作物杂志,2018, 第2期: 123–128 doi: 10.16035/j.issn.1001-7283.2018.02.022

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

藜麦苗生长过程中功能成分含量及抗氧化活性变化研究

罗秀秀1,秦培友1,杨修仕1,梅丽2,任贵兴1   

  1. 1中国农业科学院作物科学研究所,100081,北京
    2 北京市农业技术推广站,100029,北京
  • 收稿日期:2018-01-10 修回日期:2018-02-08 出版日期:2018-04-20 发布日期:2018-08-27
  • 作者简介:罗秀秀,研究生,研究方向为食品加工与安全
  • 基金资助:
    中国农业科学院科技创新工程专项经费(CAAS-ASTIP-2016-ICS)

Changes of Functional Component Content and Antioxidant Activity during the Growth of Quinoa Sprouts

Luo Xiuxiu1,Qin Peiyou1,Yang Xiushi1,Mei Li2,Ren Guixing1   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 Beijing Agricultural Technology Extension Station, Beijing 100029, China
  • Received:2018-01-10 Revised:2018-02-08 Online:2018-04-20 Published:2018-08-27

摘要:

为促进藜麦苗这一新型苗菜产品的开发,以筛选的高黄酮(0.72mg/g)、高多酚(1.97mg/g)藜麦种子(YY22)为材料,对藜麦苗生长14~48d过程中总黄酮、总多酚和总皂苷的含量进行测定分析,并分别用DPPH法和ABTS法评价其抗氧化活性。结果显示:藜麦苗初期生长较为缓慢,约20d后生长加快,藜麦苗株高在第48天达37.37cm;藜麦苗总黄酮和总多酚含量在生长期总体呈下降趋势,但均高于种子中的含量;总皂苷含量呈动态变化,在第48天时最低,各生长时期的皂苷含量均较种子的低;藜麦苗抗氧化活性随生长进程降低,且与总黄酮含量呈显著正相关,与总多酚含量呈极显著正相关。生长48d时,藜麦苗生物产量高,品质较为鲜嫩,总黄酮(3.19mg/g)和总多酚(4.36mg/g)较高,具备一定的DPPH和ABTS清除活性,总皂苷含量(2.28mg/g)较低,适口性较好。

关键词: 藜麦苗, 总黄酮, 总多酚, 总皂苷, 抗氧化活性

Abstract:

In order to promote the development of a new functional vegetables from quinoa sprouts, a selected quinoa material YY22 with high content of total flavonoids (0.72mg/g) and total polyphenols (1.97mg/g) was used in this study.The changes of functional components including total flavonoids, total polyphenols, and total saponins of quinoa sprouts during seedling stage (14-48d) as well as the vitro antioxidant activity were determined using DPPH and ABTS methods. The results showed that the sprouts grew slowly in the initial period and faster after about 20d of growth. The plant height was 37.37cm when harvested on the 48th day. The total flavonoids and total polyphenols contents in sprouts decreased during growth time, which were still higher than those in the seeds. The content of total saponin showed a dynamic change,it was lower than that in the seeds during growth time and reached a minimum on the 48th day.The vitro antioxidant activity of quinoa sprouts decreased with the growth. There was a significantly positive correlation between the vitro antioxidant activity and total flavonoids content. A highly significantly positive correlation between the vitro antioxidant activity and total polyphenols content were found.The 48-day sprouts behaved higher biological yield, fresher quality, relatively higher contents of total flavonoids (3.19mg/g) and total polyphenols (4.36mg/g), with lower saponin (2.28mg/g) which was benificial to palatability. In addition, the sprouts showed certain DPPH and ABTS scavenging activities.

Key words: Quinoa sprouts, Total flavonoids, Total polyphenols, Total saponins, Antioxidant activity

图1

藜麦苗不同时期株高变化"

图2

藜麦苗生长过程中总黄酮、总多酚和总皂苷的含量变化"

图3

藜麦苗生长过程中体外抗氧化活性变化"

表1

不同时期藜麦苗总黄酮、总多酚、总皂苷含量和体外抗氧化活性的相关性分析"

指标Index 总黄酮
Total flavonoids
总多酚
Total polyphenols
总皂苷
Total saponins
DPPH清除活性
DPPH radical-scavenging activity
总多酚Total polyphenols -0.958**
总皂苷Total saponins -0.193 -0.092
DPPH清除活性DPPH Radical-scavenging activity -0.830* -0.937** 0.085
ABTS清除活性ABTS Radical-scavenging activity -0.816* -0.891** 0.172 0.968**
[1] Maradini-Filho A M, Pirozi M R, Borges J T , et al. Quinoa:nutritional,functional,and antinutritional aspects. Critical Reviews in Food Science and Nutrition, 2017,57(8):1618-1630.
doi: 10.1080/10408398.2014.1001811 pmid: 26114306
[2] Gawlik-Dziki U, Świeca M, Sułkowski M , et al. Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts-in vitro study. Food and Chemical Toxicology, 2013,57(7):154-160.
doi: 10.1016/j.fct.2013.03.023 pmid: 23537598
[3] Graf B L, Rojas-Silva P, Rojo L E , et al. Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive Reviews in Food Scienceand Food Safety, 2015,14(4):431-445.
[4] Vega-Gálvez A, Miranda M, Vergara J , et al. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.),an ancient Andean grain:a review. Journal of the Science of Food & Agriculture, 2010,90(15):2541-2547.
[5] Laus M N, Cataldi M P, Robbe C , et al. Antioxidant capacity,phenolic and vitamin C contents of quinoa (Chenopodium quinoa Willd.) as affected by sprouting and storage conditions. Italian Journal of Agronomy, 2017,12(1):63-68.
[6] Paśko P, Bartoń H, Zagrodzki P , et al. Anthocyanins,total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chemistry, 2009,115(3):994-998.
[7] Hager A S, Mäkinen O E, Arendt E K . Amylolytic activities and starch reserve mobilization during the germination of quinoa. European Food Research & Technology, 2014,239(4):621-627.
doi: 10.1007/s00217-014-2258-0
[8] 胡一波, 杨修仕, 陆平 , 等. 中国北部藜麦品质性状的多样性和相关性分析. 作物学报, 2017,43(3):464-470.
[9] Abderrahim F, Huanatico E, Repo-Carrasco-Valencia R,, et al . Effect of germination ontotal phenolic compounds,total antioxidant capacity,Maillard reaction products and oxidative stress markers in canihua (Chenopodium pallidicaule). Journal of Cereal Science, 2012,56(2):410-417.
doi: 10.1016/j.jcs.2012.04.013
[10] 刘浩, 胡一波, 任贵兴 . 杂粮黄酒的氨基酸组成评价及抗氧化研究. 食品工业科技, 2015,36(19):343-346.
doi: 10.13386/j.issn1002-0306.2015.19.061
[11] 申瑞玲, 张文杰, 董吉林 , 等. 藜麦的主要营养成分,矿物元素及植物化学物质含量测定. 郑州轻工业学院学报(自然科学版), 2015(30):17-21.
doi: 10.3969/j.issn.2095-476X.2015.5/6.004
[12] Nickel J, Spanier L P, Botelho F T , et al. Effect of different types of processing on the total phenolic compound content,antioxidant capacity,and saponin content of Chenopodium quinoa Willd grains. Food Chemistry, 2016,209:139-143.
[13] Kraujalis P, Venskutonis P R, Kraujalienė V , et al. Antioxidant properties and preliminary evaluation of phytochemical composition of different anatomical parts of Amaranth. Plant Foods for Human Nutrition, 2013,68(3):322-328.
doi: 10.1007/s11130-013-0375-8
[14] Ahamed N T, Singhal R S, Kulkarni P R , et al. A lesser-known grain, Chenopodiumquinoa: review of the chemical composition of its edible parts. Food & Nutrition Bulletin, 1998,19(19):61-70.
doi: 10.1177/156482659801900110
[15] Weber E J . The Inca's ancient answer to food shortage. Nature, 1978,272(5653):486-486.
[16] Saha S R, Uddin M N, Rahman M A , et al. Growth and harvestable maturity of red amaranth at different sowing dates. Asian Journal of Plant Sciences, 2003,2(5):431-433.
doi: 10.3923/ajps.2003.431.433
[17] Paśko P, Sajewicz M, Gorinstein S , et al. Analysis of selected phenolic acids and flavonoids in Amaranthus cruentus and Chenopodium quinoa seeds and sprouts by HPLC. Acta Chromatographica, 2008,20(4):661-672.
[18] 王志英, 郭丽萍, 李倩倩 , 等. 甘蓝苗生长过程中主要生理生化变化. 食品科学, 2015,36(3):6-11.
doi: 10.7506/spkx1002-6630-201503002
[19] Pasko P, Bukowska-Strakova K, Gdula-Argasinska J , et al. Rutabaga (Brassica napus L. var. napobrassica) seeds,roots,and sprouts: a novel kind of food with antioxidant properties and proapoptotic potential in Hep G2 Hepatoma cell line. Journal of Medicinal Food, 2013,16(8):1-11.
[20] 周晨光, 朱毅, 罗云波 . 萝卜苗发芽过程中营养物质的动态变化. 食品科学, 2014,35(9):1-5.
doi: 10.7506/spkx1002-6630-201409001
[21] Maillard M N, Soum M H, Boivin P , et al. Antioxidant activity of barley and malt: relationship with phenolic content. Lebensmittel-Wissenschaft und -Technologie, 1996,29(3):238-244.
doi: 10.1006/fstl.1996.0035
[22] Limmongkon A, Janhom P, Amthong A , et al. Antioxidant activity,total phenolic,and resveratrol content in five cultivars of peanut sprouts. Asian Pacific Journal of Tropical Biomedicine, 2017,7(4):332-338.
doi: 10.1016/j.apjtb.2017.01.002
[23] 王伟, 康玉凡, 胡婷婷 , 等. 9个豌豆品种苗菜生长特性、营养成分、功能性成分分析. 中国食物与营养, 2016,22(9):30-34.
[24] Tang C Y, Lin J Y . Determination of total phenolic and flavonoid contents in selected fruits and vegetables,as well as their stimulatory effects on mouse splenocyte proliferation. Food Chemistry, 2007,101(1):140-147.
[25] Mastebroek H D, Limburg H, Gilles T , et al. Occurrence of sapogenins in leaves and seeds of quinoa (Chenopodium quinoa Willd). Journal of the Science of Food & Agriculture, 2000,80(1):152-156.
doi: 10.1002/(SICI)1097-0010(20000101)80:13.0.CO;2-P
[26] Lazo-Vélez M A, Guajardo-Flores D, Mata-Ramírez D , et al. Characterization and quantitation of triterpenoid saponins in raw and sprouted Chenopodium berlandieri spp. (Huauzontle) grains subjected to germination with or without selenium stress conditions. Journal of Food Science, 2016,81(1):19-26.
[27] Chang S Y, Han S . Changes of soyasaponin contents in soybean sprouts. The Korean Journal of Crop Science, 2016,61(1):57-63.
doi: 10.7740/kjcs.2016.61.1.057
[28] 王静波, 赵江林, 彭镰心 , 等. 苦荞芽中黄酮类化合物含量及其抗氧化性的研究. 现代食品科技, 2013,29(5):965-968.
[29] Souza J N S, Silva E M, Loir A , et al. Antioxidant capacity of four polyphenol-rich Amazonian plant extracts: A correlation study using chemical and biological in vitro assays. Food Chemistry, 2008,106(1):331-339.
[30] Carciochi R A, Manrique G D, Dimitrov K . Changes in phenolic composition and antioxidant activity during germination of quinoa seeds (Chenopodium quinoa Willd.). International Food Research Journal, 2014,21(2):767-773.
[31] Pająk P, Socha R, Gałkowska D , et al. Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chemistry, 2014,143(1):300-306.
doi: 10.1016/j.foodchem.2013.07.064 pmid: 24054243
[1] 张庚,孟义江,靳小莎,葛淑俊. 掌叶半夏种茎等级与产量及质量的关系[J]. 作物杂志, 2017, (2): 168–172
[2] 杨修仕,郭忠贤,郭慧敏,王慧,刘三才. 播期和播量对荞麦产量及主要品质的影响[J]. 作物杂志, 2017, (1): 88–93
[3] 石景雨,何丽莲,王先宏,李富生. 不同甘蔗品种叶片中总黄酮含量与提取工艺的优化研究[J]. 作物杂志, 2016, (5): 19–24
[4] 施伟梅, 王妙飞, 罗双慧, 等. 超声联合酶法提取紫花苜蓿总黄酮及其抗氧化性能研究[J]. 作物杂志, 2015, (6): 64–69
[5] 郭金耀, 杨晓玲,. 苜蓿不同部位提取液的体外抗氧化活性研究[J]. 作物杂志, 2013, (3): 45–48
[6] 王欣, 靳丽梅, 徐鹏飞, 吴俊江, 李文滨, 范素杰, 姜良宇, 张小明, 张淑珍. 野生大豆接种大豆疫霉根腐病菌后总多酚含量的变化[J]. 作物杂志, 2012, (4): 78–82
[7] 韩梅. 氮磷钾、密度最优组合对蚕豆蛋白质和总黄酮及产量的影响[J]. 作物杂志, 2010, (5): 74–75
[8] 李先平, 包丽仙, 李山云, 等. 彩色马铃薯块茎色素研究进展[J]. 作物杂志, 2009, (1): 4–8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .