作物杂志, 2025, 41(5): 93-101 doi: 10.16035/j.issn.1001-7283.2025.05.013

专题综述

纳米肥料在园艺作物栽培中的作用研究进展

盛彬,1,2, 林志豪1, 武志健1,3, 赵一明1, 叶雪凌2, 吕红豪1, 刘广洋,1, 徐东辉,1

1 中国农业科学院蔬菜花卉研究所/蔬菜生物育种全国重点实验室/农业农村部蔬菜质量安全控制重点实验室/农业农村部蔬菜产品质量安全风险评估实验室/国家盐碱地综合利用技术创新中心100081北京

2 沈阳农业大学园艺学院110866辽宁沈阳

3 湖南农业大学园艺学院410000湖南长沙

Research Progress on the Role of Nano-Fertilizers in Horticultural Crop Cultivation

Sheng Bin,1,2, Lin Zhihao1, Wu Zhijian1,3, Zhao Yiming1, Ye Xueling2, Lü Honghao1, Liu Guangyang,1, Xu Donghui,1

1 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences / National Key Laboratory of Vegetable Biological Breeding / Key Laboratory of Vegetable Quality and Safety Control, Ministry of Agriculture and Rural Affairs / Laboratory of Vegetable Product Quality and Safety Risk Assessment, Ministry of Agriculture and Rural Affairs / National Technological Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Beijing 100081, China

2 Horticulture College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China

3 Horticulture College, Hunan Agricultural University, Changsha 410000, Hunan, China

通讯作者: 刘广洋,主要从事蔬菜产品营养品质与质量安全控制、新型纳米材料制备与功能解析等研究,E-mail:liuguangyang@caas.cn徐东辉为共同通信作者,主要从事蔬菜营养品质评价、蔬菜产品质量安全与风险评估研究,E-mail:xudonghui@caas.cn

收稿日期: 2024-06-8   修回日期: 2024-07-24   网络出版日期: 2024-08-05

基金资助: 北京市自然科学基金(6242028)
国家重点研发计划项目“地理标志产品特色品质控制技术研究与应用(2022YFF0606800)”
国家现代农业产业体系建设专项(CARS-23-E03)
中央级公益性科研院所基本科研业务费专项(IVF-BRF2024013)
中央级公益性科研院所基本科研业务费专项(Y2023LM10)

Received: 2024-06-8   Revised: 2024-07-24   Online: 2024-08-05

作者简介 About authors

盛彬,研究方向为纳米材料对黄瓜生长发育的调控影响,E-mail:s1756313189@163.com

摘要

近年来,在世界人口不断增长的背景下,农业纳米技术作为一个快速兴起的新研究领域已经成为提高作物生产力和养分利用效率的有力工具。农业中的纳米颗粒通常被用作纳米肥料,然而它们的持续应用还可能对园艺作物产生一定的负面影响。因此,本文概述了纳米技术对园艺作物的影响,系统阐述了纳米肥料在作物体内吸收与转运途径、影响园艺作物的主要效应及毒副作用,为纳米技术在园艺作物中应用提供理论指导。

关键词: 纳米肥料; 园艺作物; 促生作用; 毒副作用

Abstract

In recent years, agricultural nanotechnology has emerged as a transformative research field, offering innovative solutions to enhance crop productivity and nutrient use efficiency amidst growing global population demands. Nanoparticles in agriculture are often used as nano-fertilizers, but their continued use may also have a negative impact on horticultural crops. Therefore, this paper summarized the influence of nanotechnology on horticultural crops, systematically expounded the absorption and transport ways of nano-fertilizer in crops, the main effects and phytotoxic effects of horticultural crops, and provided theoretical guidance for the application of nanotechnology in horticultural crops.

Keywords: Nano-fertilizer; Horticultural crop; Growth-promoting effect; Phytotoxic effects

PDF (1046KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

盛彬, 林志豪, 武志健, 赵一明, 叶雪凌, 吕红豪, 刘广洋, 徐东辉. 纳米肥料在园艺作物栽培中的作用研究进展. 作物杂志, 2025, 41(5): 93-101 doi:10.16035/j.issn.1001-7283.2025.05.013

Sheng Bin, Lin Zhihao, Wu Zhijian, Zhao Yiming, Ye Xueling, Lü Honghao, Liu Guangyang, Xu Donghui. Research Progress on the Role of Nano-Fertilizers in Horticultural Crop Cultivation. Crops, 2025, 41(5): 93-101 doi:10.16035/j.issn.1001-7283.2025.05.013

土地化学合成肥料投入的增加导致环境污染、土壤生态和理化条件发生持续变化[1],大幅度降低了土壤的自然肥力,导致作物产量下降,供需缺口扩大,阻碍了农业发展。新型纳米肥料的开发为改善土壤性质以及作物对矿物质营养的吸收提供了途径。

纳米材料(nanomaterials,NMs)通常指尺寸范围在1~100 nm,介于分子、原子和宏观块状材料之间的颗粒[2],可分为自然和人工合成的纳米颗粒(engineered nanoparticles,ENPs),ENPs又可分为碳基和金属基2种类型。据报道[3],农业生产上使用最多的是金属基纳米颗粒(铜、银、锰、钼、锌、铁、硅、钛、硒等及其氧化物)。与块状材料相比,纳米材料具有特定的物理、光学、机械和化学特性,在种子萌发、作物生长发挥了较大的作用[4]。与传统肥料相比,纳米肥料可以更好地进行营养管理,可在很大程度上减少环境污染、富营养化和地下水污染。此外,纳米肥料可以保护养分免受泄漏或挥发,因此比传统肥料更能保持其肥力[5]。纳米肥料可以通过靶向和逐渐释放养分来提高养分输送的效率,降低肥料施用量并使农业生产经济最大化。

纳米颗粒(nanoparticles,NPs)在土壤中发生一系列反应,引起理化性质的变化,从而影响植物对NPs的吸收[6]。研究表明,NPs能促进植物种子萌发、提高光合作用、增加生物量积累以及增强其代谢能力来缓解胁迫下所受到的氧化损伤[7],提高其抗逆能力[8]。但在高浓度下,这种互作关系可能对植物产生一系列复杂的生物效应,例如改变细胞结构、影响生物代谢以及扰乱基因表达等[9],甚至会随着食物链进入人体,造成危害。因此,本文重点对NPs在植物中吸收与转运的作用机制、与作物生长发育的互作影响以及对植物的毒性效应进行系统概述,为NPs在农业领域的应用提供参考。

1 园艺作物对NPs的吸收和转运

1.1 吸收NPs的主要途径

作物通过叶片的气孔、发达的根系或间接通过木质部、韧皮部与外界环境进行物质交换。NPs因其独特的小体积可以被植物叶和根吸收,其在植物中的吸收、转运和积累取决于植物种类、细胞的生理结构、土壤环境以及纳米颗粒的性质(如粒径、形状、电荷、浓度、表面功能化及其稳定性)[10]

叶面施肥比土壤施肥具有更直接、更有针对性的效果。与传统的土壤施肥相比,叶面施用纳米肥具有吸收快、性价比更高、减少土壤施用后可能出现的毒性症状等优点[11]。叶片表面的角质层和气孔被认为是植物吸收NPs的2个主要通道。研究[12]显示,直径小于4.8 nm的NPs可以通过角质层直接进入叶片,而粒径较大的NPs可以通过气孔进入。Hu等[13]的研究中,基于流体动力学尺寸和Zeta电位的纳米颗粒—叶片相互作用(NLI)经验模型表明,棉花的亲水性在NPs小于20 nm时表现出最高的叶面输送效率。此外,有一些NPs的表面改性方法,如涂层或封装技术,可以改变NPs附着力、亲脂性或亲水性,帮助NPs通过气孔或水孔穿透植物叶片,进而在整个植物的维管系统中运输[14]。Gao等[15]合成了介孔二氧化硅包覆的ZnO纳米颗粒外壳(nZnO@SiO2),结果表明在叶面施加nZnO@SiO2时,Zn几乎全部以纳米颗粒形式转移到地上部叶片和茎部,同时增强了番茄对nZnO@SiO2的吸收。

在土壤中,NPs经历了一系列复杂的反应,如迁移、转化、溶解、沉淀、分散、聚集和氧化还原反应。NPs与植物根部接触最初是通过根部表面吸附发生的。由于根毛可以释放黏液或有机酸等化学物质,使根表面带负电荷,导致带正电荷的NPs积聚在根部,容易在根部表面被吸收[16]。根细胞壁含有小孔,可以防止大颗粒通过。当根部缺乏外皮时,NPs可以进入根部的中央柱或木质部。有研究[17]表明,一些纳米颗粒可以破坏质膜并诱导表皮细胞壁上形成新的孔隙,以促进大直径纳米颗粒的进入。Wang等[18]通过透射电子显微镜(TEM)和能量分散谱(EDS)检查可知,木质部汁液中存在CuO NPs,表明CuO NPs从根部通过木质部转运到枝条。劈根试验和TEM观察进一步表明,CuO NPs可以通过韧皮部从新芽转移到根部。NPs在植物中吸收与转运机制如图1所示。

图1

图1   NPs通过不同处理在植物不同部位吸收与转运途径示意图

Fig.1   Schematic diagram of absorption and transport pathways of NPs in different parts of plants under different treatments


1.2 吸收NPs的转运机制

当NPs通过角质层和气孔进入叶肉细胞时,可以通过细胞外途径或质体途径在植物体中进行中、长距离运输。当NPs穿过细胞壁时,可以根据其粒径和表面电荷通过细胞外空间(如细胞壁、细胞壁之间的纵向通道、中间层和木质部)运输,当NPs通过胞间层时,会在细胞质中积聚并转运到植物内皮层和凯氏带(图1)。研究[19]表明,粒径小于50 nm的纳米颗粒通常通过质体途径在植物中运输,而大多数粒径在50~200 nm的纳米颗粒通过质外体途径运输。然后通过维管系统―韧皮部运输途径实现纳米颗粒从叶到根的运输。Gao等[20]利用质谱成像技术,首次证明了具有较大粒径的纳米肥料ZnO@MSN(>70 nm)在番茄叶面沉积后的韧皮部定位和转运。在番茄叶片背面施药可以显著促进纳米肥料的吸收和转运,同时证实了韧皮部在植物NPs的转运中起主导作用。

与质外体运输相反,细胞内吞作用也可能是NPs的吸收方式之一。内吞作用是由细胞膜折叠形成的跨膜途径,其作用是摄取细胞外分子(包括NPs)。一些NPs在表皮细胞壁中诱导了新的孔隙,从而促进了其进入。据报道[20],小的NPs(直径范围3~5 nm)与渗透压、毛细作用力一起穿透植物根部或直接穿过根表皮细胞。穿过细胞壁后,NPs通过质外体运输,直到它们到达中央维管柱,在木质部单向向上移动[21]。然而,NPs需要穿过凯氏带才能进入中央维管柱。接着NPs通过共质体运输在细胞质中的胞间层从一个细胞转移到另一个细胞。无法进入的NPs则聚集在凯氏带上,而到达木质部的NPs则转移到枝条并通过韧皮部回到根部[22],并在根、茎、果实、谷物和幼叶中不同程度地积累[23]

2 NPs影响作物的作用机制

NPs被植物吸收后,在细胞和亚细胞水平上与植物相互作用,这些相互作用可能是积极的,也可能是消极的[24]。因此,研究NPs与作物的互作机制至关重要。已有文献表明,不同材料类型的NPs在浓度低于一定限度时可以促进种子萌发和作物生长发育(表1)。

表1   促进园艺作物生长发育的纳米颗粒

Table 1  NPs promoting growth and development of horticultural crops

园艺作物Horticultural crop纳米颗粒NPs浓度Concentration方式Way阶段Stage参考文献Reference
番茄Solanum lycopersicumSe NPs75 μg/kg土壤施用苗期[25]
黄瓜Cucumis sativus L.MoS2 NPs100 mg/kg根系浸泡苗期[26]
黄瓜Cucumis sativus L.CeO2 NPs10 mg/kg根系浸泡苗期[27]
黄瓜Cucumis sativus L.SiO2 NPs40 mg/L叶片喷施幼苗期[28]
黄瓜Cucumis sativus L.Mn3O4 NPs20 mg/L叶片喷施苗期[29]
紫苏Perilla frutescensZnO NPs100 mg/L叶片喷施幼苗期[30]
薄荷Mentha canadensis L.MWCNT200 μg/mL叶片喷施苗期[31]
苜蓿Medicago sativa L.Fe NPs10 mg/L浸种+喷叶幼苗期[32]
茄子Solanum melongena L.ZnO NPs50、100 mg/L叶片喷施苗期[33]
辣椒Capsicum annuum L.Se NPs20 mg/L叶片喷施苗期[34]

新窗口打开| 下载CSV


2.1 促进种子萌发

种子萌发是作物发育的关键阶段,因为幼苗易受到生物和非生物胁迫的影响。纳米材料的应用使农业纳米技术成为改善种子萌发、植物生长和作物产量的有效技术。种子“纳米启动”[35]是一种源自纳米技术的新策略,在播种前利用纳米材料作为引发剂可以促进种子发芽、增强幼苗发育和抗逆性[36],从而减少农药和化肥的使用。

种子纳米启动已被证明比传统的启动方法更有希望提高作物产量。Jhansi等[37]证明了较小尺寸(15 nm)的MgO NPs增强了种子萌发和生长参数。小尺寸的MgO NPs颗粒能够渗透到花生种子中,来影响其萌发和生长速率。Rizwan等[38]指出,NPs可以穿透种皮,并通过刺激代谢过程的酶来影响胚胎的发育过程。在种子胚根出现阶段,根尖组织与纳米颗粒接触并通过内吞作用经质外体进入表皮和皮层。在根部,它们通过共生途径流向植物分泌组织,并转移到其他植物器官。通过种皮吸收,可能改变幼苗出苗速率、胚根长度、酶活性、光合作用、呼吸作用和作物生产力来影响种子萌发。Sembada等[39]研究表明,芽孢杆菌与SiO2 NPs相互作用,能增强种子对水分的吸收,从而促进番茄种子的萌发。Cappetta等[40]用氧化铁磁性纳米颗粒(MNPs)处理辣椒种子,通过磁共振成像观察到MNPs在辣椒种皮普遍分布,可显著增强辣椒根部发育和营养生长。

2.2 提高光合作用

光合作用是植物将光能转化为化学能的重要机制。施用金属纳米颗粒可以改变其光合速率、量子产率、生物量和叶绿素数量[41]。叶绿体通过吸收光能,激发了其中的电子,使其激发态具有更高的能量。光反应产生的O2释放到外界,而氢离子和电子则被NADP+还原为NADPH。暗反应则通过卡尔文循环利用光反应产生的ATP、NADPH以及CO2分子合成葡萄糖等有机物。此外,纳米颗粒改变了不同基因和miRNA的基因表达,对胁迫耐受性和植物生物量都有积极影响(图2)。

图2

图2   NPs通过增强光合作用来改善植物生理示意图

Fig.2   Schematic illustration of NPs used to improve plant physiology by enhancing photocooperation


Nayeri等[42]证明,Ag/ZnO NPs在模拟全太阳光谱条件下,增强了小麦的光合作用和发育。Abbasifar等[43]研究表明,10 mg/kg、25 nm的铜纳米颗粒(Cu NPs)可使罗勒根鲜重增加25%,根干重增加30%;对罗勒叶片中叶绿素a、叶绿素b、总叶绿素和类胡萝卜素的浓度都有显著影响。鲁力[44]用2 mg/株的Mn3O4 NPs喷施生菜叶面,结果显示生菜的光合色素、糖、多酚含量和生物量显著增加并上调了一系列小分子抗氧化代谢产物的水平。Faizan等[45]用8 mg/L的ZnO NPs根部浸入处理30 min可以显著提高番茄植株的生长、光合速率和叶绿素含量,并改善抗氧化酶系统,加速脯氨酸积累。Wang等[46]发现,与大体积的铜颗粒相比,1 mg/kg的铜纳米团簇(Cu NCs)能显著增强番茄的抗氧化酶活性,提高番茄叶片光合速率、碳水化合物含量,并且减缓叶片老化。

2.3 提高作物抗逆性

非生物胁迫是植物在生长发育过程中面临的主要问题之一。研究[47]证明,NPs可以改善非生物胁迫对植物的不良影响,增强植物对恶劣环境的适应性,对促进植物生长和提高植物抗病性有显著作用,进一步提高产量和改善品质(表2)。

表2   纳米材料对园艺作物非生物胁迫的影响

Table 2  Effects of nanomaterials on abiotic stress of horticultural crops

纳米颗粒
NPs
胁迫
Stress
影响
Effect
参考文献
Reference
PNC(聚丙烯酸涂层CeO2 NPs)

PNC增强了叶片K的保留和Na的排出,从而更好地维持细胞质K+/Na+稳态,从而提高棉花耐盐性。[61]
CuO NPs
干旱
可以保持玉米叶片水分状态以及叶绿素和类胡萝卜素含量,增加ROS清除酶的活性和产量。[62]
ZnO NPs
干旱
ZnO NPs通过调控各种形态、生理生化属性,上调抗氧化酶来改善干旱的氧化应激,正向调节黄瓜的耐旱性。[63]
MgFe-LDHs
低温
MgFe-LDHs通过上调水杨酸刺激CsFAD3表达,降低脱落酸和茉莉酸的水平以支持黄瓜幼苗出苗率和生长,增加过氧化物酶基因的表达和活性。[64]
Se NPs
低温
叶面喷施Se缓解了低温胁迫下草莓幼苗叶片净光合速率和叶绿素含量下降,提高了草莓幼苗叶片丙二醛和H2O2含量。[65]
Zn、Si、B

提高了马铃薯株高、地上部干重、叶片相对含水量、光合速率、气孔导度、叶绿素含量和块茎产量。[66]
PMC和PMO
(聚丙烯酸涂层Mn3O4 NPs)

PNC和PMO处理的油菜植株鲜重、干重、叶绿素含量、Fv/Fm和碳同化率均显著高于对照植株,同时能维持ROS稳态。[67]
Fe3O4 NPs
重金属
Fe3O4 NPs通过调节离子平衡、抗氧化剂含量和代谢谱来改善Cd/As诱导的生长抑制。[68]
Fe3O4 NPs、ZnO NPs
重金属
促进植株生长,在Cd毒性作用下提高了株高、根长、地上部和根鲜重并解除Cd胁迫对于烟草生长的不利影响[69]

新窗口打开| 下载CSV


极端气候变化会对农业生产造成严重负面影响,高温或低温会使植物细胞出现生理紊乱,导致植物生长缓慢和新陈代谢改变。NPs在植物抵抗逆境中起关键作用[48]。Kareem等[49]报道,高温下在绿豆(Vigna radiata)叶片喷施ZnO NPs悬浮液,增加了叶绿素活性、气体交换参数和酶活性,导致豆荚数量、大小和总谷物产量增加。在冷胁迫条件下,施加TiO2 NPs可提高甘草中的甘草酸含量[50]。施加壳聚糖NPs可降低香蕉(Musa nana Lour.)中的活性氧(ROS)并增强渗透保护剂[51]

盐度不当也会导致土壤渗透能力下降、植物营养失衡、离子中毒,导致植物生长发育受到抑制[52]。迄今为止,纳米引发诱导盐胁迫下种子萌发和幼苗生长改善的已知机制包括调控种子萌发的分子和形态生理[53-54]、可溶性糖含量、水杨酸水平的调节以清除ROS[55],调节抗氧化酶和离子稳态[56]。Fallah等[57]研究了温室条件下NaCl胁迫下200 μg/mL的多壁碳纳米管(MWCNTs)对薄荷植株生理生化参数的可能影响,认为MWCNTs可以促进水分吸收,显著提高薄荷抗氧化酶活性和耐盐性。

植物在生长过程中也会受到重金属的不良影响,NPs可改善叶绿体色素和光合作用速率,并保持受重金属影响的植物的膜稳定性[58]。Kumar等[59]研究表明,TiO2 NPs能够通过减少总铬(Cr)积累、H2O2和MDA的产生来降低Cr(VI)的毒性。TiO2 NPs还能够积极调节光合色素的合成及AsA-GSH循环,并调节PC2和PC3的合成,从而最大限度地降低了Cr(VI)的毒性。此外,生产中杀虫剂虽然能减少作物损失,但会对环境的可持续性和人类健康产生负面影响。有研究[60]表明,N掺杂的ZnO和N掺杂的TiO2 NPs可以有效降低病虫害的风险,从而降低产量损失和环境风险的发生率。

3 NPs诱导园艺作物毒副作用的作用机制

由于植物的种类和纳米材料的性质不同,诱导植物毒性的机理也存在一定的差异。ROS的产生被认为是对植物最具破坏力的因素之一[70],一旦NPs使植物细胞无法通过自我调节维持ROS平衡,将会破坏细胞质膜运输和生物分子合成,发生光合作用抑制、营养组分失衡、氧化应激反应、有丝分裂异常和染色体畸变等细胞毒性作用,致使作物种子发芽率降低、根和芽长度减小、生物量减少,严重时甚至导致细胞凋亡或坏死[71-72]图3)。

图3

图3   NPs应用对植物遗传、形态生理和生化性状的负面影响

Fig.3   Phytotoxic effects of NPs application on genetic, morphological, physiological and biochemical traits of plants


高浓度下NPs也会影响植物中抗氧化酶活性、离子稳态、基因表达、代谢物组成和防御系统功能[73]。此外,NPs的离子溶解度增大,使用的剂量、浓度和暴露时间的增加,都会增强对植物的毒性[9]

纳米材料通过直接刺激ROS生成或通过促进细胞氧化还原系统间接诱导细胞毒性。例如,Youssef等[74]的试验结果表明,较低浓度的ZnO NPs(10和25 mg/L)可增强蚕豆(Vicia faba L.)种子发芽并促进幼苗生长,而较高的浓度(100和200 mg/L)则具有植物毒性。接触ZnO NPs后,观察到有丝分裂指数的差异性增加和细胞周期的显著变化。ZnO NPs可降低叶绿素和类胡萝卜素含量并诱导脂质过氧化,最终通过增加ROS的形成来诱导细胞毒性并造成生物膜损伤[75]。CuO NPs通过减少植物生物量积累、刺激氧化应激以及对水稻植物细胞气孔和超微结构构成损伤来诱导水稻幼苗的毒性[76]

纳米材料诱发的遗传毒性主要表现为DNA断裂与染色体损伤。纳米材料通过直接和间接途径2种途径破坏细胞中的DNA。在直接途径中,NPs直接穿透核孔并与DNA链结合,破坏其复制和转录。在间接途径下,NPs在诱导氧化应激和ROS产生后接近DNA分子[77]。氧化爆发使NPs能够渗透到细胞核中,核蛋白和有丝分裂纺锤体被破坏,随后阻止细胞周期并破坏DNA,最终导致细胞凋亡。Sun等[78]研究了ZnO NPs(5~50 mg/L)在洋葱的根分生组织中,通过细胞膜完整性、代谢活性、ROS积累、DNA损伤和染色体畸变,突出了细胞核内ZnO NP积累如何影响细胞有丝分裂,诱导染色体断裂、桥接、粘性和微核形成。Ghosh等[72]还提出了关于不同NPs在高等植物中诱导的遗传毒性的综合报告,其中使用先进的分析技术,如彗星测定、微核和染色体畸变,评估了烟叶、葱属和紫薇属物种的遗传毒性。

4 总结与展望

从过去的几十年研究看出,NPs因其可调的物理、化学特性和穿透植物的能力在农业领域获得了极大欢迎。使用纳米肥料可以更好地进行营养管理,比传统肥料更能保持肥力,降低肥料施用量并减少环境污染。本文综述了NPs在植物中的吸收和运输,以及NPs对作物生长发育的影响。NPs通过叶片的角质层孔隙、气孔和伤口被植物叶片吸收,并通过原根、根细胞壁孔和受损区域被根部吸收。进入植物后,NPs在细胞和亚细胞水平上与植物相互作用,这种相互作用取决于NPs的形状、大小、浓度和表面电荷等特征,以及植物物种的年龄、基因型、生理结构等。各种纳米颗粒在低浓度下可以促进植物生长(如促进种子萌发、增加生物量、增强光合作用和叶绿素含量、提高植株抗逆性等),而在高浓度下会对植物造成损害。NPs的毒性作用也会导致植物激素水平的变化,造成细胞毒性和遗传毒性,从而改变植物中的基因表达。植物毒性的机制主要涉及ROS的产生,最终导致植物细胞凋亡。尽管NPs对植物的影响已得到广泛证实,但NPs诱导植物毒性的机理仍然有限。

考虑到不同NPs的差异性,其在农业领域的应用仍需进一步探索:(1)不同NPs产生的植物效应差异较大。因此,应重点探究NPs对植物生长的内在机制,注重从分子和基因水平深入研究其影响机理以及植物自身的应对机制。(2)目前,研究NPs对园艺蔬菜生长的影响主要关注于种子和幼苗生长阶段,并不能完全准确地反映在短期处理下NPs对植物的影响机制。(3)目前,对纳米毒理学机制以及纳米毒理对生物体和环境的有害影响。研究人员可以通过组学方法或其他分子生物学手段加速这一研究领域的进展。此外,NPs在环境中的累积、分解和转化过程亟需详尽的探究,其在食物链中的传输途径也尚未完全明了。(4)探索农业生产中可应用的生物天然高分子纳米材料。

参考文献

Mahapatra D M, Satapathy K C, Panda B.

Biofertilizers and nanofertilizers for sustainable agriculture: phycoprospects and challenges

Science of the Total Environment, 2021, 803(10):149990.

[本文引用: 1]

张金波, 白雪, 钟健, .

介孔二氧化硅纳米粒子的合成及其在生物医学中的应用

生命的化学, 2018, 38(5):707-712.

[本文引用: 1]

Chhipa H,

Nanofertilizers and nanopesticides for agriculture

Environmental Chemistry Letters, 2017, 15(1):15-22.

[本文引用: 1]

El-Saadony M T, Saad A M, Soliman S M, et al.

Role of nanoparticles in enhancing crop tolerance to abiotic stress: a comprehensive review

Frontiers in Plant Science, 2022, 13:946717.

[本文引用: 1]

Verma K K, Song X P, Joshi A, et al.

Recent trends in nano- fertilizers for sustainable agriculture under climate change for global food security

Nanomaterials, 2022, 12(1):173.

[本文引用: 1]

Usman M, Farooq M, Wakeel A, et al.

Nanotechnology in agriculture: current status, challenges and future opportunities

Science of the Total Environment, 2020, 721(15):137778.

[本文引用: 1]

Yeasmin S, Dipto A R, Zakir A B, et al.

Nanopriming and AI for sustainable agriculture: boosting seed germination and seedling growth with engineered nanomaterials, and smart monitoring through deep learning

ACS Applied Nano Materials, 2024, 7(8):8703-8715.

[本文引用: 1]

Geremew A, Carson L, Woldesenbet S, et al.

Effect of zinc oxide nanoparticles synthesized from Carya illinoinensis leaf extract on growth and antioxidant properties of mustard (Brassica juncea)

Frontiers in Plant Science, 2023, 14:1108186.

[本文引用: 1]

Zafar H, Javed R, Zia M.

Nanotoxicity assessment in plants: an updated overview

Environmental Science and Pollution Research, 2023, 30(41):93323-93344.

[本文引用: 2]

Azim Z, Singh N B, Singh A, et al.

A review summarizing uptake, translocation and accumulation of nanoparticles within the plants: current status and future prospectus

Journal of Plant Biochemistry and Biotechnology, 2022, 32(2):211-224.

[本文引用: 1]

Meier S, Moore F, Morales A, et al.

Synthesis of calcium borate nanoparticles and its use as a potential foliar fertilizer in lettuce (Lactuca sativa) and zucchini (Cucurbita pepo)

Plant Physiology and Biochemistry, 2020, 151:673-680.

DOI:S0981-9428(20)30194-7      PMID:32353673      [本文引用: 1]

This study was carried out to evaluate the effects of foliar sprays containing boron (B) nano-fertilizer (NF) on the growth and physiology of lettuce (Lactuca sativa) and zucchini (Cucurbita pepo). Plants were grown under greenhouse conditions for 60 days on a modified Hoagland solution with the presence and absence of boron (+B or -B). A synthesized B-NF foliar spray and a commercial B foliar fertilizer (Bortrac™ 150, BT) was applied at a concentration of 30 mg B L at 10-d intervals throughout the experiment. The B-NF treatment increased the growth of lettuce 2.7- and 1.9-fold for shoots and roots, respectively, with an average production of lettuce biomass by ~58%. Similarly, the NF increased the growth of zucchini by 18 and 66% compared with Control-B (the absence of B), and 13 and 36% compared with BT, both for shoots and roots, respectively. Nevertheless, NF + B mostly decreased lettuce growth with symptoms of B toxicity in leaves. In lettuce, addition of B did not affect concentrations of phenols; however, in zucchini, Control-B induced a higher production of phenolic compounds possibly related to B deficiency. The B addition in lettuce reduced the DPPH activity by 32 and 21% in NF and BT, respectively, compared to Control-B. These responses were similar in zucchini; however, the effect of B was product of its presence in mineral solution rather than due the foliar product applied. This suggests that a NF-based delivery system for B may be highly effective at boosting plant productivity on B-limited soils.Copyright © 2020 Elsevier Masson SAS. All rights reserved.

Guzmán-Delgado P, Laca E, Zwieniecki M A.

Unravelling foliar water uptake pathways: the contribution of stomata and the cuticle

Plant Cell & Environment, 2021, 44(6):1728-1740.

[本文引用: 1]

An J, Faulkner M M, et al.

Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles

ACS Nano, 2020, 14(7):7970-7986.

DOI:10.1021/acsnano.9b09178      PMID:32628442      [本文引用: 1]

Fundamental and quantitative understanding of the interactions between nanoparticles and plant leaves is crucial for advancing the field of nanoenabled agriculture. Herein, we systematically investigated and modeled how ζ potential (-52.3 mV to +36.6 mV) and hydrodynamic size (1.7-18 nm) of hydrophilic nanoparticles influence delivery efficiency and pathways to specific leaf cells and organelles. We studied interactions of nanoparticles of agricultural interest including carbon dots (CDs, 0.5 and 5 mg/mL), cerium oxide (CeO, 0.5 mg/mL), and silica (SiO, 0.5 mg/mL) nanoparticles with leaves of two major crop species having contrasting leaf anatomies: cotton (dicotyledon) and maize (monocotyledon). Biocompatible CDs allowed real-time tracking of nanoparticle translocation and distribution by confocal fluorescence microscopy at high spatial (∼200 nm) and temporal (2-5 min) resolution. Nanoparticle formulations with surfactants (Silwet L-77) that reduced surface tension to 22 mN/m were found to be crucial for enabling rapid uptake (<10 min) of nanoparticles through the leaf stomata and cuticle pathways. Nanoparticle-leaf interaction (NLI) empirical models based on hydrodynamic size and ζ potential indicate that hydrophilic nanoparticles with <20 and 11 nm for cotton and maize, respectively, and positive charge (>15 mV), exhibit the highest foliar delivery efficiencies into guard cells (100%), extracellular space (90.3%), and chloroplasts (55.8%). Systematic assessments of nanoparticle-plant interactions would lead to the development of NLI models that predict the translocation and distribution of nanomaterials in plants based on their chemical and physical properties.

Lian J P, Zhao L F, et al.

Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.)

Chemosphere, 2019, 239:124794.

[本文引用: 1]

Gao X, Kundu A, Bueno V, et al.

Uptake and translocation of mesoporous SiO2-coated ZnO nanoparticles to solanum lycopersicum following foliar application

Environmental Science & Technology, 2021, 55(20):13551-13560.

[本文引用: 1]

Christie P, Zhang S Z.

Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges

Environmental Science- Nano, 2019, 6(1):41-59.

[本文引用: 1]

Wang X R, Xie H G, Wang P, et al.

Nanoparticles in plants: uptake, transport and physiological activity in leaf and root

Materials, 2023, 16(8):3097.

[本文引用: 1]

Wang Z Y, Xie X Y, Zhao J, et al.

Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.)

Environmental Science & Technology, 2012, 46(8):4434-4441.

[本文引用: 1]

Bueno V, Gao X Y, Rahim A A, et al.

Uptake and translocation of a silica nanocarrier and an encapsulated organic pesticide following foliar application in tomato plants

Environmental Science & Technology, 2022, 56(10):6722-6732.

[本文引用: 1]

Gao X Y, Kundu A, Persson D P, et al.

Application of ZnO nanoparticles encapsulated in mesoporous silica on the abaxial side of a Solanum lycopersicum leaf enhances Zn uptake and translocation via the phloem

Environmental Science & Technology, 2023, 57(51):21704-21714.

[本文引用: 2]

Schymura S, Fricke T, Hildebrand H, et al.

Elucidating the role of dissolution in CeO2 nanoparticle plant uptake by smart radiolabeling

.Angewandte Chemie International Edition, 2017, 56(26):7411-7414.

[本文引用: 1]

Kranjc E, Mazej D, Regvar M, et al.

Foliar surface free energy affects platinum nanoparticle adhesion, uptake, and translocation from leaves to roots in arugula and escarole

Environmental Science-Nano, 2017, 5(2):520-532.

[本文引用: 1]

Ashworth V, Kim C, et al.

Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis

Environmental Science-Nano, 2019, 6(8):2311-2331.

[本文引用: 1]

Khan M R, Adam V, Rizvi T F, et al.

Nanoparticle-plant interactions: two-way traffic

Small, 2019, 15(37):1901794.

[本文引用: 1]

Cheng B X, Wang C X, Cao X S, et al.

Selenium nanomaterials induce flower enlargement and improve the nutritional quality of cherry tomatoes: pot and field experiments

Environmental Science-Nano, 2022, 9(11):4190-4200.

[本文引用: 1]

Song C, Ye F, Zhang H L, et al.

Metal (loid) oxides and metal sulfides nanomaterials reduced heavy metals uptake in soil cultivated cucumber plants

Environmental Pollution, 2019, 255(3):113354.

[本文引用: 1]

Feng Y, Wang C X, Chen F R, et al.

Cerium oxide nanomaterials improve cucumber flowering, fruit yield and quality: the rhizosphere effect

Environmental Science-Nano, 2023, 10(8):2010-2021.

[本文引用: 1]

梅文宇, 付荣杰, 刘林忠, .

纳米二氧化硅对黄瓜幼苗生长的影响

长江蔬菜, 2022(6):7-9.

[本文引用: 1]

Lu L, Huang M, Huang Y X, et al.

Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress

Environmental Science-Nano, 2020, 7(6):1692-1703.

[本文引用: 1]

Wang R T, Sun L L, Zhang P, et al.

Zinc oxide nanoparticles alleviate cadmium stress by modulating plant metabolism and decreasing cadmium accumulation in Perilla frutescents

Plant Growth Regulation, 2022, 100(1):85-96.

[本文引用: 1]

Fallah R, Gerami M, Ramezani M.

Beneficial role of multi- walled carbon nanotubes on physiological and phytochemical responses of Mentha piperita L. under salinity stress

Journal of Essential Oil Bearing Plants, 2023, 26(2):323-342.

[本文引用: 1]

Zhang M X, Zhao L Y, et al.

Potential roles of iron nanomaterials in enhancing growth and nitrogen fixation and modulating rhizomicrobiome in alfalfa (Medicago sativa L.)

Bioresource Technology, 2024, 391(8):129987.

[本文引用: 1]

Semida W M, Abdelkhalik A, Mohamed G F, et al.

Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.)

Plants, 2021, 10(2):421.

[本文引用: 1]

Li D, Zhou C R, Zhang J B, et al.

Nanoselenium foliar applications enhance the nutrient quality of pepper by activating the capsaicinoid synthetic pathway

Journal of Agricultural and Food Chemistry, 2020, 68(37):9888-9895.

DOI:10.1021/acs.jafc.0c03044      PMID:32809823      [本文引用: 1]

Increasing the crop quality through enhancement of plant health is a challenging task. In this study, nanoselenium (nano-Se) was sprayed on pepper leaves, and the pepper components were compared to those of selenite. It was found that nano-Se (20 mg/L) resulted in a greater performance of plant health. It increased the chlorophyll and soluble sugar levels, which could activate phenylpropane and branched-chain fatty acid pathways, as well as related enzymes and gene expressions. These led to an enhancement for the synthesis of capsaicinoids, flavonoids, and total phenols. The nano-Se treatment also significantly promoted the expression of phyto-hormones synthesis genes, and consequently increased jasmonic, abscisic, and salicylic acid levels. Proline pathway-related compounds were increased, which could decrease the malondialdehyde and hydroxyl radical levels in crops. This study shows that nano-Se activated capsaicinoid pathways by enhancing photosynthesis and raising soluble sugar levels. The capsaicinoid contents in peppers were then increased, which consequently promoted the accumulation of secondary metabolites and antioxidants.

Caixeta O H, et al.

Nanotechnology potential in seed priming for sustainable agriculture

Nanomaterials, 2021, 11(2):267.

[本文引用: 1]

An J, et al.

Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles

Environmental Science-Nano, 2020, 7(8):2214-2228.

[本文引用: 1]

Jhansi K, Jayarambabu N, Reddy K P, et al.

Biosynthesis of MgO nanoparticles using mushroom extract: effect on peanut (Arachis hypogaea L.) seed germination

Biotech, 2017, 7:263.

[本文引用: 1]

Rizwan M, Ali S, Qayyum M F, et al.

Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review

Journal of Hazardous Materials, 2017, 322:2-16.

DOI:S0304-3894(16)30499-X      PMID:27267650      [本文引用: 1]

The concentrations of engineered metal and metal oxide nanoparticles (NPs) have increased in the environment due to increasing demand of NPs based products. This is causing a major concern for sustainable agriculture. This review presents the effects of NPs on agricultural crops at biochemical, physiological and molecular levels. Numerous studies showed that metal and metal oxide NPs affected the growth, yield and quality of important agricultural crops. The NPs altered mineral nutrition, photosynthesis and caused oxidative stress and induced genotoxicity in crops. The activities of antioxidant enzymes increased at low NPs toxicity while decreased at higher NPs toxicity in crops. Due to exposure of crop plants to NPs, the concentration of NPs increased in different plant parts including fruits and grains which could transfer to the food chain and pose a threat to human health. In conclusion, most of the NPs have both positive and negative effects on crops at physiological, morphological, biochemical and molecular levels. The effects of NPs on crop plants vary greatly with plant species, growth stages, growth conditions, method, dose, and duration of NPs exposure along with other factors. Further research orientation is also discussed in this review article.Copyright © 2016 Elsevier B.V. All rights reserved.

Sembada A A, Maki S, Faizal A, et al.

The role of silica nanoparticles in promoting the germination of tomato (Solanum lycopersicum) seeds

Nanomaterials, 2023, 13(14):2110.

[本文引用: 1]

Cappetta E, Del Regno C, Conte M, et al.

An integrated multilevel approach unveils complex seed-nanoparticle interactions and their implications for seed priming

ACS Nano, 2023, 17 (22):22539-22552.

DOI:10.1021/acsnano.3c06172      PMID:37931310      [本文引用: 1]

Nanotechnology has the potential to revolutionize agriculture with the introduction of engineered nanomaterials. However, their use is hindered by high cost, marginal knowledge of their interactions with plants, and unpredictable effects related to massive use in crop cultivation. Nanopriming is an innovative seed priming technology able to match economic, agronomic, and environmental needs in agriculture. The present study was focused on unveiling, by a multilevel integrated approach, undisclosed aspects of seed priming mediated by iron oxide magnetic nanoparticles in pepper seeds (), one of the most economically important crops worldwide. Inductively coupled plasma atomic emission mass spectrometry and scanning electron microscopy were used to quantify the MNP uptake and assess seed surface changes. Magnetic resonance imaging mapped the distribution of MNPs prevalently in the seed coat. The application of MNPs significantly enhanced the root and vegetative growth of pepper plants, whereas seed priming with equivalent Fe concentrations supplied as FeCl did not yield these positive effects. Finally, global gene expression by RNA-sequencing identified more than 2,200 differentially expressed genes, most of them involved in plant developmental processes and defense mechanisms. Collectively, these data provide evidence on the link between structural seed changes and an extensive transcriptional reprogramming, which boosts the plant growth and primes the embryo to cope with environmental challenges that might occur during the subsequent developmental and growth stages.

Landa P.

Positive effects of metallic nanoparticles on plants: overview of involved mechanisms

Plant Physiology and Biochemistry, 2021, 161:12-24.

DOI:10.1016/j.plaphy.2021.01.039      PMID:33561657      [本文引用: 1]

Engineered nanoparticles (NPs) are considered as potential agents for agriculture as fertilizers, growth enhancers and pesticides. Therefore, understanding the mechanisms that are responsible for their effects is important. Various studies demonstrated that the application of nontoxic concentrations can promote seed germination, enhance plant growth and increase the yield. Moreover, NPs can be used to protect plants from environmental impacts such as salt or drought stress and diminish accumulation and toxicity of heavy metals. NPs can serve as a source of micronutrients (e.g. ZnO, iron- and manganese-based NPs), thus increasing fitness and helps plants to cope with stress conditions. TiO and iron-based NPs are able to delay senescence and speed-up cell division via changes in phytohormonal levels. The application of some NPs can promote the activity of enzymes such as amylase, nitrate reductase, phosphatase, phytase and carbonic anhydrases, which are involved in metabolism and nutrient acquisition. E.g. ZnO and TiO NPs can stimulate chlorophyll biosynthesis and photosynthetic activity. Iron-based and CeO NPs enhance stomata opening resulting in better gas exchange and CO assimilation rate. NPs can also modulate oxidative stress by the stimulation of the antioxidant enzymes such peroxidases and superoxide dismutase. However, the knowledge about the fate, transformation, and accumulation of NPs in the environment and organisms is needed prior to their use in agriculture to avoid negative environmental impacts. Higher or lower toxicity of various NPs was established for microorganisms, plants or animals. In this overview, we focused on the possible mechanisms of Ag, ZnO, TiO, Fe-based, CeO, AlO, and manganese-based NPs responsible for their positive effects on plants.Copyright © 2021 Elsevier Masson SAS. All rights reserved.

Nayeri S, Dolatyari M, Mouladoost N, et al.

Ag/ZnO core-shell NPs boost photosynthesis and growth rate in wheat seedlings under simulated full sun spectrum

Scientific Reports, 2023, 13(1):14385.

DOI:10.1038/s41598-023-41575-7      PMID:37658127      [本文引用: 1]

Breeding programs rely on light wavelength, intensity, and photoperiod for rapid success. In this study, we investigated the ability of Ag/ZnO nanoparticles (NPs) to improve the photosynthesis and growth of wheat under simulated full solar spectrum conditions. The world population is increasing rapidly, it is necessary to increase the number of crops in order to ensure the world's food security. Conventional breeding is time-consuming and expensive, so new techniques such as rapid breeding are needed. Rapid breeding shows promise in increasing crop yields by controlling photoperiod and environmental factors in growth regulators. However, achieving optimum growth and photosynthesis rates is still a challenge. Here, we used various methods to evaluate the effects of Ag/ZnO NPs on rice seeds. Using bioinformatics simulations, we evaluated the light-harvesting efficiency of chlorophyll a in the presence of Ag/ZnO NPs. Chemically synthesized Ag/ZnO nanoparticles were applied to rice grains at different concentrations (0-50 mg/L) and subjected to a 12-h preparation time. Evaluation of seed germination rate and growth response in different light conditions using a Light Emitting Diode (LED) growth chamber that simulates a rapid growth system. The analysis showed that the surface plasmon resonance of Ag/ZnO NPs increased 38-fold, resulting in a 160-fold increase in the light absorption capacity of chlorophyll. These estimates are supported by experimental results showing an 18% increase in the yield of rice seeds treated with 15 mg/L Ag/ZnO NPs. More importantly, the treated crops showed a 2.5-fold increase in growth and a 1.4-fold increase in chlorophyll content under the simulated full sun spectrum (4500 lx) and a 16-h light/8-h dark photoperiod. More importantly, these effects are achieved without oxidative or lipid peroxidative damage. Our findings offer a good idea to increase crop growth by improving photosynthesis using Ag/ZnO nanoparticle mixture. To develop this approach, future research should go towards optimizing nanoparticles, investigating the long-term effects, and exploring the applicability of this process in many products. The inclusion of Ag/ZnO NPs in rapid breeding programs has the potential to transform crops by reducing production and increasing agricultural productivity.© 2023. Springer Nature Limited.

Abbasifar A, Shahrabadi F, ValizadehKaji B.

Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant

Journal of Plant Nutrition, 2020, 43(8):1104-1118.

[本文引用: 1]

鲁力. 四氧化三锰纳米酶促进植物生长与增强抗逆的研究. 南京:南京大学, 2021.

[本文引用: 1]

Faizan M, Faraz A, Yusuf M, et al.

Zinc oxide nanoparticle- mediated changes in photosynthetic efficiency and antioxidant system of tomato plants

Photosynthetica, 2018, 56(2):678-686.

[本文引用: 1]

Wang C X, Liu X F, Li J, et al.

Copper nanoclusters promote tomato (Solanum lycopersicum L.) yield and quality through improving photosynthesis and roots growth

Environmental Pollution, 2021, 289(15):117912.

[本文引用: 1]

Arif Y, Singh P, Siddiqui H, et al.

Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance

Plant Physiology and Biochemistry, 2020, 156:64-77.

DOI:S0981-9428(20)30424-1      PMID:32906023      [本文引用: 1]

Salinity is one of the major threats to sustainable agriculture that globally decreases plant production by impairing various physiological, biochemical, and molecular function. In particular, salinity hampers germination, growth, photosynthesis, transpiration, and stomatal conductance. Salinity decreases leaf water potential and turgor pressure and generates osmotic stress. Salinity enhances reactive oxygen species (ROS) content in the plant cell as a result of ion toxicity and disturbs ion homeostasis. Thus, it imbalances nutrient uptake, disintegrates membrane, and various ultrastructure. Consequently, salinity leads to osmotic and ionic stress. Plants respond to salinity by modulating various morpho-physiological, anatomical, and biochemical traits by regulating ion homeostasis and compartmentalization, antioxidant machinery, and biosynthesis of osmoprotectants and phytohormones, i. e, auxins, abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellins, salicylic acid, jasmonic acid, and polyamines. Thus, this further modulates plant osmoticum, decreases ion toxicity, and scavenges ROS. Plants upregulate various genes and proteins that participate in salinity tolerance. They also promote the production of various phytohormones and metabolites that mitigate the toxic effect of salinity. Based on recent papers, the deleterious effect of salinity on plant physiology is discussed. Furthermore, it evaluates the physiological and biochemical responses of the plant to salinity along with phytohormone response. This review paper also highlights omics (genomics, transcriptomics, proteomics, and metabolomics) approach to understand salt stress tolerance.Copyright © 2020 Elsevier Masson SAS. All rights reserved.

Dimkpa C O, Bindraban P S.

Nanofertilizers: new products for the industry

Journal of Agricultural and Food Chemistry, 2018, 66(26):6462-6473.

[本文引用: 1]

Kareem H A, Saleem M F, Saleem S, et al.

Zinc oxide nanoparticles interplay with physiological and biochemical attributes in terminal heat stress alleviation in mungbean (Vigna radiata L.)

Frontiers in Plant Science, 2022, 13:842349.

[本文引用: 1]

Ghabel V K, Karamian R.

Effects of TiO2nanoparticles and spermine on antioxidant responses of Glycyrrhiza glabra L. to cold stress

Acta Botanica Croatica, 2020, 79(2):137-147.

[本文引用: 1]

Wang A B, Al-Huqail A A, et al.

Mechanisms of chitosan nanoparticles in the regulation of cold stress resistance in banana plants

Nanomaterials, 2021, 11(10):2670.

[本文引用: 1]

Zulfiqar F, Ashraf M.

Nanoparticles potentially mediate salt stress tolerance in plants

Plant Physiology and Biochemistry, 2021, 160:257-268.

DOI:10.1016/j.plaphy.2021.01.028      PMID:33529801      [本文引用: 1]

In the era of climate change, salt stress is a promising threat to agriculture, limiting crop production via imposing primary effects such as osmotic and ionic, as well as secondary effects such as oxidative stress, perturbance in hormonal homeostasis, and nutrient imbalance. On the other hand, production areas are expanding into the salt affected regions due to excessive pressure for fulfilling food security targets to meet the needs of continuously increasing human population. Accumulating evidences demonstrate that supplementation of nanoparticles to plants can significantly alleviate the injurious effects caused by various harsh conditions including salt stress, and hence, regulate adaptive mechanisms in plants. Various types of NPs and nanofertilizers have shown a promising evidence so far regarding salt stress management. In this review, we recapitulate recent pioneering progress made towards acquiring salt stress tolerance in crop plants utilizing NPs. Finally, future research directions in this domain to explicate the comprehensive roles of nanoparticles in improving salt tolerance in plants are underscored. To ensure social acceptance and safe use of NPs, some conclusive directions have been elaborated in order to achieve sustainable progress in crop production under saline environments.Copyright © 2021 Elsevier Masson SAS. All rights reserved.

Sharma D, Afzal S, Singh N K.

Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds

Journal of Biotechnology, 2021, 336:64-75.

DOI:10.1016/j.jbiotec.2021.06.014      PMID:34116127      [本文引用: 1]

The application of zinc oxide nanoparticles (ZnO NPs) in agricultural field is emerging and relatively new. In this work, a simple, cost-efficient, non-toxic and eco-friendly method for the green synthesis of ZnO NPs by Cassia occidentalis leaf extract has been described. Techniques used to characterize nanoparticles (NPs) were X-ray diffractometer (XRD), UV visible spectroscopy, Particle size analyzer (PSA), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). In this study, green synthesized ZnO NPs at 20-40 mg/l solution was used to prime aged seeds of Oryza sativa, which enhanced germination performance and seedling vigor significantly as compared to zinc sulphate (ZnSO) priming and conventional hydropriming. The effect of treatment was analyzed by measuring biophysical and biochemical parameter of germinating rice seeds. The seeds treated with ZnO NPs of 20 mg/l concentration showed more than 50% stimulation in dry weight, relative water uptake of seeds and radicle length of seedling in comparison to other priming solution and control (hydro-primed). Significant growth was also observed in plumule length and fresh weight of seeds in ZnO NPs at 20 mg/l concentration in comparison to control and other priming treatments. At the same concentration of ZnO NPs, there was 23% stimulation reported in total soluble sugar content and 45% stimulation in amylase activity. There was also a substantial increase in antioxidant enzyme i.e. superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activity. Seed priming represents an innovative user-friendly approach to enhance the germination rate, starch metabolic process and triggered zinc acquisition of rice aged seed as an alternative to the conventional priming method.Copyright © 2021. Published by Elsevier B.V.

El-Badri A M, Batool M, Wang C Y, et al.

Selenium and zinc oxide nanoparticles modulate the molecular and morpho- physiological processes during seed germination of Brassica napus under salt stress

Ecotoxicology and Environmental Safety, 2021, 225:112695.

[本文引用: 1]

Khan M N, et al.

CeO2 Nanoparticles seed priming increases salicylic acid level and ROS scavenging ability to improve rapeseed salt tolerance

Global Challenges, 2022, 6(7):2200025.

[本文引用: 1]

Rath A, Das A B.

Chromium stress induced oxidative burst in Vigna mungo L. Hepper: physio-molecular and antioxidative enzymes regulation in cellular homeostasis

Physiology and Molecular Biology of Plants, 2021, 27:265-279.

[本文引用: 1]

Fallah R, Gerami M, Ramezani M.

Beneficial role of multi- walled carbon nanotubes on physiological and phytochemical responses of Mentha piperita L. under salinity stress

Journal of Essential Oil Bearing Plants, 2023, 26(2):323-342.

[本文引用: 1]

Ahmed T, Noman M, Ijaz M, et al.

Current trends and future prospective in nanoremediation of heavy metals contaminated soils: a way forward towards sustainable agriculture

Ecotoxicology and Environmental Safety, 2021, 227(20):111288.

[本文引用: 1]

Kumar D, Dhankher O P, Tripathi R D, et al.

Titanium dioxide nanoparticles potentially regulate the mechanism(s) for photosynthetic attributes, genotoxicity, antioxidants defense machinery, and phytochelatins synthesis in relation to hexavalent chromium toxicity in Helianthus annuus L

.. Journal of Hazardous Materials, 2023, 454(15):131418.

[本文引用: 1]

Pho Q H, Losic D, Ostrikov K, et al.

Perspectives on plasma- assisted synthesis of N-doped nanoparticles as nanopesticides for pest control in crops

Reaction Chemistry & Engineering, 2020 (5):1374-1396.

[本文引用: 1]

Liu J H, Chen L L, et al.

Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio

Journal of Nanobiotechnology, 2021, 19(1):153.

[本文引用: 1]

Van Nguyen D, Nguyen H M, et al.

Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions

Journal of Plant Growth Regulation, 2022, 41(1):364-375.

DOI:10.1007/s00344-021-10301-w      [本文引用: 1]

Abiotic stresses, including drought, detrimentally affect the growth and productivity of many economically important crop plants, leading to significant yield losses, which can result in food shortages and threaten the sustainability of agriculture. Balancing plant growth and stress responses is one of the most important functions of agricultural application to optimize plant production. In this study, we initially report that copper nanoparticle priming positively regulates drought stress responses in maize. The copper nanoparticle priming plants displayed enhanced drought tolerance indicated by their higher leaf water content and plant biomass under drought as compared with water-treated plants. Moreover, our data showed that the treatment of copper nanoparticle on plants increased anthocyanin, chlorophyll and carotenoid contents compared to water-treated plants under drought stress conditions. Additionally, histochemical analyses with nitro blue tetrazolium and 3,3 '-diaminobenzidine revealed that reactive oxygen species accumulation of priming plants was decreased as a result of enhancement of reactive oxygen species scavenging enzyme activities under drought. Furthermore, our comparative yield analysis data indicated applying copper nanoparticles to the plant increased total seed number and grain yield under drought stress conditions. Our data suggest that copper nanoparticle regulates plant protective mechanisms associated with drought tolerance, which is a promising approach for the production of drought-tolerant crop plants.

Ghani M I, Saleem S, Rather S A, et al.

Foliar application of zinc oxide nanoparticles: an effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation

Chemosphere, 2021, 289:133202.

[本文引用: 1]

Wan X Y, Niu J F, et al.

Enhancing iron content and growth of cucumber seedlings with MgFe-LDHs under low- temperature stress

Journal of Nanobiotechnology, 2024, 22(1):268.

[本文引用: 1]

Huang C P, Qin N N, Sun L, et al.

Selenium improves physiological parameters and alleviates oxidative stress in strawberry seedlings under low-temperature stress

International Journal of Molecular Sciences, 2018, 19(7):1913.

[本文引用: 1]

Mahmoud A W M, Abdeldaym E A, Abdelaziz S M, et al.

Synergetic effects of zinc, boron, silicon, and zeolite nanoparticles on confer tolerance in potato plants subjected to salinity

Agronomy-Basel, 2020, 10(1):19.

[本文引用: 1]

Hu J, Qi J, et al.

Improvement of leaf K+ retention is a shared mechanism behind CeO2 and Mn3O4nanoparticles improved rapeseed salt tolerance

Stress Biology, 2022, 2(1):46.

[本文引用: 1]

Wang X N, Cui X L, et al.

Physiological and metabolomic analyses reveal that Fe3O4 nanoparticles ameliorate cadmium and arsenic toxicity in Panax notoginseng

Environmental Pollution, 2023, 337(15):122578.

[本文引用: 1]

Zou C M, Wang R T, et al.

Comparative physiological and metabolomic analyses reveal that Fe3O4 and ZnO nanoparticles alleviate Cd toxicity in tobacco

Journal of Nanobiotechnology, 2022, 20(1):302.

[本文引用: 1]

Tan W J, Peralta-Videa J R, et al.

Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects

Plant Physiology and Biochemistry, 2016, 110:210-225.

[本文引用: 1]

Singh A V, Laux P, Luch A, et al.

Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design

Toxicology Mechanisms and Methods, 2019, 29(5):378-387.

DOI:10.1080/15376516.2019.1566425      PMID:30636497      [本文引用: 1]

Nanotoxicology and nanosafety has been a topic of intensive research for about more than 20 years. Nearly 10 000 research papers have been published on the topic, yet there exists a gap in terms of understanding and ways to harmonize nanorisk assessment. In this review, we revisit critically ignored parameters of nanoscale materials (e.g. band gap factor, phase instability and silver leaching problem, defect and instability plasmonic versus inorganic particles) versus their biological counterparts (cell batch-to-batch heterogeneity, biological barrier model design, cellular functional characteristics) which yield variability and nonuniformity in results. We also emphasize system biology approaches to integrate the high throughput screening methods coupled with in vivo and in silico modeling to ensure quality in nanosafety research. We emphasize and highlight the recommendation regarding bridging the mechanistic gaps in fundamental research and predictive biological response in nanotoxicology. The research community has to develop visions to predict the unforeseen problems that do not exist yet in context with nanotoxicity and public health hazards due to the burgeoning use of nanomaterial in consumer's product.

Ghosh M, Ghosh I, Godderis L, et al.

Genotoxicity of engineered nanoparticles in higher plants

Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 2019, 842:132-145.

DOI:10.1016/j.mrgentox.2019.01.002      [本文引用: 2]

Nanoparticles (NPs) are an emerging environmental threat. However, studies of NPs in different environmental components are limited. In this review, we discuss studies that have evaluated the genotoxicity of NPs in higher plants. Among the 29 studies reviewed, silver NPs were most studied (n = 7 articles), with fewer studies reporting the genotoxicity of carbon nanotubes (n = 3), titanium dioxide NPs (n = 4), and zinc oxide NPs (n = 3). Most of the genotoxicity studies were performed in the model plant systems Allium sp (n = 22), Nicotiana sp (n = 4) and Vicia sp (n = 4) using chromosome aberration (n = 22), micronucleus (n = 15) and comet assays (n = 14). Genotoxicity was observed in most of the studies; however, many studies did consider key determinants of NP toxicity such as particle characterization, dissolution, and uptake. From this review, we propose a set of guidelines that should be considered when reporting results of NP toxicity in plants.

Wahid I, Kumari S, Ahmad R, et al.

Silver nanoparticle regulates salt tolerance in wheat through changes in ABA concentration, ion homeostasis, and defense systems

Biomolecules, 2020, 10(11):1506.

[本文引用: 1]

Youssef M S, Elamawi R M.

Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in Vicia faba

Environmental Science and Pollution Research, 2018, 27(16):18972-18984.

[本文引用: 1]

Zoufan P, Baroonian M, Zargar B.

ZnO nanoparticles-induced oxidative stress in Chenopodium murale L, Zn uptake, and accumulation under hydroponic culture

Environmental Science and Pollution Research, 2020, 27(10):11066-11078.

[本文引用: 1]

Azhar W, Khan A R, Salam A, et al.

Ethylene accelerates copper oxide nanoparticle-induced toxicity at physiological, biochemical, and ultrastructural levels in rice seedlings

Environmental Science and Pollution Research, 2023, 30(10):26137-26149.

[本文引用: 1]

Marmiroli M, Marmiroli N, Pagano L.

Nanomaterials induced genotoxicity in plant: methods and strategies

Nanomaterials, 2022, 12(10):1658.

[本文引用: 1]

Sun Z Q, Xiong T T, Zhang T, et al.

Influences of zinc oxide nanoparticles on Allium cepa root cells and the primary cause of phytotoxicity

Ecotoxicology, 2019, 28(2):175-188.

[本文引用: 1]

/