作物杂志,2022, 第6期: 174180 doi: 10.16035/j.issn.1001-7283.2022.06.025
侯雪1(), 陈雨洁1(), 李春苗1, 方淑梅1,2(), 梁喜龙1,2(), 郑殿峰1,3
Hou Xue1(), Chen Yujie1(), Li Chunmiao1, Fang Shumei1,2(), Liang Xilong1,2(), Zheng Dianfeng1,3
摘要:
以绿丰2号和绿丰5号为试验材料,于第1片复叶展开期进行150mmol/L的混合盐碱胁迫及叶面喷施不同浓度的调环酸钙(Pro-Ca),再继续培养15d后取样,研究不同浓度的Pro-Ca对绿豆苗期生长的调控作用。结果表明,叶面喷施适宜浓度的Pro-Ca(100mg/L)可通过增加渗透物质含量、提升抗氧化酶活性及降低MDA含量来维持细胞渗透势,消除活性氧,降低膜质过氧化程度,保护细胞膜结构,从而缓解盐碱胁迫对绿豆幼苗植株造成的伤害,提高绿豆幼苗抗盐碱的能力,具体表现为100mg/L Pro-Ca处理下绿丰2号和绿丰5号株高分别降低29.64%和21.72%,地下干重分别增加33.33%和50.00%,根冠比分别增加42.86%和8.33%,叶绿素含量分别增加15.77%和18.55%。
[1] |
Li J, Pu L, Han M, et al. Soil salinization research in China:advances and prospects. Journal of Geographical Sciences, 2014, 24(5):943-960.
doi: 10.1007/s11442-014-1130-2 |
[2] | Oster J, Shainberg I, Abrol I. Reclamation of salt-affected soils. Agricultural Drainage, 1999, 38(19):659-691. |
[3] | Feng W Z, Chen Q, Ma C H. Physico-chemical characteristics and microbial composition of saline-alkaline soils in Songnen Plain. Soils, 2007, 39(2):301-305. |
[4] |
Abd-Alla M, Vuong T, Harper J. Genotypic differences in dinitrogen fixation response to NaCl stress in intact and grafted soybean. Crop Science, 1998, 38(1):72-77.
doi: 10.2135/cropsci1998.0011183X003800010013x |
[5] | Noble T. Development of the mungbean nested association mapping (NAM) resource. Brisbane: Queensland University of Technology, 2017. |
[6] | Kumawat N, Kumar R, Sharma O. Nutrient uptake and yield of mung bean [Vigna radiata (L.) Wilczek] as influenced by organic manures,PSB and phosphorus fertilization. Environment and Ecology, 2009, 27(4B):2002-2005. |
[7] | Bhanu A, Singh M, Srivastava K. Screening mungbean [Vigna radiata (L.) Wilczek] genotypes for mungbean yellow mosaic virus resistance under natural condition. Advances in Plants and Agriculture Research, 2017, 7(6):00276. |
[8] | 程须珍. 绿豆生产技术. 北京: 北京教育出版社, 2016. |
[9] | 林汝法, 柴岩, 廖琴. 中国小杂粮. 北京: 中国农业科学技术出版社, 2002. |
[10] | 徐宁, 曲祥春, 王明海, 等. 绿豆主要株型性状的遗传. 中国农业大学学报, 2019, 24(4):24-35. |
[11] | Kamiya Y, Kobayashi M, Fujioka S, et al. Effects of a plant growth regulator,prohexadione calcium (BX-112),on the elongation of rice shoots caused by exogenously applied gibberellins and helminthosporol,Part II1. Plant and Cell Physiology, 1991, 32(8):1205-1210. |
[12] | Winkler V W. Reduced risk concept for prohexadione-calcium,avegetative growth control plant growth regulator in apples. International Society for Horticultural Science (ISHS), 1997, 451:667-672. |
[13] |
Soleimani Aghdam M. Mitigation of postharvest chilling injury in tomato fruit by prohexadione calcium. Journal of Food Science and Technology, 2013, 50(5):1029-33.
doi: 10.1007/s13197-013-0994-y pmid: 24426014 |
[14] | Rezapour Fard J, Kafi M, Naderi R. The enhancement of drought stress tolerance of kentucky bluegrass by prohexadione-calcium treatment. Journal of Ornamental Plants, 2015, 5(4):197-204. |
[15] |
Bekheta M A, Abdelhamid M T, El-Morsi A A. Physiological response of vicia faba to prohexadione-calcium under saline conditions. Planta Daninha, 2009, 27:769-779.
doi: 10.1590/S0100-83582009000400015 |
[16] | 葛莹, 李建东. 盐生植被在土壤积盐——脱盐过程中作用的初探. 草业学报, 1990(1):70-76. |
[17] | Benjamin J G, Nielsen D C, Vigil M F, et al. Water deficit stress effects on corn (Zea mays L.) root: shoot ratio. Open Journal of Soil Science, 2014(4):151-160. |
[18] |
Liu Z, Zhang H, Yang X, et al. Effects of soil salinity on growth,ion relations,and compatible solute accumulation of two sumac species:Rhus glabra and Rhus trilobata. Communications in Soil Science and Plant Analysis, 2013, 44(21):3187-3204.
doi: 10.1080/00103624.2013.832289 |
[19] |
Nasr S M H, Parsakhoo A, Naghavi H, et al. Effect of salt stress on germination and seedling growth of Prosopis juliflora (Sw.). New Forests, 2012, 43(1):45-55.
doi: 10.1007/s11056-011-9265-9 |
[20] | Itai C, Benzioni A. Water stress and hormonal response,water and plant life. Springer, 1976, 19:225-242. |
[21] |
Zuccarini P. Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil and Environment, 2007, 53(7):283-289.
doi: 10.17221/2209-PSE |
[22] |
Ozbay N, Ergun N. Prohexadione calcium on the growth and quality of eggplant seedlings. Pesquisa Agropecuária Brasileira, 2015, 50:932-938.
doi: 10.1590/S0100-204X2015001000009 |
[23] | Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 2000, 51(1):463-499. |
[24] | Sun J, He L, Li T. Response of seedling growth and physiology of Sorghum bicolor (L.) Moench to saline-alkali stress. PLoS ONE, 2019, 14(7):e0220340. |
[25] |
Vendruscolo E C G, Schuster I, Pileggi M, et al. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology, 2007, 164(10):1367-1376.
pmid: 17604875 |
[26] | Doganlar Z B, Demir K, Basak H, et al. Effects of salt stress on pigment and total soluble protein contents of three different tomato cultivars. African Journal of Agricultural Research, 2010, 5(15):2056-2065. |
[27] |
Wang X, Geng S, Ri Y J, et al. Physiological responses and adaptive strategies of tomato plants to salt and alkali stresses. Scientia Horticulturae, 2011, 130(1):248-255.
doi: 10.1016/j.scienta.2011.07.006 |
[28] |
Aghdam M S. Mitigation of postharvest chilling injury in tomato fruit by prohexadione calcium. Journal of Food Science and Technology, 2013, 50(5):1029-1033.
doi: 10.1007/s13197-013-0994-y pmid: 24426014 |
[29] |
Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 2005, 60(3):324-349.
pmid: 15590011 |
[30] |
De Azevedo Neto A D, Prisco J T, Enéas-Filho J, et al. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany, 2006, 56(1):87-94.
doi: 10.1016/j.envexpbot.2005.01.008 |
[31] |
McKay H, Mason W. Physiological indicators of tolerance to cold storage in Sitka spruce and Douglas-fir seedlings. Canadian Journal of Forest Research, 1991, 21(6):890-901.
doi: 10.1139/x91-124 |
[32] | Ramírez H, Herrera-Gámez B, Benavides-Mendoza A, et al. Prohexadione calcium increases antioxidant capacity,lycopene content and enzymatic activity in fruits of tomato Floradade. Revista Chapingo. Serie Horticultura, 2010, 16(3):155-160. |
[1] | 王金香, 王艳芝, 幸丽璇, 刘建霞, 王润梅. 赤霉素对盐胁迫下绿宝糯黍子幼苗根生长及渗透调节的影响[J]. 作物杂志, 2022, (6): 98104 |
[2] | 张建业, 杜庆志, 刘翔, 邓佳辉, 焦芹, 龚洛, 姜兴印. 盐碱胁迫下S-诱抗素对玉米萌发及生长的影响[J]. 作物杂志, 2022, (5): 167173 |
[3] | 魏晓凯, 景延秋, 何佶弦, 顾会战, 雷强, 俞世康, 张启莉, 李俊举. 外源亚精胺对烤烟幼苗干旱胁迫的缓解效应研究[J]. 作物杂志, 2022, (3): 143148 |
[4] | 张豫丹, 马晓寒, 李俊领, 许自成, 贾玮, 石秋环. 绿原酸对烟草疫霉的抑制作用及对烟草黑胫病的防治效果研究[J]. 作物杂志, 2022, (2): 230236 |
[5] | 靳丹, 冯乃杰, 郑殿峰, 王诗雅. 5-氨基乙酰丙酸对绿豆碳代谢及产量的影响[J]. 作物杂志, 2022, (1): 147153 |
[6] | 田静, 程须珍, 范保杰, 王丽侠, 刘建军, 刘长友, 王素华, 曹志敏, 陈红霖, 王彦, 王珅. 我国绿豆品种现状及发展趋势[J]. 作物杂志, 2021, (6): 1521 |
[7] | 朱旭, 胡卫丽, 杨厚勇, 许阳, 向臻, 杨玲, 杨鹏程. 南阳盆地适宜机械化收获绿豆品种(系)农艺性状分析[J]. 作物杂志, 2021, (4): 9398 |
[8] | 郝曦煜, 肖焕玉, 梁杰, 王英杰, 郭文云. 绿豆氮磷钾施肥效应与最优施肥量研究[J]. 作物杂志, 2020, (5): 127132 |
[9] | 谢金兰, 林丽, 李长宁, 罗霆, 莫璋红. 氮肥减量条件下间作绿豆压青对甘蔗生长及氮代谢的影响[J]. 作物杂志, 2020, (4): 164169 |
[10] | 王明瑶,曹亮,于奇,邹京南,何松榆,秦彬,王孟雪,张玉先. 褪黑素浸种对盐碱胁迫下大豆种子萌发的影响[J]. 作物杂志, 2019, (6): 195202 |
[11] | 刘兴叶,邢宝龙,吴瑞香,王桂梅,刘飞. 晋北绿豆主要农艺性状变异及对产量构成的影响[J]. 作物杂志, 2019, (5): 6975 |
[12] | 公丹,潘晓威,王素华,王丽侠,程须珍. 国家食用豆产业技术体系绿豆新品种(系)联合鉴定[J]. 作物杂志, 2019, (4): 3036 |
[13] | 叶卫军,杨勇,张丽亚,田东丰,张玲玲,周斌. 氮肥用量对绿豆品种皖科绿3号农艺性状及氮肥利用率的影响[J]. 作物杂志, 2019, (3): 137141 |
[14] | 殷丽丽,陈晓亮,陈璐璐,房雅容,曹家绮,周凤,李凤,李朕. NaCl、Na2SO4和Na2CO3对绿豆种子萌发的影响[J]. 作物杂志, 2019, (3): 192196 |
[15] | 刘振兴,周桂梅,陈健,赵晖. 几种生物农药对绿豆叶斑病的防治效果[J]. 作物杂志, 2018, (6): 154157 |
|