作物杂志,2020, 第6期: 8–16 doi: 10.16035/j.issn.1001-7283.2020.06.002

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

大豆G位点近等基因系叶片类囊体蛋白质组比较分析

赵宇杨1(), 宋健2, 邱丽娟1()   

  1. 1中国农业科学院作物科学研究所/国家农作物基因资源与遗传改良重大科学工程/农业农村部作物种质资源与生物技术重点开放实验室,100081,北京
    2长江大学生命科学学院,434025,湖北荆州
  • 收稿日期:2020-04-20 修回日期:2020-10-26 出版日期:2020-12-15 发布日期:2020-12-09
  • 通讯作者: 邱丽娟
  • 作者简介:赵宇杨,主要从事大豆基因资源挖掘与功能研究,E-mail: 398884889@qq.com
  • 基金资助:
    国家自然科学基金(3163005);中国农业科学院科技创新工程

Proteomic Comparation Analysis of Thylakoid in Leaves of G-Locus Near Isogenic Line in Soybean

Zhao Yuyang1(), Song Jian2, Qiu Lijuan1()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Germplasm & Biotechnology (Ministry of Agriculture and Rural Affairs), Beijing 100081, China
    2College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2020-04-20 Revised:2020-10-26 Online:2020-12-15 Published:2020-12-09
  • Contact: Qiu Lijuan

摘要:

类囊体是光合作用和电子传递关键载体,是叶绿体核心组分,在植物亚细胞器蛋白质组研究中尤为重要。为了探究大豆叶片类囊体的蛋白质组,以1对遗传背景相似度为97.6%的大豆种皮颜色G位点近等基因系(NIL-G和NIL-Y)为材料,利用SDS-PAGE与分级质谱相结合的方法对大豆叶片类囊体蛋白进行分析。结果表明,在NIL-G和NIL-Y中鉴定到的总蛋白分别为2 170种和1 730种,特异蛋白分别为1 140种和700种,总蛋白和特异蛋白数量在NIL-G中均高于NIL-Y。特异蛋白的GO注释及KEGG通路分析表明,尽管这对近等基因系遗传背景相似度很高,但其叶片类囊体蛋白在生物途径、细胞组分和分子功能方面均存在差异。

关键词: 大豆, 质谱, 类囊体, 蛋白质组

Abstract:

Thylakoid is the key carrier of photosynthesis and electron transport and also the core component of chloroplast, which is particularly important in the study of plant subcellular organelle proteome. In order to explore the proteome of thylakoid in soybean leaves, a pair of G-locus near-isogenic line (NIL-G and NIL-Y) with 97.6% similarity in the genetic background was used as materials. SDS-PAGE and mass spectrometry were used to isolate the thylakoid protein from soybean leaves. The results showed that the number of total protein and specific protein in NIL-G was higher than that in NIL-Y, respectively. The numbers of total protein and specific protein in NIL-G were 2 170 and 1 140, while 1 730 and 700 in NIL-Y. GO annotation and KEGG pathway analysis of these specific proteins showed that although the high similarity among genetic background, there are differences in the biological pathway, cell components, and molecular functions of thylakoid proteins in soybean. This provide a new clue to the future research on thylakoid proteins in soybean.

Key words: Soybean, Mass spectrometry, Thylakoid, Proteome

图1

近等基因系叶片类囊体蛋白SDS-PAGE检测

表1

分段质谱鉴定近等基因系NIL-G和NIL-Y大豆叶片类囊体蛋白数目

材料
Material
< 25kDa 25~45kDa > 45kDa 特异
Specific
共有
Same
总计
Total
NIL-G 485 656 1 029 1 140 1 030 2 170
NIL-Y 373 458 899 700 1 730

图2

近等基因系NIL-G和NIL-Y特异蛋白的生物学途径水平GO注释

图3

近等基因系NIL-G和NIL-Y特异蛋白的细胞组分水平GO注释

图4

近等基因系NIL-G和NIL-Y特异蛋白的分子功能水平GO注释

图5

近等基因系NIL-G中特异蛋白的KEGG通路分析

图6

近等基因系NIL-Y中特异蛋白的KEGG通路分析

表2

近等基因系NIL-G和NIL-Y特异蛋白中与光合作用和天线蛋白相关蛋白

蛋白通路
Pathway of protein
NIL-G NIL-Y
基因编号Gene accession 功能Function 基因编号Gene accession 功能Function
光合作用 A5Z2K3 PSⅠ亚基PsaD C6SWI3 PSⅡR类亚基
Photosynthesis C6SX81 未知蛋白 C6SXP3 未知蛋白
C6SW43 未知蛋白 C6T308 假设的ATP合成酶亚单位b
C6T2Z2 未知蛋白 C6TFR5 未知蛋白
I1MNK0 放氧增强蛋白1 I1M3V1 PSⅡ修复蛋白PSB27-H1
I1M100 ATP合酶γ链
I1JCG8 铁氧还蛋白—NADP还原酶 -
I1NGD2 PSⅠ反应中心亚基II
A0A0R4J4B4 铁氧还蛋白—NADP还原酶
A0A0R4J389 PSⅠ反应中心亚基II
C6TC81 未知蛋白
I1JJ05 放氧增强蛋白2
I1K498 铁氧还蛋白-A
光合作用-天线蛋白 I1KR46 叶绿素a/b结合蛋白CP24 I1MNM3 叶绿素a/b结合蛋白6A
Photosynthesis- C6T8S8 未知蛋白 A0A0R0ERF9 叶绿素a/b结合蛋白CP26
antenna protein A0A0R0JQ91 叶绿素a/b结合蛋白P4
C6TM32 LHCII 1型叶绿素a/b结合蛋白
Q43437 PSⅡ的I型叶绿素a/b结合蛋白
A0A0R0K962 叶绿素a/b结合蛋白P4
I1MZ32 叶绿素a/b结合蛋白CP29

图7

近等基因系NIL-G和NIL-Y表达存在差异的蛋白质层次聚类分析

[1] Wilkins M R, Sanchez J C, Gooley A A, et al. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it. Biotechnology & Genetic Engineering Reviews, 1996,13(1):19-50.
[2] 何大澄, 肖雪媛. 差异蛋白质组学及其应用. 北京师范大学学报(自然科学版), 2002,38(4):558-562.
[3] Jorrín-Novo J V, Maldonado A M, Echevarría-Zomeno S, et al. Plant proteomics update (2007-2008):second-generation proteomic techniques,an appropriate experimental design,and data analysis to fulfill MIAPE standards,increase plant proteome coverage and expand biological knowledge. Journal of Proteomics, 2009,72(3):285-314.
doi: 10.1016/j.jprot.2009.01.026
[4] Komatsu S, Kajiwara H, Hirano H. Soybean seed 34kDa oil-body associated protein separated by two-dimensional gel electrophoresis. Plant Science, 1992,81(1):21-27.
doi: 10.1016/0168-9452(92)90020-M
[5] Herman E M, Helm R M, Jung R, et al. Genetic modification removes an immune dominant allergen from soybean. Plant Physiology, 2003,132(1):36-43.
doi: 10.1104/pp.103.021865 pmid: 12746509
[6] Nathan W O, Annamraju D S, James K W, et al. Proteomic analysis of soybean nodule cytosol. Phytochemistry, 2008,69(13):2426-2438.
doi: 10.1016/j.phytochem.2008.07.004 pmid: 18757068
[7] Ahsan N, Donnart T, Nouri M Z, et al. Tissue specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. Journal of Proteome Research, 2010,9(8):4189-4204.
doi: 10.1021/pr100504j pmid: 20540562
[8] Xu C, Sullivan J H, Garrett W M, et al. Impact of solar ultraviolet-B on the proteome in soybean lines differing in flavonoid contents. Phytochemistry, 2008,69(1):38-48.
doi: 10.1016/j.phytochem.2007.06.010 pmid: 17645898
[9] Hajduch M, Gnapathy A, Stein J W, et al. A systematic proteomic study of seed filling in soybean:Establishment of high-resolution two-dimensional reference maps,expression profiles,and an interactive proteome database. Plant Physiology, 2005,137(4):1397-1419.
doi: 10.1104/pp.104.056614 pmid: 15824287
[10] Ahsan N, Komatsu S. Comparative analyses of the proteomes of leaves and flowers at various stages of development reveal organ-specific functional differentiation of proteins in soybean. Proteomics, 2009,9(21):4889-4907.
doi: 10.1002/pmic.200900308 pmid: 19862761
[11] 郑维薇. 驯化和育种对大豆叶片蛋白质组的影响. 南昌:南昌大学, 2012.
[12] Sobhanian H, Razavizadeh R, Nanjo Y, et al. Proteome analysis of soybean leaves,hypocotyls and roots under salt stress. Proteome Science, 2010,8(1):1-15.
doi: 10.1186/1477-5956-8-1
[13] Mohammadi P P, Moieni A, Hiraga S, et al. Organ-specific proteomic analysis of drought-stressed soybean seedlings. Journal of Proteomics, 2012,75(6):1906-1923.
doi: 10.1016/j.jprot.2011.12.041 pmid: 22245419
[14] Ahsan N, Nanjo Y, Sawada H, et al. Ozone stress-induced proteomic changes in leaf total soluble and chloroplast proteins of soybean reveal that carbon allocation is involved in adaptation in the early developmental stage. Proteomics, 2010,10(14):2605-2619.
doi: 10.1002/pmic.201000180 pmid: 20443193
[15] Gupta R, Min C W, Kramer K, et al. A multi-omics analysis of Glycine max leaves reveals alteration in flavonoid and isoflavonoid metabolism upon ethylene and abscisic acid treatment. Proteomics, 2018,18(7):e1700366.
doi: 10.1002/pmic.201700366 pmid: 29457974
[16] Tian X, Liu Y H, Zhi G, et al. Comparative proteomic analysis of seedling leaves of cold-tolerant and -sensitive spring soybean cultivars. Molecular Biology Reports, 2015,42(3):581-601.
doi: 10.1007/s11033-014-3803-4 pmid: 25359310
[17] Arai Y, Hayashi M, Nishimura M. Proteomic analysis of highly purified peroxisomes from etiolated soybean cotyledons. Plant & Cell Physiology, 2008,49(4):526-539.
doi: 10.1093/pcp/pcn027 pmid: 18281324
[18] Kamal A H, Komatsu S. Involvement of reactive oxygen species and mitochondrial proteins in biophoton emission in roots of soybean plants under flooding stress. Journal of Proteome Research, 2015,14(5):2219-2236.
doi: 10.1021/acs.jproteome.5b00007 pmid: 25806999
[19] Dekker J P, Boekema E J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochimica et Biophysica Acta Bioenergetics, 2005,1706(1/2):12-39.
doi: 10.1016/j.bbabio.2004.09.009
[20] Rhee K H. PhotosystemⅡ:The solid structural era. Annual Review of Biophysics & Biomolecular Structure, 2001,30(1):307-328.
[21] 宋健. 大豆种皮色相关基因的图位克隆及功能解析. 北京:中国农业科学院, 2019.
[22] Wang M, Li W, Fang C, et al. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nature Genetics, 2018,50(10):1435-1441.
doi: 10.1038/s41588-018-0229-2 pmid: 30250128
[23] Zhou W, Cheng Y, Yap A, et al. The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth. The Plant Journal, 2009,58(1):82-96.
doi: 10.1111/j.1365-313X.2008.03766.x pmid: 19054358
[24] Young N D, Zamir D, Ganal M W, et al. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics, 1988,120(2):579-585.
pmid: 17246482
[25] Muehlbauer G J, Speech J E, Thomas-Compton M A, et al. Near-isogenic lines-A potential resource in the integration of conventional and linkage maps. Crop Science, 1988,28(5):729-735.
doi: 10.2135/cropsci1988.0011183X002800050002x
[26] Lesage V S, Merlino M, Chambon C, et al. Proteomes of hard and soft near-isogenic wheat lines reveal that kernel hardness is related to the amplification of a stress response during endosperm development. Journal of Experimental Botany, 2012,63(2):1001-1011.
doi: 10.1093/jxb/err330
[27] Torabi S, Wissuwa M, Heidari M, et al. A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics, 2009,9(1):159-170.
doi: 10.1002/pmic.200800350 pmid: 19053143
[28] Wang N, Cao D, Gong F, et al. Differences in properties and proteomes of the midribs contribute to the size of the leaf angle in two near-isogenic maize lines. Journal of Proteomics, 2015,128:113-122.
doi: 10.1016/j.jprot.2015.07.027 pmid: 26244907
[29] Khan N A, Takahashi R, Abe J, et al. Identification of cleistogamy-associated proteins in flower buds of near-isogenic lines of soybean by differential proteomic analysis. Peptides, 2009,30(12):2095-2102.
doi: 10.1016/j.peptides.2009.08.012
[30] Brechenmacher L, Nguyen T H N, Zhang N, et al. Identification of soybean proteins and genes differentially regulated in near isogenic lines differing in resistance to aphid infestation. Journal of Proteome Research, 2015,14(10):4137-4146.
doi: 10.1021/acs.jproteome.5b00146 pmid: 26350764
[31] Kashino Y, Lauber W M, Carroll J A, et al. Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry, 2002,41(25):8004-8012.
doi: 10.1021/bi026012+ pmid: 12069591
[32] McKenzie S D, Ibrahim I M, Aryal U K, et al. Stoichiometry of protein complexes in plant photosynthetic membranes. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2020,1861(2):148141.
doi: 10.1016/j.bbabio.2019.148141
[33] Peltier J, Wijk K. Proteomics of the chloroplast:systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. The Plant Cell, 2000,12(3):319-341.
doi: 10.1105/tpc.12.3.319 pmid: 10715320
[34] Shao J Z, Zhang Y b, Yu J L, et al. Isolation of thylakoid membrane complexes from rice by a new double-strips BN/SDS-PAGE and bioinformatics prediction of stromal ridge subunits interaction. PLoS ONE, 2011,6(5):e20342.
doi: 10.1371/journal.pone.0020342 pmid: 21637806
[35] Wall D B, Kachman M T, Gong S, et al. Isoelectric focusing nonporous RP HPLC:a two-dimensional liquid-phase separation method for mapping of cellular proteins with identification using MALDI-TOF mass spectrometry. Analytical Chemistry, 2000,72(6):1099-1111.
doi: 10.1021/ac991332t pmid: 10740846
[36] Shevchenko A, Wilm M, Vorm O, et al. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Analytical Chemistry, 1996,68(5):850-858.
doi: 10.1021/ac950914h pmid: 8779443
[37] Swain M, Ross N W. A silver stain protocol for proteins yielding high resolution and transparent background in sodium dodecyl sulfate-polyacrylamide gels. Electrophoresis, 1995,16(6):948-951.
doi: 10.1002/elps.11501601159 pmid: 7498141
[1] 王财金, 弟文静, 马淑梅, 王洋. 发掘大豆资源中灰斑病1号生理小种抗性优异等位变异[J]. 作物杂志, 2020, (6): 189–196
[2] 常世豪, 杨青春, 舒文涛, 李金花, 李琼, 张保亮, 张东辉, 耿臻. 黄淮海夏大豆品种(系)主要农艺性状的综合性分析[J]. 作物杂志, 2020, (3): 66–72
[3] 徐冉, 王彩洁, 张礼凤, 李伟, 张彦威, 林延慧, 刘薇. 应用大豆表型设计育种技术选育大豆品种齐黄34[J]. 作物杂志, 2020, (3): 73–78
[4] 黄俊霞,黄甜,饶德民,张鸣浩,孟凡钢,闫晓艳,张伟. 花后水肥一体化与化控措施对大豆产量及生理特征的影响[J]. 作物杂志, 2020, (2): 82–87
[5] 王明瑶,曹亮,于奇,邹京南,何松榆,秦彬,王孟雪,张玉先. 褪黑素浸种对盐碱胁迫下大豆种子萌发的影响[J]. 作物杂志, 2019, (6): 195–202
[6] 张永芳,钱肖娜,王润梅,史鹏清,杨荣. 不同大豆材料的抗旱性鉴定及耐旱品种筛选[J]. 作物杂志, 2019, (5): 41–45
[7] 刘念析,陈亮,厉志,刘宝泉,刘佳,衣志刚,董志敏,王曙明. 大豆抗病分子标记的研究进展[J]. 作物杂志, 2019, (4): 10–16
[8] 杨珺凯,沈阳,才晓溪,邬升杨,李建伟,孙明哲,贾博为,孙晓丽. 大豆PHD家族蛋白的全基因组鉴定及表达特征分析[J]. 作物杂志, 2019, (3): 55–65
[9] 林春雨,梁晓宇,赵慧艳,王洋. 黑龙江省主栽大豆品种遗传多样性和群体结构分析[J]. 作物杂志, 2019, (2): 78–83
[10] 代希茜,詹和明,崔兴洪,赵银月,单丹丹,张亮,王铁军. 玉米大豆间作种植密度耦合数学模型及其优化方案研究[J]. 作物杂志, 2019, (2): 128–135
[11] 刘博,卫玲,肖俊红,杨海峰,段学艳,陈爱萍,任瑞兰. 关于提高大豆杂交结实率的研究[J]. 作物杂志, 2019, (1): 81–84
[12] 李悦,李海燕,于吉东,邓杰,宫远福,朱俊澍. 线麻秸秆浸提液对大豆的化感作用[J]. 作物杂志, 2019, (1): 175–179
[13] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114–120
[14] 张明俊,李忠峰,于莉莉,王俊,邱丽娟. 大豆子粒蛋白亚基变异种质的鉴定与筛选[J]. 作物杂志, 2018, (3): 44–50
[15] 朱佳妮,代惠萍,魏树和,贾根良,陈德经,裴金金,张庆,强龙. 花期追施锌肥对大豆生长和锌素积累的影响[J]. 作物杂志, 2018, (1): 152–155
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!