作物杂志,2017, 第4期: 96–104 doi: 10.16035/j.issn.1001-7283.2017.04.017

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

青稞光合作用5种光响应模型的比较分析

侯维海,王建林,旦巴,胡单   

  1. 西藏农牧学院植物科学学院/高原作物分子育种实验室,860000,西藏林芝
  • 收稿日期:2017-04-13 修回日期:2017-06-27 出版日期:2017-08-15 发布日期:2018-08-26
  • 通讯作者: 王建林
  • 作者简介:侯维海,硕士研究生,从事作物遗传育种研究
  • 基金资助:
    国家自然科学基金(31560362);西藏特色农牧资源研发协同创新中心-作物研究方向(XZXTCX-2015-03);西藏特色农牧资源研发协同创新中心-作物研究方向(XBTSZWXK-2015-01)

Comparison of Photosynthesis-Light Response Curve Fitting Model of Hulless Barley

Hou Weihai,Wang Jianlin, ,Hu Dan   

  1. Institute of Plant Sciences/Plateau Crop Molecular Breeding Laboratory,Xizang Agiriculture and Animal Husbandry College,Linzhi 860000,Tibet,China
  • Received:2017-04-13 Revised:2017-06-27 Online:2017-08-15 Published:2018-08-26
  • Contact: Jianlin Wang

摘要:

以西藏主栽春青稞品种喜马拉雅22为试验材料,于开花期,利用LI-6400XT光合仪分别测定了倒1叶、倒2叶、倒3叶的光合光响应曲线,应用直角双曲线模型(RH)、非直角双曲线模型(NRH)、直角双曲线修正模型(MRH)、指数模型(EM)、修正指数模型(MEM)拟合青稞不同叶位的光响应曲线,比较和分析各模型的拟合参数。结果表明:模型RH、NRH拟合的青稞倒1、倒2、倒3叶最大净光合速率(Pnmax)均高于实测值,而模型EM拟合值均小于实测值;模型RH、NRH拟合的青稞倒1、倒2、倒3叶光饱和点(Is)远小于实测值,而模型EM拟合值略小于实测值;模型MRH拟合的Pnmax、Is均与青稞不同叶位叶片实测值接近。模型MEM由于光抑制项为负值,导致Pnmax和Is无法计算。在高光合有效辐射条件下[PAR>1 200μmol photons/(m 2·s)],只有MRH拟合的青稞倒1、倒2、倒3叶光合光响应曲线与实测光响应曲线最为接近,且拟合优度最佳。5种模型的拟合效果为MRH>MEM>EM>RH、NRH。

关键词: 青稞, 光响应模型, 净光合速率, 光响应曲线

Abstract:

Astract The mostly planted hulless barley species “Himalaya 22” in Tibet was used as the test material, and LI-6400XT photosynthetic apparatus was used to measure the photosynthetic light response curves of barley leaves in the 1st, 2nd and 3rd leaf at the flowering stage, and the rectangle hyperbola curve model (RH), modified rectangle hyperbolic curve model (MRH), exponential model (EM) and modified exponential model (MEM) were used to portray the light response curves of barley leaves at different positions. The fitting parameters of each model were compared and analyzed. The results showed that the maximum net photosynthetic rate (Pnmax) of barley leaves in the 1st, 2nd and 3rd leaf fitted by RH and NRH model was higher than the measured values, while the EM model fitting values were less than the measured value. The light saturation points (Is) of barley leaves in the 1st, 2nd and 3rd leaf fitted by RH and NRH were far less than the measured values, while the EM model fitting values were slightly less than the measured value; the Pnmax and Is of MRH were close to the measured values of the highland barley leaves at different position. Due to light suppression, the phase of the MRH model was negative, leading to that the Pnmax and Is could not be calculated. Under the condition of strong photosynthetically active radiation light (PAR>1 200μmol photon/m2·s), only the photosynthetic light response curve of barley leaves in the 1st, 2nd and 3rd leaf fitted by the model MRH was the closest to the measured photosynthetic curve with the best goodness of fit. The model fittng ranking was as follow: MRH model> MEM model> EM> RH, NRH model, therefore, the model MRH was the best fitting model of hulless barley.

Key words: Hulless barley, Light response model, Net photosynthetic rate, Light response curve

表1

青稞不同叶位光响应模型的参数估计值和拟合优度值"

光响应模型
Light response model
器官Organ α AQE Pnmax
[μmol CO2/
(m2·s)]
Is
[μmol CO2/(m2·s)]
Ic
[μmol CO2/(m2·s)]
Rd
[μmol CO2/(m2·s)]
β λ γ ξ k
Pnmax实测值 倒1叶 - - ≈17.16 1 200~1 600 ≈17.40 - - - - - -
Pnmaxmeasured value 倒2叶 - - ≈14.30 1 200~1 600 ≈15.20 - - - - - -
倒3叶 - - ≈10.22 1 600~2 000 ≈12.00 - - - - - -
RH 倒1叶 0.101 0.05 20.59 428.12 8.43 0.818 - - - - -
倒2叶 0.100 0.05 17.17 414.93 16.42 1.499 - - - - -
倒3叶 0.062 0.03 11.87 419.37 12.18 0.710 - - - - -
NRH 倒1叶 0.067 0.05 18.70 395.12 16.04 1.053 - - - - 0.654
倒2叶 0.063 0.05 15.62 368.42 16.29 0.963 - - - - 0.678
倒3叶 0.056 0.03 11.65 392.20 11.87 0.635 - - - - 0.187
MRH 倒1叶 0.083 - 18.31 1 609.37 15.82 1.250 0.000091 - 0.003 - -
倒2叶 0.074 - 15.36 1 320.69 16.39 1.035 0.000127 - 0.003 - -
倒3叶 0.054 - 10.95 2 022.56 10.99 0.568 0.000049 - 0.004 - -
EM 倒1叶 0.063 - 16.35 1 209.00 14.10 - - - - - -
倒2叶 0.059 - 13.72 1 085.00 13.80 - - - - - -
倒3叶 0.037 - 9.79 1 223.09 4.46 - - - - - -
MEM 倒1叶 - 0.07 - - 15.46 1.008 -0.000027 15.705 16.713 0.004 -
倒2叶 - 0.06 13.73 1 229.40 12.66 0.740 0.000032 14.400 15.142 0.004 -
倒3叶 - 0.04 - - 8.98 5.000 -0.000058 8.915 9.246 0.004 -

图1

青稞倒1叶、倒2叶、倒3叶光响应曲线模型拟合值比较分析"

图2

高光照条件下,青稞倒1叶、倒2叶、倒3叶光响应曲线模型拟合值和测量值比较分析"

表2

青稞不同叶位光响应模型的拟合优度"

光响应模型
Light response model
器官
Organ
拟合优度Goodness of fit
AIC Ra2 RMSE MAPE R2
RH 倒1叶 -11.34 0.990 0.671 12.740 0.991
倒2叶 -9.14 0.983 0.722 10.582 0.985
倒3叶 -41.01 0.994 0.283 3.380 0.995
NRH 倒1叶 -18.55 0.992 0.551 6.650 0.994
倒2叶 -13.76 0.986 0.646 9.552 0.989
倒3叶 -41.47 0.995 0.291 3.013 0.996
MRH 倒1叶 -19.92 0.994 0.526 8.767 0.995
倒2叶 -22.62 0.992 0.481 8.034 0.994
倒3叶 -45.82 0.996 0.254 3.404 0.997
EM 倒1叶 -17.43 0.993 0.547 6.418 0.994
倒2叶 -14.33 0.988 0.588 9.468 0.990
倒3叶 -30.46 0.990 0.363 6.559 0.991
MEM 倒1叶 -18.03 0.992 0.560 6.537 0.994
倒2叶 -15.80 0.987 0.603 9.505 0.990
倒3叶 -33.06 0.990 0.379 6.558 0.992
[1] Hans L F, Stuart C , Thijs L P.Plant Physiological Ecology. New York: Springer, 2008: 11-99.
[2] Henley W J . Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. Journal of Phycology, 1993,29(6):729-739.
doi: 10.1111/j.0022-3646.1993.00729.x
[3] Sharp R E, Matthews M A, Boyer J S . Kok effect and the quantum yield of photosynthesis. Plant Physiology, 1984,75:95-101.
doi: 10.1104/pp.75.1.95 pmid: 16663610
[4] Luo Y Q, Hui D F, Cheng W X , et al. Canopy quantum yield in a mesocosm study. Agricultural and Forest Meteorology, 2000,100(1):35-48.
doi: 10.1016/S0168-1923(99)00085-4
[5] Moreno-Sotomayor A, Weiss A, Paparozzi E T , et al. Stability of leaf anatomy and light response curves of field grown maize as a function of age and nitrogen status. Journal of Plant Physiology, 2002,159(8):819-826.
doi: 10.1078/0176-1617-00809
[6] Rascher U, Liebig M, Luttge U . Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell and Environment, 2000,23(12):1397-1405.
doi: 10.1046/j.1365-3040.2000.00650.x
[7] Posada J M, Lechowicz M J, Kitajima K . Optimal photosynthetic use of light by tropical tree crowns achieved by adjustment of individual leaf angles and nitrogen content. Annals of Botany, 2009,103(5):795-805.
doi: 10.1093/aob/mcn265
[8] 叶子飘, 于强 . 光合作用光响应模型的比较. 植物生态学报, 2008,32(6):1356-1361.
doi: 10.3773/j.issn.1005-264x.2008.06.016
[9] Lang Y, Wang M, Zhang G C , et al. Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soilwater conditions. Photosynthetica, 2013,51(3):370-378.
doi: 10.1007/s11099-013-0036-z
[10] Sui N, Li M, Meng Q , et al. Photosynthetic characteristics of a super high yield cultivar of winter wheat during late growth period. Journal of Integrative Agriculture, 2010,9(3):346-354.
[11] Falqueto A R , Silva F S P,Cassol D,et al.Chlorophyll fluorescence in rice: probing of senescence driven changes of PSⅡ activity on rice varieties differing in grain yield capacity. Brazilian Journal of Plant Physiology, 2010,22(1):35-41.
doi: 10.1590/S1677-04202010000100004
[12] Samborski S M, Tremblay N, Fallon E . Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agronomy Journal, 2009,101(4):800-816.
doi: 10.2134/agronj2008.0162Rx
[13] Gutierrez D, Gutierrez E, Perez P , et al. Acclimation to future atmospheric CO2 levels increases photochemical efficiency and mitigates photochemistry inhibition by warm temperatures in wheat under field chambers. Physiologiae Plantarum, 2009,137(1):86-100.
doi: 10.1111/ppl.2009.137.issue-1
[14] Munns R, James R A ,Sirault X R R,et al.New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. Journal of Experimental Botany, 2010,61(13):3499-3507.
doi: 10.1093/jxb/erq199
[15] Hura T, Hura K, Grzesiak M . Soil drought applied during the vegetative growth of triticale modified the physiological and biochemical adaptation to drought during the generative development. Journal of Agronomy and Crop Science, 2011,197(2):113-123.
doi: 10.1111/jac.2011.197.issue-2
[16] Friend A D, Woodward F I . Evolutionary and ecophysiological responses of mountain plants to the growing season environment. Advances in Ecological Research, 1990,20:59-124.
doi: 10.1016/S0065-2504(08)60053-7
[17] Vats S K, Kumar N, Kumar S . Gas exchange of response of barley and pea cultivars to altitude variation in Himalaya. Photosynthetica, 2009,47:41-45.
doi: 10.1007/s11099-009-0008-5
[18] Fan Y Z, Zhong Z M, Zhang X Z . A comparative analysis of photosynthetic characteristics of hulless barley at two altitudes on the Tibetan Plateau. Photosynthetica, 2011,49(1):112-118.
doi: 10.1007/s11099-011-0016-0
[19] Sakata T, Yokoi Y . Analysis of the O2 dependency in leaflevel photosynthesis of two Reynoutria japonica populations growing at different altitudes. Plant Cell Environment, 2002,25:65-74.
doi: 10.1046/j.0016-8025.2001.00809.x
[20] 刘铁梅, 谢国生 . 农业系统分析与模拟.北京: 科学出版社, 2010: 131-132.
[21] 柴胜丰, 唐健民, 杨雪 , 等. 4种模型对黄枝油杉光合光响应曲线的拟合分析. 广西科学院学报, 2015,31(4):286-291.
[22] 王海珍, 韩路, 徐雅丽 , 等. 干旱胁迫下胡杨光合光响应过程模拟与模型比较. 生态学报 2017,37(7):2315-2324.
doi: 10.5846/stxb201511242373
[23] 叶子飘, 高峻 . 光响应和CO2响应新模型在丹参中的应用. 西北农林科技大学学报(自然科学版), 2009,37(1):129-134.
[24] 叶子飘, 于强 . 一个光合作用光响应新模型与传统模型的比较. 沈阳农业大学学报, 2007,38(6):771-775.
[25] Kyei-B S, Lada R, Astatkie T , et al. Photosynthetic response of carrots to varying irradiances. Photosynthetica, 2003,41(2):301-305.
doi: 10.1021/ja056918d
[26] Thornley J H M . Mathematical Models in Plant Physiology. Mathematical Models in Plant Physiology, 1976: 307-313.
[27] Bassman J H, Zwier J C . Gas exchange characteristics of Populus trichocarpa,Populus deltoides and Populus trichocarpa×P. deltoides clones. Tree Physiology, 1991,8(2):145-159.
doi: 10.1093/treephys/8.2.145
[28] Chen Z Y, Peng Z S, Yang J , et al. A mathematical model for describing light-response curves in Nicotiana tabacum L. Photosynthetica, 2011,49(3):467-471.
doi: 10.1007/s11099-011-0056-5
[29] 陈根云, 俞冠路, 陈悦 , 等. 光合作用对光和二氧化碳响应的观测方法探讨. 植物生理与分子生物学学报, 2006,32(6):691-696.
doi: 10.3321/j.issn:1671-3877.2006.06.012
[30] 钟楚, 朱勇 . 几种光合作用光响应模型对烟草的适用性分析. 中国农业气象, 2013,34(1):74-80.
doi: 10.3969/j.issn.1000-6362.2013.01.011
[31] 刘强, 李凤日, 谢龙飞 . 人工长白落叶松冠层光合作用-光响应曲线最优模型. 应用生态学报, 2016,27(8):2420-2428.
doi: 10.13287/j.1001-9332.201608.023
[32] Fang L D, Zhang S Y, Zhang G C , et al. Application of five light-response models in the photosynthesis of Populus×Euramericana cv.‘Zhonglin46’ leaves. Applied Biochemistry and Biotechnology, 2015,176(1):86-100.
doi: 10.1007/s12010-015-1543-0
[33] 闫小红, 尹建华, 段世华 , 等. 四种水稻品种的光合光响应曲线及其模型拟合. 生态学杂志, 2013,32(3):604-610.
[34] 郎莹, 张光灿, 张征坤 , 等. 不同土壤水分下山杏光合作用光响应过程及其模拟. 生态学报, 2011,31(6):4499-4508.
[35] 马跃芳, 龚辉 . 大麦功能叶片对籽粒中干物质积累的影响.大麦与谷类科学, 1990(2):1-5.
[36] Richardson A D . Changes in foliar spectral reflectance and chlorophyll fluorescence of four temperate specics following branch cutting. Tree Physiology , 2002,22:499-506.
doi: 10.1093/treephys/22.7.499
[37] Yu Q, Zhang Y, Liu Y , et al. Simulation of the stomatal conductance of winter wheat in response to light,temperature and CO2 changes. Annals of Botany, 2004,93(4):435-441.
doi: 10.1093/aob/mch023
[38] Leakey A D, Uribelarrea M, Ainsworth E A , et al. Photosynthesis,productivity,and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiology, 2006,140(2):779-790.
doi: 10.1104/pp.105.073957
[39] 叶子飘, 康华靖 . 植物光响应修正模型中系数的生物学意义研究. 扬州大学学报(农业与生命科学版), 2012,32(2):51-57.
[1] 刘振东,王波,薛蓓,王强锋,侯磊. 高原作物青稞根及根际内生细菌群落结构的高通量分析[J]. 作物杂志, 2016, (6): 49–52
[2] 田平, 马立婷, 逢焕成, 等. 硅肥对玉米和大豆光合特性及产量形成的影响[J]. 作物杂志, 2015, (6): 136–140
[3] 李洁. 青稞幼苗干旱诱导蛋白的初步分析[J]. 作物杂志, 2015, (4): 51–54
[4] 刘三才. 我国青稞的质量与品质研究进展[J]. 作物杂志, 2014, (4): 1–5
[5] 卢海博, 龚学臣, 乔永明, 等. 张杂谷干物质积累及光合特性的研究[J]. 作物杂志, 2014, (1): 121–124
[6] 王创云, 赵丽, 王陆军, 侯雅静, 王美霞,. 玉米不同种植密度对叶片光合性能及产量的影响[J]. 作物杂志, 2013, (3): 96–99
[7] 丛雪, 吴岩, 鲁萍, 等. 氮素波动对反枝苋和大豆最大净光合速率和光合氮利用效率的影响[J]. 作物杂志, 2013, (1): 73–77
[8] 杨俊兴, 郭庆军, 韩雁, 张彤. 水分胁迫条件下钙赤合剂和磷浸种对冬小麦幼苗净光合速率和抗氧化系统的影响[J]. 作物杂志, 2012, (4): 25–29
[9] 樊秉芸, 马长寿. 青稞新品种北青9号的选育及特征特性[J]. 作物杂志, 2012, (3): 145–146
[10] 任又成. 高β-葡聚糖青稞新品种昆仑13号的选育及特征特性[J]. 作物杂志, 2010, (2): 113–113
[11] 吴昆仑. 青稞功能元素与食品加工利用简述[J]. 作物杂志, 2008, (2): 15–17
[12] 禹代林, 边巴, 桑布, 等. 青稞藏青311的栽培技术研究与栽培要点[J]. 作物杂志, 2007, (6): 83–84
[13] 王显萍, 任有成. 青海省冷凉灌区青稞高产栽培技术[J]. 作物杂志, 2006, (6): 49–50
[14] 任有成, 王显萍. 高β-葡聚糖青稞新品种昆仑12号的选育及其特征特性[J]. 作物杂志, 2006, (4): 43–43
[15] 魏有海. 免耕青稞田杂草发生及防除技术研究[J]. 作物杂志, 2006, (4): 68–70
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .