作物杂志,2022, 第6期: 174–180 doi: 10.16035/j.issn.1001-7283.2022.06.025

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

调环酸钙对盐碱胁迫下绿豆苗期生长的调控作用

侯雪1(), 陈雨洁1(), 李春苗1, 方淑梅1,2(), 梁喜龙1,2(), 郑殿峰1,3   

  1. 1黑龙江八一农垦大学,163319,黑龙江大庆
    2黑龙江省植物生长调节剂工程技术研究中心,163319,黑龙江大庆
    3广东海洋大学,524088,广东湛江
  • 收稿日期:2021-09-06 修回日期:2021-11-19 出版日期:2022-12-15 发布日期:2022-12-21
  • 通讯作者: 方淑梅,梁喜龙
  • 作者简介:侯雪,从事植物逆境与化学调控研究,E-mail:1450674207@qq.com;|陈雨洁为共同第一作者,从事植物化学调控相关研究,E-mail:1414554166@qq.com
  • 基金资助:
    大学生创新创业训练计划项目(201910223010);黑龙江省农垦总局科技攻关项目(HNK135-02-10);黑龙江省杂粮现代农业产业技术协同创新体系项目;黑龙江省杂粮生产与加工特色学科建设项目

Regulating Effects of Prohexadione-Calcium on the Growth of Mung Bean Seedlings under Saline-Alkali Stress

Hou Xue1(), Chen Yujie1(), Li Chunmiao1, Fang Shumei1,2(), Liang Xilong1,2(), Zheng Dianfeng1,3   

  1. 1Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2Heilongjiang Plant Growth Regulator Engineering Technology Research Center, Daqing 163319, Heilongjiang, China
    3Guangdong Ocean University, Zhanjiang 524088, Guangdong, China
  • Received:2021-09-06 Revised:2021-11-19 Online:2022-12-15 Published:2022-12-21
  • Contact: Fang Shumei,Liang Xilong

摘要:

以绿丰2号和绿丰5号为试验材料,于第1片复叶展开期进行150mmol/L的混合盐碱胁迫及叶面喷施不同浓度的调环酸钙(Pro-Ca),再继续培养15d后取样,研究不同浓度的Pro-Ca对绿豆苗期生长的调控作用。结果表明,叶面喷施适宜浓度的Pro-Ca(100mg/L)可通过增加渗透物质含量、提升抗氧化酶活性及降低MDA含量来维持细胞渗透势,消除活性氧,降低膜质过氧化程度,保护细胞膜结构,从而缓解盐碱胁迫对绿豆幼苗植株造成的伤害,提高绿豆幼苗抗盐碱的能力,具体表现为100mg/L Pro-Ca处理下绿丰2号和绿丰5号株高分别降低29.64%和21.72%,地下干重分别增加33.33%和50.00%,根冠比分别增加42.86%和8.33%,叶绿素含量分别增加15.77%和18.55%。

关键词: 盐碱胁迫, 调环酸钙, 绿豆, 渗透调节, 保护性酶

Abstract:

Lüfeng 2 and Lüfeng 5 were used as the experiment materials. 150mmol/L mixed saline-alkali stress was applied and different concentrations of prohexadione-calcium (Pro-Ca) were foliar sprayed during the first compound leaf development period. Samples were collected after 15 days of continued growth to study the regulation effects of different concentrations of Pro-Ca on the growth of mung bean seedlings. The results showed that the suitable concentration of Pro-Ca (100mg/L) could maintain cell osmotic potential, eliminate reactive oxygen species, reduce the degree of membrane peroxidation, and protect cell membrane structure by increasing the content of osmotic substances, enhancing the activity of antioxidant enzymes, and reducing the content of MDA, thereby alleviating the damage to mung bean seedlings caused by salt-alkali stress, and improving the resistance of mung bean seedlings to salt-alkali. Specifically, the plant height of Lüfeng 2 and Lüfeng 5 decreased by 29.64% and 21.72%, the underground dry weight increased by 33.33% and 50.00%, and the root-to-shoot ratio increased by 42.86% and 8.33%, chlorophyll content increased by 15.77% and 18.55%, respectively, under the treatment of 100mg/L.

Key words: Saline-alkali stress, Prohexadione-calcium, Mung bean, Osmotic adjustment, Protective enzymes

表1

Pro-Ca对盐碱胁迫下绿豆苗期形态指标的影响

处理浓度
Treatment concentration (mg/L)
品种
Variety
株高
Plant height (cm)
茎粗
Stem diameter (mm)
地上部干重
Shoot dry weight (g)
地下部干重
Root dry weight (g)
根冠比
R/S
0 (CK) 绿丰2号 20.58±2.12a 1.43±0.19a 0.20±0.05a 0.03±0.01c 0.14±0.07b
绿丰5号 20.44±3.10a 1.43±0.19b 0.23±0.08a 0.04±0.02b 0.24±0.22a
50 绿丰2号 15.43±1.65bc 1.45±0.33a 0.24±0.10a 0.05±0.01ab 0.22±0.10a
绿丰5号 19.18±2.12a 1.55±0.24ab 0.25±0.10a 0.04±0.02b 0.17±0.08ab
100 绿丰2号 14.48±1.67c 1.43±0.26a 0.23±0.10a 0.04±0.02b 0.20±0.09ab
绿丰5号 16.00±1.49b 1.65±0.26a 0.28±0.08a 0.08±0.08a 0.26±0.17a
150 绿丰2号 13.82±2.64c 1.43±0.18a 0.24±0.09a 0.04±0.02bc 0.18±0.09ab
绿丰5号 18.77±3.17a 1.58±0.15ab 0.25±0.07a 0.03±0.01b 0.12±0.05b
200 绿丰2号 16.69±1.96b 1.38±0.18a 0.28±0.11a 0.05±0.01a 0.21±0.10a
绿丰5号 18.33±2.60a 1.48±0.24ab 0.29±0.14a 0.04±0.01b 0.17±0.09ab
FF-value 处理 10.912** 0.892 1.629 4.480** 2.720*
品种 19.301** 5.314* 2.086 1.937 0.017
处理×品种 2.823* 0.539 0.191 4.058* 2.944*

图1

Pro-Ca对盐碱胁迫下绿豆苗期SPAD的影响 相同小写字母表示处理间无显著差异(P > 0.05)

表2

Pro-Ca对盐碱胁迫下绿豆苗期渗透调节物质含量的影响

处理浓度
Treatment concentration (mg/L)
品种
Variety
可溶性糖含量
Soluble sugar content (m/g FW)
可溶性蛋白质含量
Soluble protein content (m/g FW)
脯氨酸含量
Proline content (μg/g FW)
0(CK) 绿丰2号 3.89±0.17a 4.44±0.02a 18.58±5.62a
绿丰5号 2.62±0.29a 4.18±0.17b 12.62±2.25a
50 绿丰2号 7.42±0.23bc 6.37±0.12a 21.94±1.92a
绿丰5号 4.49±0.20a 5.63±0.14ab 15.31±3.58a
100 绿丰2号 10.63±0.34c 4.63±0.19a 35.68±2.25a
绿丰5号 10.10±0.42b 6.43±0.12a 36.25±6.80a
150 绿丰2号 11.80±0.46c 4.94±0.09a 40.67±1.16a
绿丰5号 9.27±0.26a 4.93±0.05ab 36.25±1.73a
200 绿丰2号 9.62±0.28b 5.65±0.17a 21.94±3.66a
绿丰5号 9.09±0.10a 4.72±0.05ab 31.74±4.56a
FF-value 处理 702.983** 156.345** 43.608**
品种 211.231** 0.346 2.836
处理×品种 21.760** 114.639** 2.501

表3

Pro-Ca对盐碱胁迫下绿豆苗期SOD,POD和CAT活性的影响

处理浓度
Treatment concentration (mg/L)
品种
Variety
SOD活性
SOD activity (U/g FW)
POD活性
POD activity (U/g FW)
CAT活性
CAT activity (U/g FW)
0(CK) 绿丰2号 285.71±4.79a 1188.89±732.07a 311.11±27.76a
绿丰5号 310.08±18.43a 877.78±150.31b 404.44±20.37a
50 绿丰2号 323.81±15.74bc 2388.89±171.05a 337.78±40.73a
绿丰5号 330.90±19.17a 1788.89±69.39ab 524.44±7.70a
100 绿丰2号 334.00±2.03c 3644.44±509.18a 466.67±48.07a
绿丰5号 349.06±23.93b 2344.44±101.84a 546.67±0.00a
150 绿丰2号 319.82±21.48c 2433.33±200.00a 391.11±20.37a
绿丰5号 324.25±5.79a 2255.56±69.39ab 471.11±7.70a
200 绿丰2号 310.08±18.09b 1911.11±69.39a 315.56±7.70a
绿丰5号 318.05±2.77a 1988.89±830.22ab 317.78±27.76a
FF-value 处理 6.566** 18.911** 33.286**
品种 4.367 10.008** 135.309**
处理×品种 0.408 2.614 4.605**

表4

Pro-Ca对盐碱胁迫下绿豆苗期MDA含量的影响

处理浓度
Treatment
concentration (mg/L)
品种
Variety
MDA含量
MDA content
(mmol/g FW)
0 (CK) 绿丰2号 33.99±0.84a
绿丰5号 23.66±0.67a
50 绿丰2号 28.52±7.57bc
绿丰5号 22.21±0.28a
100 绿丰2号 26.20±0.51c
绿丰5号 20.99±1.38b
150 绿丰2号 26.02±0.44c
绿丰5号 22.00±2.20a
200 绿丰2号 21.73±0.55b
绿丰5号 19.61±0.60a
FF-value 处理 7.953**
品种 35.401**
处理×品种 2.124
[1] Li J, Pu L, Han M, et al. Soil salinization research in China:advances and prospects. Journal of Geographical Sciences, 2014, 24(5):943-960.
doi: 10.1007/s11442-014-1130-2
[2] Oster J, Shainberg I, Abrol I. Reclamation of salt-affected soils. Agricultural Drainage, 1999, 38(19):659-691.
[3] Feng W Z, Chen Q, Ma C H. Physico-chemical characteristics and microbial composition of saline-alkaline soils in Songnen Plain. Soils, 2007, 39(2):301-305.
[4] Abd-Alla M, Vuong T, Harper J. Genotypic differences in dinitrogen fixation response to NaCl stress in intact and grafted soybean. Crop Science, 1998, 38(1):72-77.
doi: 10.2135/cropsci1998.0011183X003800010013x
[5] Noble T. Development of the mungbean nested association mapping (NAM) resource. Brisbane: Queensland University of Technology, 2017.
[6] Kumawat N, Kumar R, Sharma O. Nutrient uptake and yield of mung bean [Vigna radiata (L.) Wilczek] as influenced by organic manures,PSB and phosphorus fertilization. Environment and Ecology, 2009, 27(4B):2002-2005.
[7] Bhanu A, Singh M, Srivastava K. Screening mungbean [Vigna radiata (L.) Wilczek] genotypes for mungbean yellow mosaic virus resistance under natural condition. Advances in Plants and Agriculture Research, 2017, 7(6):00276.
[8] 程须珍. 绿豆生产技术. 北京: 北京教育出版社, 2016.
[9] 林汝法, 柴岩, 廖琴. 中国小杂粮. 北京: 中国农业科学技术出版社, 2002.
[10] 徐宁, 曲祥春, 王明海, 等. 绿豆主要株型性状的遗传. 中国农业大学学报, 2019, 24(4):24-35.
[11] Kamiya Y, Kobayashi M, Fujioka S, et al. Effects of a plant growth regulator,prohexadione calcium (BX-112),on the elongation of rice shoots caused by exogenously applied gibberellins and helminthosporol,Part II1. Plant and Cell Physiology, 1991, 32(8):1205-1210.
[12] Winkler V W. Reduced risk concept for prohexadione-calcium,avegetative growth control plant growth regulator in apples. International Society for Horticultural Science (ISHS), 1997, 451:667-672.
[13] Soleimani Aghdam M. Mitigation of postharvest chilling injury in tomato fruit by prohexadione calcium. Journal of Food Science and Technology, 2013, 50(5):1029-33.
doi: 10.1007/s13197-013-0994-y pmid: 24426014
[14] Rezapour Fard J, Kafi M, Naderi R. The enhancement of drought stress tolerance of kentucky bluegrass by prohexadione-calcium treatment. Journal of Ornamental Plants, 2015, 5(4):197-204.
[15] Bekheta M A, Abdelhamid M T, El-Morsi A A. Physiological response of vicia faba to prohexadione-calcium under saline conditions. Planta Daninha, 2009, 27:769-779.
doi: 10.1590/S0100-83582009000400015
[16] 葛莹, 李建东. 盐生植被在土壤积盐——脱盐过程中作用的初探. 草业学报, 1990(1):70-76.
[17] Benjamin J G, Nielsen D C, Vigil M F, et al. Water deficit stress effects on corn (Zea mays L.) root: shoot ratio. Open Journal of Soil Science, 2014(4):151-160.
[18] Liu Z, Zhang H, Yang X, et al. Effects of soil salinity on growth,ion relations,and compatible solute accumulation of two sumac species:Rhus glabra and Rhus trilobata. Communications in Soil Science and Plant Analysis, 2013, 44(21):3187-3204.
doi: 10.1080/00103624.2013.832289
[19] Nasr S M H, Parsakhoo A, Naghavi H, et al. Effect of salt stress on germination and seedling growth of Prosopis juliflora (Sw.). New Forests, 2012, 43(1):45-55.
doi: 10.1007/s11056-011-9265-9
[20] Itai C, Benzioni A. Water stress and hormonal response,water and plant life. Springer, 1976, 19:225-242.
[21] Zuccarini P. Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil and Environment, 2007, 53(7):283-289.
doi: 10.17221/2209-PSE
[22] Ozbay N, Ergun N. Prohexadione calcium on the growth and quality of eggplant seedlings. Pesquisa Agropecuária Brasileira, 2015, 50:932-938.
doi: 10.1590/S0100-204X2015001000009
[23] Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 2000, 51(1):463-499.
[24] Sun J, He L, Li T. Response of seedling growth and physiology of Sorghum bicolor (L.) Moench to saline-alkali stress. PLoS ONE, 2019, 14(7):e0220340.
[25] Vendruscolo E C G, Schuster I, Pileggi M, et al. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology, 2007, 164(10):1367-1376.
pmid: 17604875
[26] Doganlar Z B, Demir K, Basak H, et al. Effects of salt stress on pigment and total soluble protein contents of three different tomato cultivars. African Journal of Agricultural Research, 2010, 5(15):2056-2065.
[27] Wang X, Geng S, Ri Y J, et al. Physiological responses and adaptive strategies of tomato plants to salt and alkali stresses. Scientia Horticulturae, 2011, 130(1):248-255.
doi: 10.1016/j.scienta.2011.07.006
[28] Aghdam M S. Mitigation of postharvest chilling injury in tomato fruit by prohexadione calcium. Journal of Food Science and Technology, 2013, 50(5):1029-1033.
doi: 10.1007/s13197-013-0994-y pmid: 24426014
[29] Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 2005, 60(3):324-349.
pmid: 15590011
[30] De Azevedo Neto A D, Prisco J T, Enéas-Filho J, et al. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 2006, 56(1):87-94.
doi: 10.1016/j.envexpbot.2005.01.008
[31] McKay H, Mason W. Physiological indicators of tolerance to cold storage in Sitka spruce and Douglas-fir seedlings. Canadian Journal of Forest Research, 1991, 21(6):890-901.
doi: 10.1139/x91-124
[32] Ramírez H, Herrera-Gámez B, Benavides-Mendoza A, et al. Prohexadione calcium increases antioxidant capacity,lycopene content and enzymatic activity in fruits of tomato Floradade. Revista Chapingo. Serie Horticultura, 2010, 16(3):155-160.
[1] 王金香, 王艳芝, 幸丽璇, 刘建霞, 王润梅. 赤霉素对盐胁迫下绿宝糯黍子幼苗根生长及渗透调节的影响[J]. 作物杂志, 2022, (6): 98–104
[2] 张建业, 杜庆志, 刘翔, 邓佳辉, 焦芹, 龚洛, 姜兴印. 盐碱胁迫下S-诱抗素对玉米萌发及生长的影响[J]. 作物杂志, 2022, (5): 167–173
[3] 魏晓凯, 景延秋, 何佶弦, 顾会战, 雷强, 俞世康, 张启莉, 李俊举. 外源亚精胺对烤烟幼苗干旱胁迫的缓解效应研究[J]. 作物杂志, 2022, (3): 143–148
[4] 张豫丹, 马晓寒, 李俊领, 许自成, 贾玮, 石秋环. 绿原酸对烟草疫霉的抑制作用及对烟草黑胫病的防治效果研究[J]. 作物杂志, 2022, (2): 230–236
[5] 靳丹, 冯乃杰, 郑殿峰, 王诗雅. 5-氨基乙酰丙酸对绿豆碳代谢及产量的影响[J]. 作物杂志, 2022, (1): 147–153
[6] 田静, 程须珍, 范保杰, 王丽侠, 刘建军, 刘长友, 王素华, 曹志敏, 陈红霖, 王彦, 王珅. 我国绿豆品种现状及发展趋势[J]. 作物杂志, 2021, (6): 15–21
[7] 朱旭, 胡卫丽, 杨厚勇, 许阳, 向臻, 杨玲, 杨鹏程. 南阳盆地适宜机械化收获绿豆品种(系)农艺性状分析[J]. 作物杂志, 2021, (4): 93–98
[8] 郝曦煜, 肖焕玉, 梁杰, 王英杰, 郭文云. 绿豆氮磷钾施肥效应与最优施肥量研究[J]. 作物杂志, 2020, (5): 127–132
[9] 谢金兰, 林丽, 李长宁, 罗霆, 莫璋红. 氮肥减量条件下间作绿豆压青对甘蔗生长及氮代谢的影响[J]. 作物杂志, 2020, (4): 164–169
[10] 王明瑶,曹亮,于奇,邹京南,何松榆,秦彬,王孟雪,张玉先. 褪黑素浸种对盐碱胁迫下大豆种子萌发的影响[J]. 作物杂志, 2019, (6): 195–202
[11] 刘兴叶,邢宝龙,吴瑞香,王桂梅,刘飞. 晋北绿豆主要农艺性状变异及对产量构成的影响[J]. 作物杂志, 2019, (5): 69–75
[12] 公丹,潘晓威,王素华,王丽侠,程须珍. 国家食用豆产业技术体系绿豆新品种(系)联合鉴定[J]. 作物杂志, 2019, (4): 30–36
[13] 叶卫军,杨勇,张丽亚,田东丰,张玲玲,周斌. 氮肥用量对绿豆品种皖科绿3号农艺性状及氮肥利用率的影响[J]. 作物杂志, 2019, (3): 137–141
[14] 殷丽丽,陈晓亮,陈璐璐,房雅容,曹家绮,周凤,李凤,李朕. NaCl、Na2SO4和Na2CO3对绿豆种子萌发的影响[J]. 作物杂志, 2019, (3): 192–196
[15] 刘振兴,周桂梅,陈健,赵晖. 几种生物农药对绿豆叶斑病的防治效果[J]. 作物杂志, 2018, (6): 154–157
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!