作物杂志,2023, 第2期: 238244 doi: 10.16035/j.issn.1001-7283.2023.02.034
Jia Luming(), Mo Aisu, Mo Yixue, Wu Haiyan()
摘要:
水稻潜根线虫在世界各稻区均普遍发生,给水稻生产造成一定的经济损失。从前期对根结线虫有较好毒杀活性的9个菌株中筛选出对水稻潜根线虫有很好毒杀效果的菌株。结果表明,2周发酵液2.5倍稀释液处理水稻潜根线虫,菌株ZW-1和XO-2对潜根线虫毒杀活性较强,72h的死亡率分别为93.7%和96.7%,LC50值分别为90.4451和76.3875μL/mL。根据形态学特征和rDNA-ITS序列分析,鉴定菌株ZW-1和XO-2分别为日本曲霉(Aspergillus japonicus)和黑曲霉(A.niger)。这些生防真菌菌株的发掘,为植物线虫病害的生物防治提供了新的微生物资源。
[1] | 周银丽, 尹体刘, 白建波, 等. 杏仁等6种植物提取液对水稻潜根线虫的抑杀作用. 湖北农业科学, 2011, 50(6):1153-1155. |
[2] | 尹淦鏐, 冯志新. 农作物寄生线虫的初步调查鉴定. 植物保护学报, 1981, 8(2):111-126. |
[3] | 胡先奇, 余敏, 林丽飞, 等. 云南水稻潜根线虫种类及生态分布研究. 中国农业科学, 2004, 37(5):681-686. |
[4] | 谢家廉, 杨芳, 黄文坤, 等. 近年水稻主要线虫病害的研究进展. 植物保护学报, 2017, 44(6):940-949. |
[5] |
Campos-Garcia J, Martinez D S T, Rezende K F O, et al. Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes. Ecotoxicology and Environmental Safety, 2016, 133:481-488.
doi: 10.1016/j.ecoenv.2016.07.041 pmid: 27543744 |
[6] |
Abd-Elgawad M M M, Askary T H. Factors affecting success of biological agents used in controlling the plant-parasitic nematodes. Egyptian Journal of Biological Pest Control, 2020, 30:17.
doi: 10.1186/s41938-020-00215-2 |
[7] |
Haarith D, Kim D G, Strom N B, et al. In vitro screening of a culturable soybean cyst nematode cyst mycobiome for potential biological control agents and biopesticides. Phytopathology, 2020, 110:1388-1397.
doi: 10.1094/PHYTO-01-20-0015-R pmid: 32286919 |
[8] |
Wu H Y, Zhang L Y, Zhou X B. Effects of Myrothecium verrucaria ZW-2 fermentation filtrates on various plant-parasitic nematodes. Journal of Plant Diseases and Protection, 2020, 127:545-552.
doi: 10.1007/s41348-020-00336-8 |
[9] | 段玉玺, 靳莹莹, 王胜君, 等. 生防菌株Snef85的鉴定及其发酵液对不同种类线虫的毒力. 植物保护学报, 2008, 35(2):132-136. |
[10] |
Kiewnick S, Sikora R A. Evaluation of Paecilomyces lilacinus strain 251 for the biological control of the northern root-knot nematode Meloidogyne hapla chitwood. Nematology, 2006, 8:69-78.
doi: 10.1163/156854106776179926 |
[11] | 孙漫红, 刘杏忠, 晋治波. 淡紫拟青霉对大豆胞囊线虫卵及2龄幼虫的影响. 植物保护学报, 2002, 29(1):57-61. |
[12] | 张壤心, 梁英辉, 逯昕明, 等. 杀松材线虫活性菌株筛选及活性成分分析. 吉林农业大学学报, 2018, 40(2):157-163. |
[13] |
Lee S I, Lee K J, Chun H H, et al. Process development of oxalic acid production in submerged culture of Aspergillus niger F22 and its biocontrol efficacy against the root-knot nematode Meloidogyne incognita. Bioprocess and Biosystems Engineering, 2017, 41:345-352.
doi: 10.1007/s00449-017-1867-y |
[14] | Jin C Z, Liu G Y, Liu X, et al. Nematicidal activity of ten kinds of plant extract against Hirschmanniella spp.. Agricultural Science and Technology, 2014, 15(12):2164-2166,2200. |
[15] | 周银丽, 胡先奇, 白建波, 等. 几种植物提取液对水稻潜根线虫的室内抑杀作用. 江苏农业科学, 2012, 40(3):103-104. |
[16] |
Shemshura O N, Bekmakhanova N E, Mazunina M N, et al. Isolation and identification of nematode-antagonistic compounds from the fungus Aspergillus candidus. Fems Microbiol Letters, 2016, 363(5):fnw026.
doi: 10.1093/femsle/fnw026 |
[17] |
Jin N, Liu S M, Peng H, et al. Isolation and characterization of Aspergillus niger NBC 001 underlying suppression against Heterodera glycines. Scientific Reports, 2019, 9:591.
doi: 10.1038/s41598-018-37827-6 pmid: 30679719 |
[18] |
He Q, Wang D Y, Li B X, et al. Nematicidal evaluation and active compounds isolation of Aspergillus japonicus ZW 1 against root-knot nematodes Meloidogyne incognita. Agronomy, 2020, 10:1222.
doi: 10.3390/agronomy10091222 |
[19] |
Jang J Y, Choi Y H, Shin T S, et al. Biological control of Meloidogyne incognita by Aspergillus niger F 22 producing oxalic acid. PLoS ONE, 2016, 11:e0156230.
doi: 10.1371/journal.pone.0156230 |
[20] |
Li J, Zou C G, Xu J P, et al. Molecular mechanisms of nematode- nematophagous microbe interactions:basis for biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 2015, 53:67-95.
doi: 10.1146/phyto.2015.53.issue-1 |
[21] |
Naz I, Khan R A A, Masood T, et al. Biological control of root knot nematode, Meloidogyne incognita, in vitro, greenhouse and field in cucumber. Biological Control, 2020, 152:104429.
doi: 10.1016/j.biocontrol.2020.104429 |
[22] |
Affokpon A, Coyne D L, Htay C C, et al. Biocontrol potential of native Trichoderma isolates against root-knot nematodes in West African vegetable production systems. Soil Biology and Biochemistry, 2011, 43:600-608.
doi: 10.1016/j.soilbio.2010.11.029 |
[1] | 赵小琴, 贾瑞玲, 刘军秀, 刘彦明, 文殷花, 师丽丽, 张娟宁, 马宁. 120份谷子种质资源的农艺性状表现和遗传多样性分析[J]. 作物杂志, 2022, (6): 6169 |
[2] | 续创业, 张建军, 周刚, 张铠鹏, 朱晓惠, 王甲玺, 党翼, 赵刚, 王磊, 李尚中, 樊廷录. 陇东旱塬密植高产机械粒收玉米新品种筛选与评价[J]. 作物杂志, 2022, (5): 104110 |
[3] | 肖明昆, 刘光华, 宋记明, 刘倩, 段春芳, 姜太玲, 张林辉, 严炜, 沈绍斌, 周迎春, 熊贤坤, 罗鑫, 白丽娜, 李月仙. 不同木薯品种(系)农艺性状分析及高产品种(系)筛选[J]. 作物杂志, 2022, (4): 7782 |
[4] | 柳海东,余青兰,王瑞生,杜德志. 春油菜区抗跳甲油菜资源的筛选[J]. 作物杂志, 2020, (2): 3440 |
[5] | 张永芳,钱肖娜,王润梅,史鹏清,杨荣. 不同大豆材料的抗旱性鉴定及耐旱品种筛选[J]. 作物杂志, 2019, (5): 4145 |
[6] | 郭瑞锋,任月梅,杨忠,任广兵,张绶,冯婧. 谷子化学杀雄剂筛选[J]. 作物杂志, 2019, (5): 6468 |
[7] | 张耀文,侯君利,赵小光,关周博,李殿荣,田建华,董育红,王竹云. 油菜高光效种质综合鉴选指标体系与方法[J]. 作物杂志, 2019, (4): 6976 |
[8] | 郝智勇,杨广东,邱广伟,胡尊艳,王立春,王海艳. 马铃薯高类胡萝卜素资源材料筛选[J]. 作物杂志, 2019, (2): 7177 |
[9] | 陈思,杨学,杨秀坤,袁红梅,黄文功,刘岩,姚玉波,吴广文. 亚麻抗派斯莫病种质资源筛选[J]. 作物杂志, 2019, (1): 6367 |
[10] | 杨欣玲,姚倩,平文丽,马一琼,王宝林,贾国涛,杨永锋,崔红. 烤烟EMS诱变后代高香气突变体筛选[J]. 作物杂志, 2019, (1): 6874 |
[11] | 李春宏,陆相龙,张培通,苏衍菁,王仪明,郭文琦,殷剑美,韩晓勇,王立,火恩杰. 防除甜高粱田杂草的除草剂筛选[J]. 作物杂志, 2018, (6): 158161 |
[12] | 马建辉,张文利,高小龙,张黛静,姜丽娜,翟延玉,邵云,李春喜. 山羊草谷胱甘肽S-转移酶基因家族鉴定及表达分析[J]. 作物杂志, 2018, (5): 5462 |
[13] | 李少昆,张万旭,王克如,俞万兵,陈永生,韩冬生,杨小霞,刘朝巍,张国强,王浥州,柳枫贺,陈江鲁,杨京京,谢瑞芝,侯鹏,明博. 北疆玉米密植高产宜粒收品种筛选[J]. 作物杂志, 2018, (4): 6268 |
[14] | 崔文芳,高聚林,于晓芳,王志刚,孙继颖,胡树平,苏治军,谢珉. 高产氮高效玉米品种的筛选及其指标研究[J]. 作物杂志, 2016, (6): 3843 |
[15] | 张红岩,杨涛,关建平,杨生华,方俐,杜萌莹,宗绪晓. 蚕豆抗绿豆象种质资源的鉴定[J]. 作物杂志, 2016, (4): 8692 |
|