作物杂志,2020, 第5期: 133–139 doi: 10.16035/j.issn.1001-7283.2020.05.020

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

免耕和稻草还田对稻田土壤肥力和水稻产量的影响

罗玉琼(), 严博, 吴可, 谢慧敏, 梁和, 江立庚()   

  1. 广西大学作物栽培学与耕作学重点实验室,530000,广西南宁
  • 收稿日期:2020-02-16 修回日期:2020-04-08 出版日期:2020-10-15 发布日期:2020-10-12
  • 通讯作者: 江立庚
  • 作者简介:罗玉琼,主要从事作物栽培理论与技术研究,E-mail: 1538362224@qq.com
  • 基金资助:
    国家现代农业产业技术体系广西创新团队水稻栽培岗位专家项目(C3310051515)

Effects of No-Tillage and Straw Returning on Soil Fertility and Rice Yield in Farmland

Luo Yuqiong(), Yan Bo, Wu Ke, Xie Huimin, Liang He, Jiang Ligeng()   

  1. Key Laboratory of Crop Cultivation and Farming Systems, Guangxi University, Nanning 530000, Guangxi, China
  • Received:2020-02-16 Revised:2020-04-08 Online:2020-10-15 Published:2020-10-12
  • Contact: Jiang Ligeng

摘要:

为了明确稻草还田和免耕等保护性耕作措施对土壤肥力和水稻产量的影响,自2008年于广西大学农学院科研基地进行长期定位试验,设置免耕(NT)、免耕+稻草覆盖还田(NT-SMR)、常规耕作+稻草覆盖还田(CT-SMR)、常规耕作(CT)和常规耕作+稻草翻压还田(CT-SR)5个处理,于2018年水稻成熟期测定产量,水稻收获后分层(0~5、5~10和10~20cm)测定土壤肥力。结果表明,稻田不同土层肥力指标均存在显著性差异,总体上表现为0~5、5~10和10~20cm土层的有机碳、全氮、碱解氮、有效磷和速效钾含量依次下降。NT-SMR处理显著提高了0~5cm土层的有机碳、全氮、碱解氮和有效磷含量,但降低了土壤速效钾含量。在5~10和10~20cm土层,稻草还田处理的有机碳、全氮、碱解氮、有效磷和速效钾含量均优于无稻草还田处理。水稻产量与土壤肥力呈显著正相关。2016年CT-SR处理水稻产量在早季分别比NT和CT处理显著提高了8.52%和7.99%,在晚季分别显著提高了12.12%和7.55%;2018年NT-SMR处理的水稻产量在早季分别比NT和CT处理显著提高了17.78%和10.30%,在晚季分别显著提高了13.88%和19.39%。因此,免耕和稻草还田能明显提高稻田耕作层土壤肥力,增加稻谷产量。

关键词: 免耕, 稻草还田, 土壤肥力, 水稻产量

Abstract:

To determine the effects of conservation tillage such as straw returning and no-tillage on soil fertility and rice yield, the long-term positioning test has been carried out in the research base of Guangxi University of agriculture from 2008, and five treatments, no tillage (NT), no tillage and straw mulching returning (NT-SMR), conventional tillage and straw mulching returning (CT-SMR), conventional tillage (CT), conventional tillage and straw returning (CT-SR), were set up. The rice yield had been measured in 2018 at the maturity stage, after harvesting, the soil fertility was measured in layers (0-5, 5-10, 10-20cm). The results showed that there were significant differences in the soil fertility indexes at different levels of paddy fields, which showed that the contents of soil organic carbon, total nitrogen, available nitrogen, available phosphorus and available potassium decreased successively in 0-5, 5-10 and 10-20cm soil layers. NT-SMR significantly increased the contents of soil organic carbon, total nitrogen, available nitrogen and available phosphorus in the 0-5cm soil layer, but decreased the content of available potassium. In 5-10 and 10-20cm soil layers, the contents of soil organic carbon, total nitrogen, available nitrogen, available phosphorus and available potassium in straw returning treatment was better than that in straw free returning treatment. There was a significant positive correlation between rice yield and soil fertility. In 2016, the rice yield of CT-SR treatment was significantly increased by 8.52% and 7.99% compared with NT and CT treatment in early season, and by 12.12% and 7.55% in late season; In 2018, the rice yield of NT-SMR treatment was significantly increased by 17.78% and 10.30% compared with NT and CT treatment in early season, and by 13.88% and 19.39% in late season. Therefore, no-tillage and straw returning can significantly improve soil fertility and increase rice yield.

Key words: No-tillage, Straw returning, Soil fertility, Rice yield

表1

不同耕作措施下稻田土壤肥力状况

土层
Soil layer (cm)
处理
Treatment
有机碳
Organic carbon
(g/kg)
全氮
Total nitrogen
(g/kg)
碱解氮
Available nitrogen
(mg/kg)
有效磷
Available phosphorus
(mg/kg)
速效钾
Available potassium
(mg/kg)
0~5 NT 19.28b 1.98b 179.90b 253.43c 108.33d
NT-SMR 23.51a 2.28a 225.17a 270.71a 142.17c
CT-SMR 19.25b 1.88cd 164.97c 262.33b 148.33b
CT 17.49c 1.83d 162.37c 234.85d 139.00c
CT-SR 19.32b 1.94bc 176.07b 255.79c 189.67a
平均Average 19.77 1.98 181.70 255.42 145.50
5~10 NT 15.24d 1.61c 133.23c 210.25c 67.50d
NT-SMR 16.55c 1.70b 150.57ab 222.81b 102.00c
CT-SMR 18.31a 1.70b 156.57a 226.47a 117.17b
CT 16.94b 1.71b 145.60b 191.40d 103.33c
CT-SR 18.17a 1.88a 155.40a 222.55b 148.33a
平均Average 17.04 1.72 148.27 214.70 107.67
10~20 NT 11.68c 1.24c 88.20d 179.10d 54.33e
NT-SMR 12.71b 1.30b 104.27b 189.04b 75.83d
CT-SMR 13.68a 1.41a 105.93b 197.87a 95.67b
CT 13.42a 1.41a 98.93c 159.46e 89.00c
CT-SR 13.65a 1.41a 110.83a 186.43c 126.17a
平均Average 13.03 1.35 101.63 182.38 88.20

表2

2016年不同耕作措施下水稻产量及其构成因素差异

季节
Season
处理
Treatment
有效穗数
Effective panicles (×104/hm2)
穗粒数
Grains per panicle
结实率
Filled grain rate (%)
千粒重
1000-grain weight (g)
产量
Yield (kg/hm2)
早季Early NT 383.04a 115.82e 82.34d 25.99a 8 790.32c
NT-SMR 379.42a 126.45d 85.48bc 25.50a 9 072.94b
CT-SMR 348.00bc 140.33b 85.01c 25.71a 9 036.15b
CT 363.71ab 133.22c 90.38a 25.53a 8 833.38c
CT-SR 338.34c 153.68a 86.53b 25.35a 9 539.27a
晚季Late NT 246.00d 159.36a 91.61a 24.54a 6 268.32d
NT-SMR 292.00c 154.16b 81.99b 24.54a 6 879.17b
CT-SMR 294.00b 148.87c 82.97b 24.57a 6 812.99b
CT 292.67b 133.19d 89.74a 24.20ab 6 534.75c
CT-SR 317.33a 151.93b 81.09b 23.90b 7 027.81a

表3

2018年不同耕作措施下水稻产量及其构成因素差异

季节
Season
处理
Treatment
有效穗数
Effective panicles (×104/hm2)
穗粒数
Grains per panicle
结实率
Filled grain rate (%)
千粒重
1000-grain weight (g)
产量
Yield (kg/hm2)
早季Early NT 310.35b 167.20b 69.00c 23.29a 8 288.07d
NT-SMR 346.35a 164.76b 81.71a 22.96a 9 761.53a
CT-SMR 310.35b 184.51a 69.30c 22.04b 9 373.47b
CT 343.95a 151.46c 74.29b 23.27a 8 849.95c
CT-SR 297.75b 187.29a 72.77bc 23.36a 9 363.29b
晚季Late NT 316.05b 126.50b 67.33ab 23.74a 6 382.95cd
NT-SMR 342.15a 133.00a 70.16a 23.13bc 7 268.70a
CT-SMR 340.95a 133.50a 63.20b 23.27b 6 787.20b
CT 320.85ab 115.50c 70.28a 23.05c 6 088.20d
CT-SR 336.15ab 124.50b 68.48ab 23.13bc 6 684.75bc

表4

晚季水稻产量与土壤肥力的相关性分析

项目Item 产量
Yield
有效穗数
Effective panicles
穗粒数
Grains per panicle
结实率
Filled grain rate
千粒重
1000-grain weight
有机碳含量Organic carbon content 0.828** 0.957** -0.556* -0.076 -0.632*
全氮含量Total nitrogen content 0.796** 0.771** -0.420 0.345 -0.483
碱解氮含量Available nitrogen content 0.905** 0.814** -0.565* 0.246 -0.448
有效磷含量Available phosphorus content 0.869** 0.785** -0.934** -0.477 -0.086
速效钾含量Available potassium content 0.194 0.582* -0.052 -0.024 -0.646**
[1] 高旺盛. 论保护性耕作技术的基本原理与发展趋势. 中国农业科学, 2007,40(12):2702-2708.
[2] 王改玲, 郝明德, 许继光, 等. 保护性耕作对黄土高原南部地区小麦产量及土壤理化性质的影响. 植物营养与肥料学报, 2011,17(3):539-544.
doi: 10.11674/zwyf.2011.0388
[3] 严洁, 邓良基, 黄剑. 保护性耕作对土壤理化性质和作物产量的影响. 中国农机化, 2005(2):31-34.
[4] 黄景, 顾明华, 徐世宏, 等. 稻草还田免耕抛秧对水稻土剖面形态特征的影响. 土壤学报, 2012,44(4):696-703.
[5] 薛建福. 耕作措施对南方双季稻田碳、氮效应的影响. 北京:中国农业大学, 2015.
[6] 陈尚洪, 朱钟麟, 吴婕. 紫色土丘陵区秸秆还田的腐解特征及对土壤肥力的影响. 水土保持学报, 2006,20(6):141-144.
[7] 蔡晓布, 钱成, 张永青, 等. 秸秆还田对西藏中部退化土壤环境的影响. 植物营养与肥料学报, 2003,9(4):411-415.
doi: 10.11674/zwyf.2003.0406
[8] 杨敏芳. 不同耕作措施与秸轩还田对稻麦两熟制农田土壤养分、微生物及碳库的影响. 南京:南京农业大学, 2013.
[9] 陈尚洪, 朱钟麟, 刘定辉, 等. 秸秆还田和免耕对土壤养分及碳库管理指数的影响研究. 植物营养与肥料学报, 2008,14(4):2192-2199.
[10] 梁文伟, 罗培敏, 沈莹, 等. 稻草还田免耕抛秧栽培试验初报. 杂交水稻, 2006,21(S1):93-95.
[11] 韩新忠, 朱利群, 杨敏芳, 等. 不同小麦秸秆还田量对水稻生长、土壤微生物生物量及酶活性的影响. 农业环境科学学报, 2012,31(11):2192-2199.
[12] 张水清. 稻草覆盖还田对土壤性质和双季晚稻产量的影响. 武汉:华中农业大学, 2008: 33-34.
[13] 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版, 2000.
[14] 康轩, 黄景, 吕巨智, 等. 保护性耕作对土壤养分及有机碳库的影响. 生态环境学报, 2009,18(6):2339-2343.
[15] 李龙, 姚云峰, 秦富仓. 内蒙古赤峰梯田土壤有机碳含量分布特征及其影响因素. 生态学杂志, 2014,33(11):2930-2935.
[16] Franzluebbers A J. Soil organic matter stratification ration as an indicator of soil quality. Soil and Tillage Research, 2002,66(2):95-106.
doi: 10.1016/S0167-1987(02)00018-1
[17] 张海林, 孙国峰, 陈继康, 等. 保护性耕作对农田碳效应影响研究进展. 中国农业科学, 2009,42(12):4275-4281.
[18] 薛建福, 赵鑫, Dikgwatlhe S B, 等. 保护性耕作对农田碳、氮效应的影响研究进展. 生态学报, 2013,33(19):6006-6013.
doi: 10.5846/stxb201305121021
[19] Sainju U M, Singh B P, Whitehead W F. Long-term effects of tillage,cover crops,and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia,USA. Soil and Tillage Research, 2002,63(3/4):167-179.
doi: 10.1016/S0167-1987(01)00244-6
[20] López-Fando C, Pardo M T. Use of a partial-width tillage system maintains benefits of no-tillage in increasing total soil nitrogen. Soil and Tillage Research, 2012,118:32-39.
doi: 10.1016/j.still.2011.10.010
[21] Puget P, Lal R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil and Tillage Research, 2005,80(1/2):201-213.
doi: 10.1016/j.still.2004.03.018
[22] 黄景, 顾明华, 徐世宏, 等. 稻草还田免耕抛秧对土壤剖面氮、磷、钾含量的影响. 中国农业科学, 2012,45(13):2648-2657.
doi: 10.3864/j.issn.0578-1752.2012.13.009
[23] 杨彩玲, 刘立龙, 赵泉, 等. 土壤水分对免耕水稻生长与产量的影响. 华南农业大学学报, 2015,36(3):26-31.
[24] 刘禹池, 曾祥忠, 冯文强, 等. 稻-油轮作下长期秸秆还田与施肥对作物产量和土壤理化性状的影响. 植物营养与肥料学报, 2014,20(6):1450-1459.
doi: 10.11674/zwyf.2014.0615
[25] 高云超, 朱文珊, 陈文新. 秸秆覆盖免耕土壤微生物生物量与养分转化的研究. 中国农业科学, 1994,27(6):41-49.
[26] 叶文培, 谢小立, 王凯荣, 等. 不同时期秸秆还田对水稻生长发育及产量的影响. 中国水稻科学, 2008,22(1):65-70.
[27] 张洪熙, 赵步洪, 杜永林, 等. 小麦秸秆还田条件下轻简栽培水稻的生长特性. 中国水稻科学, 2008,22(6):603-609.
[28] 廖育林, 郑圣先, 聂军, 等. 长期施用化肥和稻草对红壤水稻土肥力和生产力持续性的影响. 中国农业科学, 2009,42(10):3541-3550.
[29] 汤秋香, 谢瑞芝, 章建新, 等. 典型生态区保护性耕作主体模式及影响农户采用的因子分析. 中国农业科学, 2009,42(2):469-477.
[30] 李孝勇, 武际, 朱宏斌, 等. 秸秆还田对作物产量及土壤养分的影响. 安徽农业科学, 2003,31(5):870-871.
[31] 王居里, 袁向方, 何希杰, 等. 稻草还田对土壤养分和水稻产量的影响. 安徽农学通报, 2001,7(2):48-49.
[32] 王晓炜, 冉成, 张巳奇, 等. 苏打盐碱稻区不同栽培模式水稻产量构成及物质生产比较. 华南农业大学学报, 2019,40(6):45-50.
[33] 张庆, 何翔, 杨佩文, 等. 红壤坡耕地免耕有机肥对土壤质量和作物产量的影响. 西南农业学报, 2019,32(11):2646-2651.
[34] 王忍, 黄璜, 伍佳, 等. 稻草还田对土壤养分及水稻生物量和产量的影响. 作物研究, 2020,34(1):8-15.
[35] 肖国华, 欧阳先辉, 陈同旺, 等. 稻草覆盖还田晚稻免耕节水栽培技术应用研究. 作物研究, 2006,20(3):220-222.
[36] 王苏影, 吴建富, 黄山, 等. 稻草全量还田对水稻生长特性及稻米品质的影响. 江西农业大学学报, 2018,40(3):454-463.
[37] 李如平, 唐茂艳, 杨为芳, 等. 稻草还田免耕抛秧稻的立苗与根系生长以及对产量的影响. 杂交水稻, 2006,21(S1):96-99.
[38] 黄炳林, 王孟雪, 金喜军, 等. 不同耕作处理对土壤微生物、酶活性及养分的影响. 作物杂志, 2019(6):104-113.
[1] 顾克军,顾东祥,张斯梅,张传辉,张恒敢,吴晶晶,樊平声. 黄河故道滨海中低产田耕作与增施有机肥对土壤性状及稻-麦周年产量的短期影响[J]. 作物杂志, 2020, (1): 76–80
[2] 马凡凡,邢素林,甘曼琴,刘佩诗,黄瑜,甘晓玉,马友华. 有机肥替代化肥对水稻产量、土壤肥力及农田氮磷流失的影响[J]. 作物杂志, 2019, (5): 89–96
[3] 张萌,芶久兰,魏全全,陈龙,何佳芳. 不同生物有机肥对贵州高海拔春马铃薯生长及土壤肥力的影响[J]. 作物杂志, 2019, (3): 132–136
[4] 郭笑, 王首驿, 袁天怡, 叶玉婷, 张翼夫, 金亦富, 张瑞宏, 张洪程. 小麦免耕播种机研究现状及展望[J]. 作物杂志, 2019, (2): 39–45
[5] 毛丽萍,巫东堂,郭伟民,任君. 芦笋种植对冷凉沙化区土壤改良的效果研究[J]. 作物杂志, 2019, (1): 180–185
[6] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114–120
[7] 宋莉,廖万有,王烨军,苏有健,张永利,罗毅,廖珺,吴卫国. 旱地作物间作绿肥研究进展[J]. 作物杂志, 2017, (6): 7–11
[8] 王润莲,张志栋,刘景辉,刘慧军,赵宝平. 免耕不同处理对土壤养分、土壤酶活性及燕麦产量的影响[J]. 作物杂志, 2016, (3): 134–138
[9] 张洋洋,鲁剑巍,王友珠,王振,李小坤,任涛,丛日环. 钾肥施用方式对直播和移栽水稻产量和钾肥利用效率的影响[J]. 作物杂志, 2016, (1): 110–114
[10] 蔡丽君, 张敬涛, 刘婧琦, 等. 玉米一大豆免耕轮作体系玉米秸秆还田量对土壤养分和大豆产量的影响[J]. 作物杂志, 2015, (5): 107–110
[11] 孙贵臣, 冯瑞云, 陈凌, 等. 深松免耕种植对上壤环境及玉米产量的影响[J]. 作物杂志, 2014, (4): 129–132
[12] 盖志佳, 刘睛琦, 刘爱群, 等. 大豆保护性耕作研究进展[J]. 作物杂志, 2013, (6): 4–8
[13] 郝洪波, 崔海英, 李明哲, 等. 免耕对谷子生长发育及产量的影响[J]. 作物杂志, 2013, (5): 104–108
[14] 张喜娟, 孟英, 唐傲, 等. 功能性材料生物炭的农田应用效应[J]. 作物杂志, 2013, (4): 20–24
[15] 秦华东, 肖巧珍, 江立庚. 稻草还田对免耕水稻根系生长及空间分布的影响[J]. 作物杂志, 2013, (3): 79–82
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!