotenoids) or hormone biosynthesis kept some of them under purifying selection, limiting duplication and sub/neofunctionalization. One group (the CYP71 clan) after an early trigger to diversification, has kept growing, producing bursts of gene duplications at an accelerated rate. The CYP71 clan now represents more than half of all CYPs in higher plants. Such bursts of gene duplication are likely to contribute to adaptation to specific niches and to speciation. They also occur, although with lower frequency, in gene families under purifying selection. The CYP complement (CYPomes) of rice and the model grass weed Brachypodium distachyon have been compared to view evolution in a narrower time window. The results show that evolution of new functions in plant metabolism is a very long-term process. Comparative analysis of the plant CYPomes provides information on the successive steps required for the evolution of land plants, and points to several cases of convergent evolution in plant metabolism. It constitutes a very useful tool for spotting essential functions in plant metabolism and to guide investigations on gene function.The Plant Journal © 2011 Blackwell Publishing Ltd. No claim to original US government works.
Molecular-genetic analysis of plant cytochrome P450- dependent monooxygenases
Unraveling the functional characterization of a jasmonate-induced flavonoid biosynthetic CYP45082G24 gene in Carthamus tinctorius
Genome-wide identification of the CYP82 gene family in cucumber and functional characterization of CsCYP82D102 in regulating resistance to powdery mildew.
CYP72A enzymes catalyse 13-hydrolyzation of gibberellins
DOI:10.1038/s41477-019-0511-z
PMID:31527846
[本文引用: 1]
Bioactive gibberellins (GAs or diterpenes) are essential hormones in land plants that control many aspects of plant growth and development. In flowering plants, 13-OH GAs (having low bioactivity-for example, GA) and 13-H GAs (having high bioactivity-for example, GA) frequently coexist in the same plant. However, the identity of the native Arabidopsis thaliana 13-hydroxylase GA and its physiological functions remain unknown. Here, we report that cytochrome P450 genes (CYP72A9 and its homologues) encode active GA 13-hydroxylases in Brassicaceae. Plants overexpressing CYP72A9 exhibited semi-dwarfism, which was caused by significant reduction in GA levels. Biochemical assays revealed that recombinant CYP72A9 protein catalysed the conversion of 13-H GAs to the corresponding 13-OH GAs. CYP72A9 was expressed predominantly in developing seeds in Arabidopsis. Freshly harvested seeds of cyp72a9 mutants germinated more quickly than the wild type, whereas stratification-treated seeds and seeds from long-term storage did not. The evolutionary origin of GA 13-oxidases from the CYP72A subfamily was also investigated and discussed here.
Role of cytochrome P450 enzymes in plant stress response
CsCYT75B1, a citrus CYTOCHROME P 450 gene, is involved in accumulation of antioxidant flavonoids and induces drought tolerance in transgenic Arabidopsis
GmCYP82A3,a soybean cytochrome P 450 family gene involved in the jasmonic acid and ethylene signaling pathway, enhances plant resistance to biotic and abiotic stresses
Multi-omics approach reveals the contribution of KLU to leaf longevity and drought tolerance
DOI:10.1093/plphys/kiaa034
PMID:33721894
[本文引用: 1]
KLU, encoded by a cytochrome P450 CYP78A family gene, generates an important-albeit unknown-mobile signal that is distinct from the classical phytohormones. Multiple lines of evidence suggest that KLU/KLU-dependent signaling functions in several vital developmental programs, including leaf initiation, leaf/floral organ growth, and megasporocyte cell fate. However, the interactions between KLU/KLU-dependent signaling and the other classical phytohormones, as well as how KLU influences plant physiological responses, remain poorly understood. Here, we applied in-depth, multi-omics analysis to monitor transcriptome and metabolome dynamics in klu-mutant and KLU-overexpressing Arabidopsis plants. By integrating transcriptome sequencing data and primary metabolite profiling alongside phytohormone measurements, our results showed that cytokinin signaling, with its well-established function in delaying leaf senescence, was activated in KLU-overexpressing plants. Consistently, KLU-overexpressing plants exhibited significantly delayed leaf senescence and increased leaf longevity, whereas the klu-mutant plants showed early leaf senescence. In addition, proline biosynthesis and catabolism were enhanced following KLU overexpression owing to increased expression of genes associated with proline metabolism. Furthermore, KLU-overexpressing plants showed enhanced drought-stress tolerance and reduced water loss. Collectively, our work illustrates a role for KLU in positively regulating leaf longevity and drought tolerance by synergistically activating cytokinin signaling and promoting proline metabolism. These data promote KLU as a potential ideal genetic target to improve plant fitness.© The Author(s) 2020. Published by Oxford University Press on behalf of American Society of Plant Biologists.
Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice
The rice CYP78A gene BSR2 confers resistance to Rhizoctonia solani and affects seed size and growth in Arabidopsis and rice
Rice (Oryza sativa L.) cytochrome P 450 protein 716A subfamily CYP716A16 regulates disease resistance
Rice CYP734As function as multisubstrate and multifunctional enzymes in brassinosteroid catabolism
DOI:10.1111/j.1365-313X.2011.04567.x
PMID:21418356
[本文引用: 1]
Catabolism of brassinosteroids regulates the endogenous level of bioactive brassinosteroids. In Arabidopsis thaliana, bioactive brassinosteroids such as castasterone (CS) and brassinolide (BL) are inactivated mainly by two cytochrome P450 monooxygenases, CYP734A1/BAS1 and CYP72C1/SOB7/CHI2/SHK1; CYP734A1/BAS1 inactivates CS and BL by means of C-26 hydroxylation. Here, we characterized CYP734A orthologs from Oryza sativa (rice). Overexpression of rice CYP734As in transgenic rice gave typical brassinosteroid-deficient phenotypes. These transformants were deficient in both the bioactive CS and its precursors downstream of the C-22 hydroxylation step. Consistent with this result, recombinant rice CYP734As utilized a range of C-22 hydroxylated brassinosteroid intermediates as substrates. In addition, rice CYP734As can catalyze hydroxylation and the second and third oxidations to produce aldehyde and carboxylate groups at C-26 in vitro. These results indicate that rice CYP734As are multifunctional, multisubstrate enzymes that control the endogenous bioactive brassinosteroid content both by direct inactivation of CS and by the suppression of CS biosynthesis by decreasing the levels of brassinosteroid precursors.© 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
A CYP78As-small grain4-coat protein complex Ⅱ pathway promotes grain size in rice
A comprehensive genome-wide investigation of the cytochrome 71 (OsCYP71) gene family: revealing the impact of promoter and gene variants (Ser33Leu) of OsCYP71P6 on yield-related traits in indica rice (Oryza sativa L.)
A novel strategy for creating a new system of third‐generation hybrid rice technology using a cytoplasmic sterility gene and a genic male‐sterile gene
Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice
Regulation by distinct MYB transcription factors defines the roles of OsCYP86A9 in anther development and root suberin deposition
Disruption of EARLY LESION LEAF 1, encoding a cytochrome P 450 monooxygenase, induces ROS accumulation and cell death in rice
Balancing trade- offs between biotic and abiotic stress responses through leaf age- dependent variation in stress hormone cross-talk
Discovery, biosynthesis and stress-related accumulation of dolabradiene-derived defenses in maize
DOI:10.1104/pp.17.01351
PMID:29475898
[本文引用: 1]
Terpenoids are a major component of maize () chemical defenses that mediate responses to herbivores, pathogens, and other environmental challenges. Here, we describe the biosynthesis and elicited production of a class of maize diterpenoids, named dolabralexins. Dolabralexin biosynthesis involves the sequential activity of two diterpene synthases, -COPALYL DIPHOSPHATE SYNTHASE (ZmAN2) and KAURENE SYNTHASE-LIKE4 (ZmKSL4). Together, ZmAN2 and ZmKSL4 form the diterpene hydrocarbon dolabradiene. In addition, we biochemically characterized a cytochrome P450 monooxygenase, ZmCYP71Z16, which catalyzes the oxygenation of dolabradiene to yield the epoxides 15,16-epoxydolabrene (epoxydolabrene) and 3β-hydroxy-15,16-epoxydolabrene (epoxydolabranol). The absence of dolabradiene and epoxydolabranol in mutants under elicited conditions confirmed the in vivo biosynthetic requirement of ZmAN2. Combined mass spectrometry and NMR experiments demonstrated that much of the epoxydolabranol is further converted into 3β,15,16-trihydroxydolabrene (trihydroxydolabrene). Metabolite profiling of field-grown maize root tissues indicated that dolabralexin biosynthesis is widespread across common maize cultivars, with trihydroxydolabrene as the predominant diterpenoid. Oxidative stress induced dolabralexin accumulation and transcript expression of and in root tissues, and metabolite and transcript accumulation were up-regulated in response to elicitation with the fungal pathogens and Consistently, epoxydolabranol significantly inhibited the growth of both pathogens in vitro at 10 µg mL, while trihydroxydolabrene-mediated inhibition was specific to These findings suggest that dolabralexins have defense-related roles in maize stress interactions and expand the known chemical space of diterpenoid defenses as genetic targets for understanding and ultimately improving maize resilience.© 2018 American Society of Plant Biologists. All Rights Reserved.
The cytochrome P450 superfamily: Key players in plant development and defense
DOI:10.1016/S2095-3119(14)60980-1
[本文引用: 1]
The cytochrome P450 (CYP) superfamily is the largest enzymatic protein family in plants, and it also widely exists in mammals, fungi, bacteria, insects and so on. Members of this superfamily are involved in multiple metabolic pathways with distinct and complex functions, playing important roles in a vast array of reactions. As a result, numerous secondary metabolites are synthesized that function as growth and developmental signals or protect plants from various biotic and abiotic stresses. Here, we summarize the characterization of CYPs, as well as their phylogenetic classification. We also focus on recent advances in elucidating the roles of CYPs in mediating plant growth and development as well as biotic and abiotic stresses responses, providing insights into their potential utilization in plant breeding.
Identification and expression profile of CYPome in perennial ryegrass and tall fescue in response to temperature stress
DOI:10.3389/fpls.2017.01519
PMID:29209335
[本文引用: 1]
Plant cytochrome P450s are involved in a wide range of biosynthetic reactions that generate various biomolecules, including a variety of defensive compounds. Perennial ryegrass (Lolium perenne) and tall fescue (Festuca arundinacea) are two major species of turf and forage grasses that usually experience low temperature below -10 degrees C and high temperature over 38 degrees C around the world. In this study, we re-analyzed transcriptome of perennial ryegrass and tall fescue treated with heat and cold stress. Thus, we can evaluate P450 composition in these species and confirm whether P450 genes response to temperature stress. We identified 277 and 319 P450 transcripts with open reading frames larger than 300 bp, respectively. These P450 transcripts were mainly classed in the CYP71, 51, 94, 89, 72, and 734 families. In perennial ryegrass and tall fescue, a total of 66 and 62 P450 transcripts were up-regulated, and 65 and 117 transcripts were down-regulated when subjected to heat stress, respectively. When exposed to cold stress, 60 and 73 transcripts were up-regulated, and 59 and 77 transcripts were down-regulated in perennial ryegrass and tall fescue. Among these differentially expressed transcripts, 64 and 87 of them showed expression level changes that followed the same trend, and these temperature-responsive genes primarily belong to the CYP71, 72 and 99 families. Besides, heat and cold stress altered phenylalanine and brassinosteroid involved P450 transcripts in perennial ryegrass and tall fescue. P450 transcripts involved in the metabolism of these compounds showed a strong response to heat and/or cold stress, indicating that they likely play important roles in temperature acclimation in these two species. The CYPome provide a genetic base for the future functional studies, as well as genetic studies that may improve stress tolerance for perennial ryegrass and tall fescue to extreme temperature.
TaCYP81D5, one member in a wheat cytochrome P 450 gene cluster, confers salinity tolerance via reactive oxygen species scavenging
KLU/CYP78A5, a cytochrome P450 monooxygenase identified via fox hunting, contributes to cuticle biosynthesis and improves various abiotic stress tolerances
Cytochrome P450 family member CYP96B5 hydroxylates alkanes to primary alcohols and is involved in rice leaf cuticular wax synthesis
DOI:10.1111/nph.16267
PMID:31618451
[本文引用: 1]
Odd-numbered primary alcohols are components of plant cuticular wax, but their biosynthesis remains unknown. We isolated a rice wax crystal-sparse leaf 5 (WSL5) gene using a map-based cloning strategy. The function of WSL5 was illustrated by overexpression and knockout in rice, heterologous expression in Arabidopsis and transient expression in tobacco leaves. WSL5 is predicted to encode a cytochrome P450 family member CYP96B5. The wsl5 mutant lacked crystalloid platelets on the surface of cuticle membrane, and its cuticle membrane was thicker than that of the wild-type. The wsl5 mutant is more tolerant to drought stress. The load of C -C alkanes increased, whereas the C primary alcohol reduced significantly in wsl5 mutant and WSL5 knockout transgenic plants. Overexpression of WSL5 increased the C primary alcohol and decreased alkanes in rice leaves. Heterologous expression of WSL5 increased the C primary alcohol and decreased alkanes, secondary alcohol, and ketone in Arabidopsis stem wax. Transient expression of WSL5 in tobacco leaves also increased the production C primary alcohol. WSL5 catalyzes the terminal hydroxylation of alkanes, yielding odd-numbered primary alcohols, and is involved in the formation of epidermal wax crystals on rice leaf, affecting drought sensitivity.© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
生长素合成途径的研究进展
DOI:10.3724/SP.J.1259.2012.00292
[本文引用: 1]
生长素是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素, 参与植物生长发育的许多过程。植物和一些侵染植物的病原微生物都可以通过改变生长素的合成来调节植株的生长。吲哚-3-乙酸(IAA)是天然植物生长素的主要活性成分。近年来, 随着IAA生物合成过程中一些关键调控基因的克隆和功能分析, 人们对IAA的生物合成途径有了更加深入的认识。IAA的生物合成有依赖色氨酸和非依赖色氨酸两条途径。依据IAA合成的中间产物不同, 依赖色氨酸的生物合成过程通常又划分成4条支路: 吲哚乙醛肟途径、吲哚丙酮酸途径、色胺途径和吲哚乙酰胺途径。该文综述了近几年在IAA生物合成方面取得的新进展。
Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3
A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.)
The Arabidopsis cytochrome P 450 CYP707A encodes ABA 8′‐hydroxylases: key enzymes in ABA catabolism
Uniconazole, a cytochrome P450 inhibitor, inhibits trans-zeatin biosynthesis in Arabidopsis
DOI:10.1016/j.phytochem.2012.11.023
PMID:23280040
[本文引用: 1]
Cytokinin (CK) is a plant hormone that plays important regulatory roles in many aspects of plant growth and development. Although functions of CK and its biosynthesis pathway have been studied extensively, there is still no efficient biosynthesis inhibitor, which would be useful for studying CK from a chemical genetic approach. Here, CK biosynthesis inhibitor candidates were searched for using a systematic approach. In silico screening of candidates were carried out using genome-wide gene expression profiles and prediction of target sites using global CK accumulation profile analysis. As a result of these screenings, it was found that uniconazole, a well known inhibitor of cytochrome P450 monooxygenase, prevents the biosynthesis of trans-zeatin, and that its target is CYP735As in Arabidopsis.Copyright © 2012 Elsevier Ltd. All rights reserved.
/
| 〈 |
|
〉 |

