作物杂志,2022, 第1期: 110115 doi: 10.16035/j.issn.1001-7283.2022.01.016
Wu Pengbo(), Li Lijun, Zhang Yanli
摘要:
为筛选耐盐碱油菜种质,研究有机酸在油菜抗盐碱过程中的生理作用,利用碱性盐(摩尔比为2:1的NaHCO3和Na2CO3的混合物)进行处理,用模糊数学隶属函数分析法对8个油菜种质进行耐盐碱性综合评价,探究碱性盐耐性最强和最弱的油菜种质的根际土壤有机酸含量。结果表明,耐盐碱性综合评价为华油杂62>华双5号>崇2>16-P22外>青杂9号>金油158>17崇1>16-P32外。在碱性盐胁迫下耐性最强种质华油杂62和最弱种质16-P32外的根际土壤中检测到草酸、酒石酸、甲酸、苹果酸、抗坏血酸、乙酸、柠檬酸及琥珀酸8种有机酸。在碱性盐胁迫下,油菜根际土壤中草酸的积累量最高,抗坏血酸的积累量很低。华油杂62的各处理根际土壤有机酸含量总体高于16-P32外。
[1] |
Jin H, Plaha P, Park J Y, et al. Comparative EST profiles of leaf and root of Leymus chinensis,a xerophilous grass adapted to high pH sodic soil. Plant Science, 2006, 170:1081-1086.
doi: 10.1016/j.plantsci.2006.01.002 |
[2] |
Li J, Xu H H, Liu W C, et al. Ethylene inhibits root elongation during alkaline stress through AUX1 and associated changes in auxin accumulation. Plant Physiology, 2015, 168:1777-1791.
doi: 10.1104/pp.15.00523 |
[3] |
Sun H, Lu H, Chu L, et al. Biochar applied with appropriate rates can reduce N leaching,keep N retention and not increase NH3 volatilization in a coastal saline soil. Science of the Total Environment, 2007, 575:820-825.
doi: 10.1016/j.scitotenv.2016.09.137 |
[4] | Kawanabe S, Zhu T. Degeneration and conservational trial of Aneurolepidium chinense grassland in Northern China. Grassland Science, 1991, 39:91-99. |
[5] |
Wang H, Lin X, Cao S, et al. Alkali tolerance in rice (Oryza sativa L.):growth,photosynthesis,nitrogen metabolism,and ion homeostasis. Photosynthetica, 2015, 53:55-65.
doi: 10.1007/s11099-015-0079-4 |
[6] |
Shi D C, Sheng Y M. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environmental and Experimental Botany, 2005, 54(1):8-21.
doi: 10.1016/j.envexpbot.2004.05.003 |
[7] |
Shi D C, Wang D. Effects of various salt-alkali mixed stresses on Aneurolepidium chinense (Trin) Kitag. Plant Soil, 2005, 271:15-26.
doi: 10.1007/s11104-004-1307-z |
[8] |
Chen W C, Cui P J, Sun H Y, et al. Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.). Industrial Crops and Products, 2009, 30:351-358.
doi: 10.1016/j.indcrop.2009.06.007 |
[9] | Qasim M. Physiological and biochemical studiesin a potential oilseed crop canola (Brassica napus L.) under salinity (NaCl) stress. Faisalabad, Pakistan:University of Agriculture, 2000. |
[10] | Maas E V. Testing crops for salinity tolerance//Marnville J W,Baligar B V,Duncan R R,et al. Proc. Workshop on Adaptation of Plants to Soil Stresses,INTSORMIL Publication, 1993:234-247. |
[11] | 张新草, 薛项潇, 姜深, 等. 大豆种质发芽期耐盐碱性鉴定及指标筛选. 西北农业学报, 2020, 29(3):374-381. |
[12] | 桑晓慧, 赵云雷, 王红梅, 等. 陆地棉抗旱性与SSR分子标记的关联分析. 棉花学报, 2017, 29(3):241-252. |
[13] | 田小霞, 毛培春, 孟林, 等. 无芒雀麦苗期耐盐指标筛选及耐盐性综合评价. 干旱区资源与环境, 2017, 31(10):156-161. |
[14] |
Munns R. Comparative physiology of salt and water stress. Plant,Cell and Environment, 2002, 25:239-250.
doi: 10.1046/j.0016-8025.2001.00808.x |
[15] | Seshadri B, Bolan N S, Naidu R, et al. Rhizosphere-induced heavy metal (loid) transformation in relation to bioavailability and remediation. Journal of Soil Science and Plant Nutrition, 2015, 15:524-528. |
[16] |
Vítková M, Komárek M, Tejnecky V, et al. Interactions of nano-oxides with low-molecular-weight organic acids in a contaminated soil. Journal of Hazardous Materials, 2015, 293:7-14.
doi: 10.1016/j.jhazmat.2015.03.033 |
[17] |
Luo Q, Sun L N, Hu X M, et al. The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress:metabonomics analysis. PLoS ONE, 2014, 9(12):e115581.
doi: 10.1371/journal.pone.0115581 |
[18] |
Soudek P, Petrová S, Buzek M, et al. Uranium uptake in Nicotiana sp. under hydroponic conditions. Journal of Geochemical Exploration, 2014, 142(4):130-137.
doi: 10.1016/j.gexplo.2013.10.001 |
[19] |
Guo L Q, Shi D C, Wang D L, et al. The key physiological response to alkali stress by the alkali‐resistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere. Journal of Agronomy and Crop Science, 2010, 196(2):123-135.
doi: 10.1111/jac.2010.196.issue-2 |
[20] |
Guo S H, Niu Y J, Zhai H, et al. Effects of alkaline stress on organic acid metabolism in roots of grape hybrid rootstocks. Scientia Horticulturae, 2018, 227:255-260.
doi: 10.1016/j.scienta.2017.09.051 |
[21] | Qu Y G, Zhao K F. Comparative studies on growth and physiological reaction of Zea mays under NaCl and Na2CO3 stress. Acta Agronomica Sinica, 2004, 30:334-341. |
[22] | Qu Y G, Zhao K F. Comparative of the stress effects of NaCl and Na2CO3 on Suaeda salsa L. Journal of Plant Physiology and Molecular Biology, 2003, 29:387-394. |
[23] |
Toal M E, Yeomans C V, Killham K S, et al. A review of rhizosphere carbon flow modeling. Plant and Soil, 2000, 222:263-281.
doi: 10.1023/A:1004736021965 |
[24] | 杨玲, 沈海龙, 崔晓涛. NaHCO3胁迫下新西伯利亚银白杨幼苗生长和光合能力变化. 林业科学, 2012, 48(7):51-55. |
[25] | 杨传宝, 倪惠菁, 李善文, 等. 白杨派无性系苗期对NaHCO3胁迫的生长生理响应及耐盐碱性综合评价. 植物生理学报, 2016, 52(10):1555-1564. |
[26] | 王景艳, 刘兆普, 刘玲, 等. NaCl胁迫对长春花幼苗离子分布和光合作用的影响. 生态学杂志, 2008(10):1680-1684. |
[27] | 景宇鹏. 土默川平原盐渍化土壤改良前后土壤特性及玉米品种耐盐性研究. 呼和浩特:内蒙古农业大学, 2014. |
[28] | 王婧泽, 高树, 孙丽芳, 等. 3个玉米自交系对盐胁迫的生理响应及耐盐性评价. 干旱地区农业研究, 2017, 35(2):89-95. |
[29] | Shi D C, Yin S J, Yang G H, et al. Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress. Acta Botanica Sinica, 2002, 44(5):537-540. |
[30] | 邹春雷. 甜菜适应碱性盐胁迫的生理机制及其转录组分析. 哈尔滨:东北农业大学, 2019. |
[31] | 李朝苏, 刘鹏, 徐根娣, 等. 外源有机酸对荞麦幼苗铝毒害的缓解效应. 作物学报, 2006, 32(4):532-539. |
[32] | 张世兴. 浇灌乙酸及草酸对葡萄盐碱胁迫的缓解作用. 泰安:山东农业大学, 2020. |
[33] |
Yang C W, Chong J N, Li C Y, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant and Soil, 2007, 294(1/2):263-276.
doi: 10.1007/s11104-007-9251-3 |
[34] |
Yang C W, Shi D C, Wang D L, et al. Comparative effects of salt and alkali stresses on growth,osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regulation, 2008, 56(2):179-190.
doi: 10.1007/s10725-008-9299-y |
[1] | 林晓阳, 杜德志, 柳海东, 李钧. 特早熟甘蓝型春油菜恢复系核心种质构建[J]. 作物杂志, 2022, (1): 3137 |
[2] | 李心昊, 李俊, 万林, 刘丽欣, 刘君权, 马霓. 丘陵地区免耕条播对油菜生长、根系和产量的影响[J]. 作物杂志, 2021, (6): 139144 |
[3] | 熊廷浩, 资涛, 张嫒, 胡宇倩, 彭芝, 宋海星. 化肥减量条件下不同有机肥用量对油菜养分利用和产量的影响[J]. 作物杂志, 2021, (3): 133139 |
[4] | 秦璐, 王建强, 韩配配, 李银水, 顾炽明, 胡小加, 谢立华, 廖星. 不同氮效率油菜种质苗期氮吸收转运与利用差异研究[J]. 作物杂志, 2021, (3): 2833 |
[5] | 易镇邪, 王元元, 谷子寒, 帅泽宇, 屠乃美, 陈平平. 镉污染稻区油菜–中稻替代双季稻种植的可行性研究[J]. 作物杂志, 2021, (3): 6569 |
[6] | 周江, 谢宜章, 向平安. 湖南主要大田作物系统投入产出的能值分析[J]. 作物杂志, 2021, (1): 175181 |
[7] | 吕伟生, 肖小军, 黄天宝, 肖国滨, 李亚贞, 肖富良, 韩德鹏, 郑伟. 缓释型配方肥在晚稻套播油菜上的施用效果研究[J]. 作物杂志, 2020, (6): 143150 |
[8] | 王瑞, 平俊爱, 张福耀, 詹鹏杰, 楚建强. 高粱育种资源耐瘠性鉴定及评价[J]. 作物杂志, 2020, (6): 3037 |
[9] | 王芙蓉, 张建学, 郭岷江, 张亚宏, 范提平, 王亚宏, 张岩, 裴国平, 雷建明. 苗后除草剂喷施时期对杂草防治及冬油菜产量和品质的影响[J]. 作物杂志, 2020, (5): 204208 |
[10] | 张耀文, 李殿荣, 侯君利, 孔建, 张文学, 董育红, 赵小光, 田建华, 张忠鑫. 油菜种子中亚麻酸研究现状及改良思路[J]. 作物杂志, 2020, (4): 2129 |
[11] | 袁长凯, 罗海华, 陈功, 高欣, 彭金剑, 向春玲, 殷梦瑶, 王培培, 徐兰兰, 汤飞宇. 不同棉花基因型种子萌发响应铜胁迫的差异[J]. 作物杂志, 2020, (3): 5359 |
[12] | 柳海东,余青兰,王瑞生,杜德志. 春油菜区抗跳甲油菜资源的筛选[J]. 作物杂志, 2020, (2): 3440 |
[13] | 胡宇倩,资涛,熊廷浩,张振华,宋海星. 早熟与常规熟期冬油菜品种养分吸收规律差异研究[J]. 作物杂志, 2020, (1): 117123 |
[14] | 刘晓亚,张立峰,张继宗,石文宾,张培月. 甘蓝型油菜对华北坝上冷凉环境的适应性[J]. 作物杂志, 2019, (5): 97103 |
[15] | 夏原野,杜志敏,杨宇尘,宫彦龙,闫志强,徐海. 喷施表油菜素内酯对籼稻和粳稻花时的影响[J]. 作物杂志, 2019, (4): 139147 |
|