作物杂志,2022, 第1期: 110–115 doi: 10.16035/j.issn.1001-7283.2022.01.016

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

油菜苗期耐盐碱性综合评价与根际土壤有机酸含量比较

吴鹏博(), 李立军, 张艳丽   

  1. 内蒙古农业大学农学院,010018,内蒙古呼和浩特
  • 收稿日期:2021-03-10 修回日期:2021-10-22 出版日期:2022-02-15 发布日期:2022-02-16
  • 作者简介:吴鹏博,主要从事耕作制度与农业生态系统方面的研究,E-mail: wupengbo24@163.com
  • 基金资助:
    内蒙古自治区科技成果转化项目(CGZH2018141);公益性行业(农业)科研专项项目(201503120);国家自然科学基金(31660374)

Comprehensive Evaluation of Saline-Alkali Tolerance and Comparison of Rhizosphere Soil Organic Acid Content at Rapeseed Seedling Stage

Wu Pengbo(), Li Lijun, Zhang Yanli   

  1. College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
  • Received:2021-03-10 Revised:2021-10-22 Online:2022-02-15 Published:2022-02-16

摘要:

为筛选耐盐碱油菜种质,研究有机酸在油菜抗盐碱过程中的生理作用,利用碱性盐(摩尔比为2:1的NaHCO3和Na2CO3的混合物)进行处理,用模糊数学隶属函数分析法对8个油菜种质进行耐盐碱性综合评价,探究碱性盐耐性最强和最弱的油菜种质的根际土壤有机酸含量。结果表明,耐盐碱性综合评价为华油杂62>华双5号>崇2>16-P22外>青杂9号>金油158>17崇1>16-P32外。在碱性盐胁迫下耐性最强种质华油杂62和最弱种质16-P32外的根际土壤中检测到草酸、酒石酸、甲酸、苹果酸、抗坏血酸、乙酸、柠檬酸及琥珀酸8种有机酸。在碱性盐胁迫下,油菜根际土壤中草酸的积累量最高,抗坏血酸的积累量很低。华油杂62的各处理根际土壤有机酸含量总体高于16-P32外。

关键词: 油菜, 碱性盐胁迫, 耐盐碱指标, 隶属函数, 根际土壤有机酸

Abstract:

In order to screen the saline-alkali tolerant rapeseed germplasms and explore the physiological role of organic acids in saline-alkali resistance of rapeseed. The saline-alkali resistance of eight rapeseed germplasms treated with alkaline salt (a mixture of NaHCO3 and Na2CO3 with a molar ratio of 2:1) were evaluated by fuzzy mathematical subordinative function analysis method, and then the organic acid content in rhizosphere soil of the two rapeseed germplasms with the strongest and weakest resistance to alkaline salt were investigated. The results showed that the strongest tolerant rapeseed germplasm was Huayouza 62 and the weakest was 16-P32 wai. The comprehensive evaluation of the tolerance was Huayouza 62 > Huashuang 5 > Chong 2 > 16-P22 wai > Qingza 9 > Jinyou 158 > 17 chong 1 > 16-P32 wai. Under alkaline salt stress condition, oxalic acid, tartaric acid, formic acid, malic acid, ascorbic acid, acetic acid, citric acid and succinic acid were detected in rhizosphere soil of Huayouza 62 and 16-P32 wai. Oxalic acid content was the highest, while the accumulation of ascorbic acid was very low. The contents of organic acids in rhizosphere soil of Huayouza 62 was generally higher than that of 16-P32 wai.

Key words: Rapeseed, Alkaline salt stress, Salinity tolerance index, Membership function, Rhizosphere soil organic acid

表1

处理后土壤pH和电导率

处理
Treatment
碱性盐浓度
Alkaline salt concentration
(g/kg)
pH 电导率
Electrical conductivity
(μS/cm)
A0 0 8.08 91.0
A2 2 9.00 179.4
A4 4 9.20 334.9
A6 6 9.35 577.3

表2

碱性盐胁迫下油菜种质各指标的主成分分析

指标
Index
因子载荷
Factor load
因子得分系数
Factor score
coefficient
1 2 1 2
出苗率Emergence rate 0.950 -0.109 0.152 -0.105
茎粗Stem diameter -0.040 0.992 -0.006 0.954
植株鲜重Plant fresh weight 0.985 -0.015 0.157 -0.015
植株干重Plant dry weight 0.968 -0.011 0.155 -0.011
根鲜重Root fresh weight 0.878 0.168 0.140 0.162
根干重Root dry weight 0.978 0.089 0.156 0.086
株高Plant height 0.951 0.015 0.152 0.014
主根长Main root length 0.901 -0.088 0.144 -0.085
特征值Eigenvalue 6.254 1.040
贡献率Contribution rate (%) 78.181 12.998
累计贡献率
Cumulative contribution rate (%)
78.181
91.179

表3

8个油菜种质各指标的耐盐碱系数

编号
Number
出苗率
Emergence rate
茎粗
Stem diameter
植株鲜重
Plant fresh weight
植株干重
Plant dry weight
根干重
Root dry weight
株高
Plant height
主根长
Main root length
RA01 0.774 0.903 0.577 0.612 0.458 0.760 0.774
RA02 0.635 0.717 0.361 0.380 0.256 0.476 0.614
RA03 0.712 0.772 0.532 0.642 0.356 0.768 0.794
RA04 0.732 0.838 0.579 0.650 0.435 0.642 0.748
RA05 0.529 0.703 0.239 0.281 0.233 0.469 0.687
RA06 0.639 0.731 0.377 0.446 0.399 0.684 0.647
RA07 0.557 0.698 0.331 0.327 0.163 0.466 0.671
RA08 0.725 0.847 0.435 0.524 0.314 0.554 0.678

表4

碱性盐胁迫下8个油菜种质隶属函数及排序

编号
Number
出苗率
Emergence
rate
茎粗
Stem
diameter
植株鲜重
Plant fresh
weight
植株干重
Plant dry
weight
根干重
Root dry
weight
株高
Plant
height
主根长
Main root
length
隶属函数值
Membership
function value
排序
Ranking
RA01 0.516 0.579 0.487 0.558 0.457 0.586 0.618 0.543 1
RA02 0.667 0.476 0.440 0.421 0.523 0.501 0.493 0.503 5
RA03 0.467 0.396 0.586 0.500 0.525 0.536 0.606 0.517 3
RA04 0.667 0.427 0.473 0.439 0.403 0.492 0.547 0.493 7
RA05 0.333 0.537 0.427 0.431 0.410 0.524 0.683 0.478 8
RA06 0.555 0.561 0.579 0.406 0.543 0.512 0.438 0.514 4
RA07 0.610 0.654 0.499 0.359 0.464 0.486 0.389 0.495 6
RA08 0.667 0.529 0.446 0.457 0.489 0.537 0.550 0.525 2

图1

不同浓度碱性盐胁迫下华油杂62和16-P32外的表型差异

表5

碱性盐胁迫下油菜根际土壤有机酸含量

种质
Germplasm
处理
Treatment
草酸
Oxalic acid
甲酸
Formic acid
柠檬酸
Citric acid
琥珀酸
Succinic acid
苹果酸
Malic acid
酒石酸
Tartaric acid
乙酸
Acetic acid
抗坏血酸
Ascorbic acid
华油杂62 A0 2.424±0.342Ad 1.809±0.237Ac 0.159±0.014Ac 2.725±0.398Ad 4.466±0.181Ab 0.548±0.028Aa 0.455±0.030Ab 0.018±0.006Ab
Huayouza 62 A2 4.050±1.758Ac 2.582±0.399Ab 0.170±0.006Ac 4.224±0.167Ac 5.630±0.133Ab 0.612±0.128Aa 0.734±0.116Aa 0.021±0.004Ab
A4 6.703±1.598Ab 2.890±0.384Aa 0.406±0.078Ab 8.491±0.353Ab 8.371±1.963Aa 0.652±0.067Aa 0.530±0.064Ab 0.065±0.005Aa
A6 32.228±2.388Aa 2.981±0.356Aa 0.618±0.007Aa 12.587±0.268Aa 5.479±0.804Ab 0.225±0.121Ab 0.191±0.004Ac 0.000±0.000Ac
16-P32外 A0 2.987±0.213Ac 1.619±0.325Ab 0.108±0.016Ac 2.337±0.326Ad 4.691±0.604Ab 0.401±0.039Bb 0.408±0.061Aa 0.009±0.006Bc
16-P32 wai A2 4.221±0.377Ab 2.365±0.409Aab 0.141±0.025Ac 4.147±0.659Ac 5.145±0.544Ab 0.507±0.093Aab 0.475±0.014Aa 0.018±0.003Ab
A4 4.652±0.186Ab 2.691±0.082Aab 0.359±0.036Ab 5.779±0.579Bb 7.623±0.249Aa 0.573±0.054Aa 0.457±0.117Aa 0.068±0.003Aa
A6 28.933±0.469Ba 3.308±1.272Aa 0.537±0.013Ba 9.300±0.197Ba 5.113±1.128Ab 0.367±0.085Ab 0.128±0.006Bb 0.000±0.000Ad
方差分析Analysis of variance
种质(V)Germplasm 48.92** 0.03ns 13.94** 145.54** 0.80ns 2.47ns 15.00** 1.46ns
处理(T)Treatment 5642.64** 10.91** 226.38** 760.03** 15.19** 21.39** 44.09** 303.54**
V×T 24.43** 0.52ns 0.58ns 36.57** 0.29ns 4.68* 3.05ns 2.35ns
[1] Jin H, Plaha P, Park J Y, et al. Comparative EST profiles of leaf and root of Leymus chinensis,a xerophilous grass adapted to high pH sodic soil. Plant Science, 2006, 170:1081-1086.
doi: 10.1016/j.plantsci.2006.01.002
[2] Li J, Xu H H, Liu W C, et al. Ethylene inhibits root elongation during alkaline stress through AUX1 and associated changes in auxin accumulation. Plant Physiology, 2015, 168:1777-1791.
doi: 10.1104/pp.15.00523
[3] Sun H, Lu H, Chu L, et al. Biochar applied with appropriate rates can reduce N leaching,keep N retention and not increase NH3 volatilization in a coastal saline soil. Science of the Total Environment, 2007, 575:820-825.
doi: 10.1016/j.scitotenv.2016.09.137
[4] Kawanabe S, Zhu T. Degeneration and conservational trial of Aneurolepidium chinense grassland in Northern China. Grassland Science, 1991, 39:91-99.
[5] Wang H, Lin X, Cao S, et al. Alkali tolerance in rice (Oryza sativa L.):growth,photosynthesis,nitrogen metabolism,and ion homeostasis. Photosynthetica, 2015, 53:55-65.
doi: 10.1007/s11099-015-0079-4
[6] Shi D C, Sheng Y M. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environmental and Experimental Botany, 2005, 54(1):8-21.
doi: 10.1016/j.envexpbot.2004.05.003
[7] Shi D C, Wang D. Effects of various salt-alkali mixed stresses on Aneurolepidium chinense (Trin) Kitag. Plant Soil, 2005, 271:15-26.
doi: 10.1007/s11104-004-1307-z
[8] Chen W C, Cui P J, Sun H Y, et al. Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.). Industrial Crops and Products, 2009, 30:351-358.
doi: 10.1016/j.indcrop.2009.06.007
[9] Qasim M. Physiological and biochemical studiesin a potential oilseed crop canola (Brassica napus L.) under salinity (NaCl) stress. Faisalabad, Pakistan:University of Agriculture, 2000.
[10] Maas E V. Testing crops for salinity tolerance//Marnville J W,Baligar B V,Duncan R R,et al. Proc. Workshop on Adaptation of Plants to Soil Stresses,INTSORMIL Publication, 1993:234-247.
[11] 张新草, 薛项潇, 姜深, 等. 大豆种质发芽期耐盐碱性鉴定及指标筛选. 西北农业学报, 2020, 29(3):374-381.
[12] 桑晓慧, 赵云雷, 王红梅, 等. 陆地棉抗旱性与SSR分子标记的关联分析. 棉花学报, 2017, 29(3):241-252.
[13] 田小霞, 毛培春, 孟林, 等. 无芒雀麦苗期耐盐指标筛选及耐盐性综合评价. 干旱区资源与环境, 2017, 31(10):156-161.
[14] Munns R. Comparative physiology of salt and water stress. Plant,Cell and Environment, 2002, 25:239-250.
doi: 10.1046/j.0016-8025.2001.00808.x
[15] Seshadri B, Bolan N S, Naidu R, et al. Rhizosphere-induced heavy metal (loid) transformation in relation to bioavailability and remediation. Journal of Soil Science and Plant Nutrition, 2015, 15:524-528.
[16] Vítková M, Komárek M, Tejnecky V, et al. Interactions of nano-oxides with low-molecular-weight organic acids in a contaminated soil. Journal of Hazardous Materials, 2015, 293:7-14.
doi: 10.1016/j.jhazmat.2015.03.033
[17] Luo Q, Sun L N, Hu X M, et al. The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress:metabonomics analysis. PLoS ONE, 2014, 9(12):e115581.
doi: 10.1371/journal.pone.0115581
[18] Soudek P, Petrová S, Buzek M, et al. Uranium uptake in Nicotiana sp. under hydroponic conditions. Journal of Geochemical Exploration, 2014, 142(4):130-137.
doi: 10.1016/j.gexplo.2013.10.001
[19] Guo L Q, Shi D C, Wang D L, et al. The key physiological response to alkali stress by the alkali‐resistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere. Journal of Agronomy and Crop Science, 2010, 196(2):123-135.
doi: 10.1111/jac.2010.196.issue-2
[20] Guo S H, Niu Y J, Zhai H, et al. Effects of alkaline stress on organic acid metabolism in roots of grape hybrid rootstocks. Scientia Horticulturae, 2018, 227:255-260.
doi: 10.1016/j.scienta.2017.09.051
[21] Qu Y G, Zhao K F. Comparative studies on growth and physiological reaction of Zea mays under NaCl and Na2CO3 stress. Acta Agronomica Sinica, 2004, 30:334-341.
[22] Qu Y G, Zhao K F. Comparative of the stress effects of NaCl and Na2CO3 on Suaeda salsa L. Journal of Plant Physiology and Molecular Biology, 2003, 29:387-394.
[23] Toal M E, Yeomans C V, Killham K S, et al. A review of rhizosphere carbon flow modeling. Plant and Soil, 2000, 222:263-281.
doi: 10.1023/A:1004736021965
[24] 杨玲, 沈海龙, 崔晓涛. NaHCO3胁迫下新西伯利亚银白杨幼苗生长和光合能力变化. 林业科学, 2012, 48(7):51-55.
[25] 杨传宝, 倪惠菁, 李善文, 等. 白杨派无性系苗期对NaHCO3胁迫的生长生理响应及耐盐碱性综合评价. 植物生理学报, 2016, 52(10):1555-1564.
[26] 王景艳, 刘兆普, 刘玲, 等. NaCl胁迫对长春花幼苗离子分布和光合作用的影响. 生态学杂志, 2008(10):1680-1684.
[27] 景宇鹏. 土默川平原盐渍化土壤改良前后土壤特性及玉米品种耐盐性研究. 呼和浩特:内蒙古农业大学, 2014.
[28] 王婧泽, 高树, 孙丽芳, 等. 3个玉米自交系对盐胁迫的生理响应及耐盐性评价. 干旱地区农业研究, 2017, 35(2):89-95.
[29] Shi D C, Yin S J, Yang G H, et al. Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress. Acta Botanica Sinica, 2002, 44(5):537-540.
[30] 邹春雷. 甜菜适应碱性盐胁迫的生理机制及其转录组分析. 哈尔滨:东北农业大学, 2019.
[31] 李朝苏, 刘鹏, 徐根娣, 等. 外源有机酸对荞麦幼苗铝毒害的缓解效应. 作物学报, 2006, 32(4):532-539.
[32] 张世兴. 浇灌乙酸及草酸对葡萄盐碱胁迫的缓解作用. 泰安:山东农业大学, 2020.
[33] Yang C W, Chong J N, Li C Y, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant and Soil, 2007, 294(1/2):263-276.
doi: 10.1007/s11104-007-9251-3
[34] Yang C W, Shi D C, Wang D L, et al. Comparative effects of salt and alkali stresses on growth,osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regulation, 2008, 56(2):179-190.
doi: 10.1007/s10725-008-9299-y
[1] 林晓阳, 杜德志, 柳海东, 李钧. 特早熟甘蓝型春油菜恢复系核心种质构建[J]. 作物杂志, 2022, (1): 31–37
[2] 李心昊, 李俊, 万林, 刘丽欣, 刘君权, 马霓. 丘陵地区免耕条播对油菜生长、根系和产量的影响[J]. 作物杂志, 2021, (6): 139–144
[3] 熊廷浩, 资涛, 张嫒, 胡宇倩, 彭芝, 宋海星. 化肥减量条件下不同有机肥用量对油菜养分利用和产量的影响[J]. 作物杂志, 2021, (3): 133–139
[4] 秦璐, 王建强, 韩配配, 李银水, 顾炽明, 胡小加, 谢立华, 廖星. 不同氮效率油菜种质苗期氮吸收转运与利用差异研究[J]. 作物杂志, 2021, (3): 28–33
[5] 易镇邪, 王元元, 谷子寒, 帅泽宇, 屠乃美, 陈平平. 镉污染稻区油菜–中稻替代双季稻种植的可行性研究[J]. 作物杂志, 2021, (3): 65–69
[6] 周江, 谢宜章, 向平安. 湖南主要大田作物系统投入产出的能值分析[J]. 作物杂志, 2021, (1): 175–181
[7] 吕伟生, 肖小军, 黄天宝, 肖国滨, 李亚贞, 肖富良, 韩德鹏, 郑伟. 缓释型配方肥在晚稻套播油菜上的施用效果研究[J]. 作物杂志, 2020, (6): 143–150
[8] 王瑞, 平俊爱, 张福耀, 詹鹏杰, 楚建强. 高粱育种资源耐瘠性鉴定及评价[J]. 作物杂志, 2020, (6): 30–37
[9] 王芙蓉, 张建学, 郭岷江, 张亚宏, 范提平, 王亚宏, 张岩, 裴国平, 雷建明. 苗后除草剂喷施时期对杂草防治及冬油菜产量和品质的影响[J]. 作物杂志, 2020, (5): 204–208
[10] 张耀文, 李殿荣, 侯君利, 孔建, 张文学, 董育红, 赵小光, 田建华, 张忠鑫. 油菜种子中亚麻酸研究现状及改良思路[J]. 作物杂志, 2020, (4): 21–29
[11] 袁长凯, 罗海华, 陈功, 高欣, 彭金剑, 向春玲, 殷梦瑶, 王培培, 徐兰兰, 汤飞宇. 不同棉花基因型种子萌发响应铜胁迫的差异[J]. 作物杂志, 2020, (3): 53–59
[12] 柳海东,余青兰,王瑞生,杜德志. 春油菜区抗跳甲油菜资源的筛选[J]. 作物杂志, 2020, (2): 34–40
[13] 胡宇倩,资涛,熊廷浩,张振华,宋海星. 早熟与常规熟期冬油菜品种养分吸收规律差异研究[J]. 作物杂志, 2020, (1): 117–123
[14] 刘晓亚,张立峰,张继宗,石文宾,张培月. 甘蓝型油菜对华北坝上冷凉环境的适应性[J]. 作物杂志, 2019, (5): 97–103
[15] 夏原野,杜志敏,杨宇尘,宫彦龙,闫志强,徐海. 喷施表油菜素内酯对籼稻和粳稻花时的影响[J]. 作物杂志, 2019, (4): 139–147
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!