作物杂志,2018, 第3期: 32–36 doi: 10.16035/j.issn.1001-7283.2018.03.005

• 专题综述 • 上一篇    下一篇

植物羧酸酯酶的结构、表达调控及生物功能研究进展

刘建光,赵贵元,赵俊丽,耿昭,王永强,张寒霜   

  1. 河北省农林科学院棉花研究所/农业部黄淮海半干旱区棉花生物学与遗传育种重点实验室,050051,河北石家庄
  • 收稿日期:2017-11-24 修回日期:2018-04-23 出版日期:2018-06-20 发布日期:2018-06-20
  • 作者简介:刘建光,助理研究员,研究方向为棉花抗病功能基因发掘
  • 基金资助:
    棉花生物学国家重点实验室开放课题(CB2017A07);河北省科技计划项目(16226303D);河北省农林科学院财政项目(F17C2017039345)

Progress in the Structure, Expression and Function of Plant Carboxylesterases

Liu Jianguang,Zhao Guiyuan,Zhao Junli,Geng Zhao,Wang Yongqiang,Zhang Hanshuang   

  1. Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Shijiazhuang 050051, Hebei, China
  • Received:2017-11-24 Revised:2018-04-23 Online:2018-06-20 Published:2018-06-20

摘要:

羧酸酯酶(carboxylesterase,CXE)是一类广泛存在于动植物及微生物中具有α/β折叠水解酶活性的水解酶类。蛋白序列比对分析表明植物CXE具有一个催化活性的丝氨酸保守结构域(GXSXG基序),结合并水解各种酯类化合物。在植物中,其家族不同成员在组织中的表达存在差异,并受乙烯、病菌等因素的诱导,在除草剂活性物质激活、植物激素信号物质代谢以及生物胁迫等过程中发挥重要的生物学功能。本文对植物CXE家族成员的结构、表达调控和生物学功能进行综述,并讨论了未来可能的研究方向,为CXE功能的深入研究提供参考。

关键词: 羧酸酯酶, 丝氨酸水解酶, 生物胁迫, 除草剂

Abstract:

Carboxylesterases belong to the α/β-hydrolase fold superfamily, which are widely found in microorganism, flora and fauna. Protein sequences blast analysis shows that the plant CXE family contains a conserved catalytic active site of a serine domain (GXSXG motif), which bind and hydrolyze various ester compounds. The expression of different members of CXE family exhibit divergences, and can be induced by ethylene and pathogen. The function of CXE is mainly related in bioactivation of herbicide, bioactivation of plant signalling compounds and biotic stress response. In this paper, we summarized the recent research progresses on structural characteristics, expression and functions, discussed the future directions of studies on the CXE and provided suggestions for further research of plant CXE.

Key words: Carboxylesterase, Serine hydrolase, Biotic stress, Herbicide

[1] Ollis D L, Cheah E, Cygler M , et al. The alpha/beta hydrolase fold. Protein Engineering, 1992,5(3):197-211.
[2] Taylor P, Radic Z . The cholinesterases:from genes to proteins. Annual Review of Pharmacology and Toxicology, 1994,34(1):281-320.
doi: 10.1146/annurev.pa.34.040194.001433 pmid: 8042853
[3] Vogt R G, Riddiford L M, Prestwich G D . Kinetic properties of a sex pheromone-degrading enzyme:the sensillar esterase of Antheraea polyphemus. Proceedings of the National Academy of Sciences of the United States of America, 1985,82(24):8827-8831.
[4] Satoh T, Hosokawa M . The mammalian carboxylesterases:from molecules to functions. Annual Review of Pharmacology and Toxicology, 1998,38(1):257-288.
[5] Manganaris A G, Alston F H . Genetics of esterase isoenzymes in Malus. Theoretical and Applied Genetics, 1992,83(4):467-475.
doi: 10.1007/BF00226535 pmid: 24202593
[6] Hudina M, Štampar F, Viršček-Marn M , et al. Characterization of isozyme variability of pears (Pyrus communis L.) and quince (Cydonia oblonga Mill.) in various tissues. Acta Horticulturae, 1998: 391-396.
[7] Hatfield M J, Umans R A, Hyatt J L , et al. Carboxylesterases:General detoxifying enzymes. Chemico-Biological Interactions, 2016,259(Part B):327-331.
doi: 10.1016/j.cbi.2016.02.011 pmid: 26892220
[8] Putterill J J, Plummer K M, Newcomb R D , et al. The carboxylesterase gene family from Arabidopsis thaliana. Journal of Molecular Evolution, 2003,57(5):487-500.
doi: 10.1007/s00239-003-2492-8 pmid: 14738307
[9] Islam M Z, Yun H K . Identification and expression profiles of six transcripts encoding carboxylesterase protein in Vitis flexuosa infected with pathogens. Plant Pathology Journal, 2016,32(4):347-356.
[10] Aldridge W N . Serum esterases:Ⅰ. Two types of esterase (A and B) hydrolysing p-nitrophenyl acetate,propionate and butyrate,and a method for their determination. Biochemical Journal, 1953,53(1):110-117.
[11] Bergmann F, Segal R, Rimon S . A new type of esterase in hog-kidney extract. Biochemical Journal, 1957,67(3):481-486.
doi: 10.1042/bj0670481 pmid: 13479408
[12] Gershater M, Sharples K, Edwards R . Carboxylesterase activities toward pesticide esters in crops and weeds. Phytochemistry, 2006,67(23):2561-2567.
doi: 10.1016/j.phytochem.2006.09.019 pmid: 17078983
[13] Pontier D, Godiard L, Marco Y , et al. hsr203J,a tobacco gene whose activation is rapid,highly localized and specific for incompatible plant/pathogen interactions. The Plant Journal, 1994,5(4):507-521.
[14] Pontier D, Tronchet M, Rogowsky P , et al. Activation of hsr203,a plant gene expressed during incompatible plant-pathogen interactions,is correlated with programmed cell death. Molecular Plant-Microbe Interactions, 1998,11(6):544-554.
[15] Ichinose Y, Hisayasu Y, Sanematsu S , et al. Molecular cloning and functional analysis of pea cDNA E86 encoding homologous protein to hypersensitivity-related hsr203[J]. Plant Science, 2001,160(5):997-1006.
[16] Newcomb R D . Analyses of expressed sequence tags from apple. Plant Physiology, 2006,141(1):147-166.
doi: 10.1104/pp.105.076208 pmid: 16531485
[17] Souleyre E J F, Marshall S D G, Oakeshott J G , et al. Biochemical characterisation of MdCXE1,a carboxylesterase from apple that is expressed during fruit ripening. Phytochemistry, 2011,72(7):564-571.
doi: 10.1016/j.phytochem.2011.01.020
[18] Abdel-Daim A, Ohura K, Imai T . A novel quantification method for serine hydrolases in cellular expression system using fluorophosphonate-biotin probe. European Journal of Pharmaceutical Sciences, 2018,114:267-274.
[19] Nomura T, Murase T, Ogita S , et al. Molecular identification of tuliposide B-converting enzyme:a lactone-forming carboxylesterase from the pollen of tulip. The Plant Journal, 2015,83(2):252-262.
[20] Schaffer R J, Friel E N, Souleyre E J F,et al. A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiology, 2007,144(4):1899-1912.
[21] Zhong G Y, Goren R, Riov J , et al. Characterization of an ethylene-induced esterase gene isolated from Citrus sinensis by competitive hybridization. Physiologia Plantarum, 2001,113(2):267-274.
[22] Stuhlfelder C . Purification and partial amino acid sequences of an esterase from tomato. Phytochemistry, 2002,60(3):233-240.
doi: 10.1016/S0031-9422(02)00126-7 pmid: 12031441
[23] Stuhlfelder C, Mueller M J, Warzecha H . Cloning and expression of a tomato cDNA encoding a methyl jasmonate cleaving esterase. The Febs Journal, 2004,271(14):2976-2983.
doi: 10.1111/j.1432-1033.2004.04227.x pmid: 15233793
[24] Huang D, Feurtado J A, Smith M A , et al. Long noncoding miRNA gene represses wheat β-diketone waxes. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(15):E3149-E3158.
doi: 10.1073/pnas.1617483114 pmid: 28351975
[25] Cummins I, Burnet M, Edwards R . Biochemical characterisation of esterases active in hydrolysing xenobiotics in wheat and competing weeds. Physiologia Plantarum, 2001,113(4):477-485.
[26] Cummins I, Edwards R . Purification and cloning of an esterase from the weed black-grass (Alopecurus myosuroides),which bioactivates aryloxyphenoxypropionate herbicides. The Plant Journal, 2004,39(6):894-904.
[27] Gershater M C, Cummins I, Edwards R . Role of a carboxylesterase in herbicide bioactivation in Arabidopsis thaliana. Journal of Biological Chemistry, 2007,282(29):21460-21466.
doi: 10.1074/jbc.M701985200 pmid: 17519238
[28] Westfall C S, Muehler A M, Jez J M . Enzyme action in the regulation of plant hormone responses. Journal of Biological Chemistry, 2013,288(27):19304-19311.
doi: 10.1074/jbc.R113.475160 pmid: 3707634
[29] Kamatham S, Pallu R, Pasupulati A K , et al. Benzoylsalicylic acid derivatives as defense activators in tobacco and Arabidopsis. Phytochemistry, 2017,143:160-169.
doi: 10.1016/j.phytochem.2017.07.014 pmid: 28818753
[30] Forouhar F, Yang Y, Kumar D , et al. Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(5):1773-1778.
[31] Kumar D, Klessig D F . High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proceedings of the National Academy of Sciences, 2003,100(26):16101-16106.
[32] Yao J, Guo H, Chaiprasongsuk M , et al. Substrate-assisted catalysis in the reaction catalyzed by salicylic acid binding protein 2 (SABP2),a potential mechanism of substrate discrimination for some promiscuous enzymes. Biochemistry, 2015,54(34):5366-5375.
[33] Zhao N, Lin H, Lan S , et al. VvMJE1 of the grapevine (Vitis vinifera) VvMES methylesterase family encodes for methyl jasmonate esterase and has a role in stress response. Plant Physiology and Biochemistry, 2016,102:125-132.
[34] Woodward A W . Auxin:regulation,action,and interaction. Annals of Botany, 2005,95(5):707-735.
doi: 10.1093/aob/mci083 pmid: 15749753
[35] Kowalczyk S, Jakubowska A, Zielinska E , et al. Bifunctional indole-3-acetyl transferase catalyses synthesis and hydrolysis of indole-3-acetyl-myo-inositol in immature endosperm of Zea mays. Physiologia Plantarum, 2003,119(2):165-174.
[36] Schneider G, Jensen E, Spray C R , et al. Hydrolysis and reconjugation of gibberellin A20 glucosyl ester by seedlings of Zea mays L. Proceedings of the National Academy of Sciences of the United States of America, 1992,89(17):8045-8048.
doi: 10.1073/pnas.89.17.8045
[37] Tronchet M, Ranty B, Marco Y , et al. HSR203 antisense suppression in tobacco accelerates development of hypersensitive cell death. The Plant Journal, 2001,27(2):115-127.
[38] Pontier D, Balagué C, Roby D . The hypersensitive response. a programmed cell death associated with plant resistance. Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie, 1998,321(9):721-734.
[39] Ko M, Cho J H, Seo H , et al. Constitutive expression of a fungus-inducible carboxylesterase improves disease resistance in transgenic pepper plants. Planta, 2016,244(2):379-392.
[40] Seo H, Park A R, Lee H , et al. A fungus-Inducible pepper carboxylesterase exhibits antifungal activity by decomposing the outer layer of fungal cell walls. Molecular Plant-Microbe Interactions, 2017,31(5):505-515.
[1] 马建辉 张文利 高小龙 张黛静 姜丽娜 翟延玉 邵 云 李春喜. 山羊草谷胱甘肽S- 转移酶基因家族鉴定及表达分析[J]. 作物杂志, 2018, (5): 54–62
[2] 张建华 郭瑞峰 曹昌林 范 娜 江佰阳. 几种茎叶除草剂防除高粱田杂草药效和安全性研究[J]. 作物杂志, 2018, (5): 162–166
[3] 赵存虎 孔庆全 陈文晋 贺小勇 田晓燕. 蚕豆田除草剂筛选初报[J]. 作物杂志, 2018, (5): 167–172
[4] 宋敏,张海鹏,路兴涛,吴翠霞,张勇. 不同除草剂对冬小麦田宝盖草的防除效果[J]. 作物杂志, 2018, (2): 161–165
[5] 丁超,张建华,白文斌,郭瑞峰,曹昌林. 高粱田常用除草剂对高粱生理生化及产量品质的影响[J]. 作物杂志, 2017, (5): 149–155
[6] 王俊红,裴雪霞,党建友,武雪萍. 两种除草剂及其用量对小麦生长发育及旗叶抗氧化酶活性的影响[J]. 作物杂志, 2017, (3): 157–161
[7] 李燕敏,祁显涛,刘昌林,刘方,谢传晓. 除草剂抗性农作物育种研究进展[J]. 作物杂志, 2017, (2): 1–6
[8] 李志华,景小兰,李会霞,田岗,刘鑫,穆婷婷. 谷子苗期除草剂的安全性及杂草防效研究[J]. 作物杂志, 2017, (1): 150–154
[9] 姜超,殷建军,郭秀娟. 6种不同除草剂对糜子田杂草的防除效果[J]. 作物杂志, 2016, (5): 167–169
[10] 景小兰,李志华,穆婷婷,张福耀. 抗除草剂杂交谷子晋谷50号轻简高效配套栽培技术研究[J]. 作物杂志, 2016, (2): 168–172
[11] 张谨华, 王建军, 杨艳君, 等. 不同施肥水平下谷友对晋谷21号光合特性及产量的影响[J]. 作物杂志, 2015, (2): 144–148
[12] 宋新元, 武奉慈, 刘金文, 等. 转基因抗除草剂玉米CC-2生存竞争能力研究[J]. 作物杂志, 2014, (6): 64–66
[13] 井秋月, 焦梓洲, 刘兰坤, 等. 黑龙江省玉米田稗草与反枝觅对四种常用除草剂的抗药性测定[J]. 作物杂志, 2014, (5): 128–132
[14] 王鹏, 李万云, 刘胜利, 等. 列当生理小种和向日葵抗列当种质选育进展[J]. 作物杂志, 2014, (4): 10–16
[15] 杨晔, 李晶, 顾万荣, 魏湜. Asr基因家族的研究进展[J]. 作物杂志, 2013, (3): 7–11
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .