作物杂志,2020, 第6期: 816 doi: 10.16035/j.issn.1001-7283.2020.06.002
Zhao Yuyang1(), Song Jian2, Qiu Lijuan1()
摘要:
类囊体是光合作用和电子传递关键载体,是叶绿体核心组分,在植物亚细胞器蛋白质组研究中尤为重要。为了探究大豆叶片类囊体的蛋白质组,以1对遗传背景相似度为97.6%的大豆种皮颜色G位点近等基因系(NIL-G和NIL-Y)为材料,利用SDS-PAGE与分级质谱相结合的方法对大豆叶片类囊体蛋白进行分析。结果表明,在NIL-G和NIL-Y中鉴定到的总蛋白分别为2 170种和1 730种,特异蛋白分别为1 140种和700种,总蛋白和特异蛋白数量在NIL-G中均高于NIL-Y。特异蛋白的GO注释及KEGG通路分析表明,尽管这对近等基因系遗传背景相似度很高,但其叶片类囊体蛋白在生物途径、细胞组分和分子功能方面均存在差异。
[1] | Wilkins M R, Sanchez J C, Gooley A A, et al. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it. Biotechnology & Genetic Engineering Reviews, 1996,13(1):19-50. |
[2] | 何大澄, 肖雪媛. 差异蛋白质组学及其应用. 北京师范大学学报(自然科学版), 2002,38(4):558-562. |
[3] |
Jorrín-Novo J V, Maldonado A M, Echevarría-Zomeno S, et al. Plant proteomics update (2007-2008):second-generation proteomic techniques,an appropriate experimental design,and data analysis to fulfill MIAPE standards,increase plant proteome coverage and expand biological knowledge. Journal of Proteomics, 2009,72(3):285-314.
doi: 10.1016/j.jprot.2009.01.026 |
[4] |
Komatsu S, Kajiwara H, Hirano H. Soybean seed 34kDa oil-body associated protein separated by two-dimensional gel electrophoresis. Plant Science, 1992,81(1):21-27.
doi: 10.1016/0168-9452(92)90020-M |
[5] |
Herman E M, Helm R M, Jung R, et al. Genetic modification removes an immune dominant allergen from soybean. Plant Physiology, 2003,132(1):36-43.
doi: 10.1104/pp.103.021865 pmid: 12746509 |
[6] |
Nathan W O, Annamraju D S, James K W, et al. Proteomic analysis of soybean nodule cytosol. Phytochemistry, 2008,69(13):2426-2438.
doi: 10.1016/j.phytochem.2008.07.004 pmid: 18757068 |
[7] |
Ahsan N, Donnart T, Nouri M Z, et al. Tissue specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. Journal of Proteome Research, 2010,9(8):4189-4204.
doi: 10.1021/pr100504j pmid: 20540562 |
[8] |
Xu C, Sullivan J H, Garrett W M, et al. Impact of solar ultraviolet-B on the proteome in soybean lines differing in flavonoid contents. Phytochemistry, 2008,69(1):38-48.
doi: 10.1016/j.phytochem.2007.06.010 pmid: 17645898 |
[9] |
Hajduch M, Gnapathy A, Stein J W, et al. A systematic proteomic study of seed filling in soybean:Establishment of high-resolution two-dimensional reference maps,expression profiles,and an interactive proteome database. Plant Physiology, 2005,137(4):1397-1419.
doi: 10.1104/pp.104.056614 pmid: 15824287 |
[10] |
Ahsan N, Komatsu S. Comparative analyses of the proteomes of leaves and flowers at various stages of development reveal organ-specific functional differentiation of proteins in soybean. Proteomics, 2009,9(21):4889-4907.
doi: 10.1002/pmic.200900308 pmid: 19862761 |
[11] | 郑维薇. 驯化和育种对大豆叶片蛋白质组的影响. 南昌:南昌大学, 2012. |
[12] |
Sobhanian H, Razavizadeh R, Nanjo Y, et al. Proteome analysis of soybean leaves,hypocotyls and roots under salt stress. Proteome Science, 2010,8(1):1-15.
doi: 10.1186/1477-5956-8-1 |
[13] |
Mohammadi P P, Moieni A, Hiraga S, et al. Organ-specific proteomic analysis of drought-stressed soybean seedlings. Journal of Proteomics, 2012,75(6):1906-1923.
doi: 10.1016/j.jprot.2011.12.041 pmid: 22245419 |
[14] |
Ahsan N, Nanjo Y, Sawada H, et al. Ozone stress-induced proteomic changes in leaf total soluble and chloroplast proteins of soybean reveal that carbon allocation is involved in adaptation in the early developmental stage. Proteomics, 2010,10(14):2605-2619.
doi: 10.1002/pmic.201000180 pmid: 20443193 |
[15] |
Gupta R, Min C W, Kramer K, et al. A multi-omics analysis of Glycine max leaves reveals alteration in flavonoid and isoflavonoid metabolism upon ethylene and abscisic acid treatment. Proteomics, 2018,18(7):e1700366.
doi: 10.1002/pmic.201700366 pmid: 29457974 |
[16] |
Tian X, Liu Y H, Zhi G, et al. Comparative proteomic analysis of seedling leaves of cold-tolerant and -sensitive spring soybean cultivars. Molecular Biology Reports, 2015,42(3):581-601.
doi: 10.1007/s11033-014-3803-4 pmid: 25359310 |
[17] |
Arai Y, Hayashi M, Nishimura M. Proteomic analysis of highly purified peroxisomes from etiolated soybean cotyledons. Plant & Cell Physiology, 2008,49(4):526-539.
doi: 10.1093/pcp/pcn027 pmid: 18281324 |
[18] |
Kamal A H, Komatsu S. Involvement of reactive oxygen species and mitochondrial proteins in biophoton emission in roots of soybean plants under flooding stress. Journal of Proteome Research, 2015,14(5):2219-2236.
doi: 10.1021/acs.jproteome.5b00007 pmid: 25806999 |
[19] |
Dekker J P, Boekema E J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochimica et Biophysica Acta Bioenergetics, 2005,1706(1/2):12-39.
doi: 10.1016/j.bbabio.2004.09.009 |
[20] | Rhee K H. PhotosystemⅡ:The solid structural era. Annual Review of Biophysics & Biomolecular Structure, 2001,30(1):307-328. |
[21] | 宋健. 大豆种皮色相关基因的图位克隆及功能解析. 北京:中国农业科学院, 2019. |
[22] |
Wang M, Li W, Fang C, et al. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nature Genetics, 2018,50(10):1435-1441.
doi: 10.1038/s41588-018-0229-2 pmid: 30250128 |
[23] |
Zhou W, Cheng Y, Yap A, et al. The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth. The Plant Journal, 2009,58(1):82-96.
doi: 10.1111/j.1365-313X.2008.03766.x pmid: 19054358 |
[24] |
Young N D, Zamir D, Ganal M W, et al. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics, 1988,120(2):579-585.
pmid: 17246482 |
[25] |
Muehlbauer G J, Speech J E, Thomas-Compton M A, et al. Near-isogenic lines-A potential resource in the integration of conventional and linkage maps. Crop Science, 1988,28(5):729-735.
doi: 10.2135/cropsci1988.0011183X002800050002x |
[26] |
Lesage V S, Merlino M, Chambon C, et al. Proteomes of hard and soft near-isogenic wheat lines reveal that kernel hardness is related to the amplification of a stress response during endosperm development. Journal of Experimental Botany, 2012,63(2):1001-1011.
doi: 10.1093/jxb/err330 |
[27] |
Torabi S, Wissuwa M, Heidari M, et al. A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics, 2009,9(1):159-170.
doi: 10.1002/pmic.200800350 pmid: 19053143 |
[28] |
Wang N, Cao D, Gong F, et al. Differences in properties and proteomes of the midribs contribute to the size of the leaf angle in two near-isogenic maize lines. Journal of Proteomics, 2015,128:113-122.
doi: 10.1016/j.jprot.2015.07.027 pmid: 26244907 |
[29] |
Khan N A, Takahashi R, Abe J, et al. Identification of cleistogamy-associated proteins in flower buds of near-isogenic lines of soybean by differential proteomic analysis. Peptides, 2009,30(12):2095-2102.
doi: 10.1016/j.peptides.2009.08.012 |
[30] |
Brechenmacher L, Nguyen T H N, Zhang N, et al. Identification of soybean proteins and genes differentially regulated in near isogenic lines differing in resistance to aphid infestation. Journal of Proteome Research, 2015,14(10):4137-4146.
doi: 10.1021/acs.jproteome.5b00146 pmid: 26350764 |
[31] |
Kashino Y, Lauber W M, Carroll J A, et al. Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry, 2002,41(25):8004-8012.
doi: 10.1021/bi026012+ pmid: 12069591 |
[32] |
McKenzie S D, Ibrahim I M, Aryal U K, et al. Stoichiometry of protein complexes in plant photosynthetic membranes. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2020,1861(2):148141.
doi: 10.1016/j.bbabio.2019.148141 |
[33] |
Peltier J, Wijk K. Proteomics of the chloroplast:systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. The Plant Cell, 2000,12(3):319-341.
doi: 10.1105/tpc.12.3.319 pmid: 10715320 |
[34] |
Shao J Z, Zhang Y b, Yu J L, et al. Isolation of thylakoid membrane complexes from rice by a new double-strips BN/SDS-PAGE and bioinformatics prediction of stromal ridge subunits interaction. PLoS ONE, 2011,6(5):e20342.
doi: 10.1371/journal.pone.0020342 pmid: 21637806 |
[35] |
Wall D B, Kachman M T, Gong S, et al. Isoelectric focusing nonporous RP HPLC:a two-dimensional liquid-phase separation method for mapping of cellular proteins with identification using MALDI-TOF mass spectrometry. Analytical Chemistry, 2000,72(6):1099-1111.
doi: 10.1021/ac991332t pmid: 10740846 |
[36] |
Shevchenko A, Wilm M, Vorm O, et al. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Analytical Chemistry, 1996,68(5):850-858.
doi: 10.1021/ac950914h pmid: 8779443 |
[37] |
Swain M, Ross N W. A silver stain protocol for proteins yielding high resolution and transparent background in sodium dodecyl sulfate-polyacrylamide gels. Electrophoresis, 1995,16(6):948-951.
doi: 10.1002/elps.11501601159 pmid: 7498141 |
[1] | 王财金, 弟文静, 马淑梅, 王洋. 发掘大豆资源中灰斑病1号生理小种抗性优异等位变异[J]. 作物杂志, 2020, (6): 189196 |
[2] | 常世豪, 杨青春, 舒文涛, 李金花, 李琼, 张保亮, 张东辉, 耿臻. 黄淮海夏大豆品种(系)主要农艺性状的综合性分析[J]. 作物杂志, 2020, (3): 6672 |
[3] | 徐冉, 王彩洁, 张礼凤, 李伟, 张彦威, 林延慧, 刘薇. 应用大豆表型设计育种技术选育大豆品种齐黄34[J]. 作物杂志, 2020, (3): 7378 |
[4] | 黄俊霞,黄甜,饶德民,张鸣浩,孟凡钢,闫晓艳,张伟. 花后水肥一体化与化控措施对大豆产量及生理特征的影响[J]. 作物杂志, 2020, (2): 8287 |
[5] | 王明瑶,曹亮,于奇,邹京南,何松榆,秦彬,王孟雪,张玉先. 褪黑素浸种对盐碱胁迫下大豆种子萌发的影响[J]. 作物杂志, 2019, (6): 195202 |
[6] | 张永芳,钱肖娜,王润梅,史鹏清,杨荣. 不同大豆材料的抗旱性鉴定及耐旱品种筛选[J]. 作物杂志, 2019, (5): 4145 |
[7] | 刘念析,陈亮,厉志,刘宝泉,刘佳,衣志刚,董志敏,王曙明. 大豆抗病分子标记的研究进展[J]. 作物杂志, 2019, (4): 1016 |
[8] | 杨珺凯,沈阳,才晓溪,邬升杨,李建伟,孙明哲,贾博为,孙晓丽. 大豆PHD家族蛋白的全基因组鉴定及表达特征分析[J]. 作物杂志, 2019, (3): 5565 |
[9] | 林春雨,梁晓宇,赵慧艳,王洋. 黑龙江省主栽大豆品种遗传多样性和群体结构分析[J]. 作物杂志, 2019, (2): 7883 |
[10] | 代希茜,詹和明,崔兴洪,赵银月,单丹丹,张亮,王铁军. 玉米大豆间作种植密度耦合数学模型及其优化方案研究[J]. 作物杂志, 2019, (2): 128135 |
[11] | 刘博,卫玲,肖俊红,杨海峰,段学艳,陈爱萍,任瑞兰. 关于提高大豆杂交结实率的研究[J]. 作物杂志, 2019, (1): 8184 |
[12] | 李悦,李海燕,于吉东,邓杰,宫远福,朱俊澍. 线麻秸秆浸提液对大豆的化感作用[J]. 作物杂志, 2019, (1): 175179 |
[13] | 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114120 |
[14] | 张明俊,李忠峰,于莉莉,王俊,邱丽娟. 大豆子粒蛋白亚基变异种质的鉴定与筛选[J]. 作物杂志, 2018, (3): 4450 |
[15] | 朱佳妮,代惠萍,魏树和,贾根良,陈德经,裴金金,张庆,强龙. 花期追施锌肥对大豆生长和锌素积累的影响[J]. 作物杂志, 2018, (1): 152155 |
|