作物杂志,2023, 第6期: 160–166 doi: 10.16035/j.issn.1001-7283.2023.06.022

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

外源茉莉酸对小白菜耐硒性及硒积累的作用研究

陈锦平(), 潘丽萍, 邢颖, 廖青, 刘永贤, 车江旅()   

  1. 广西壮族自治区农业科学院农业资源与环境研究所/广西富硒农业研究中心/广西富硒农产品工程技术研究中心,530007,广西南宁
  • 收稿日期:2022-03-18 修回日期:2022-06-07 出版日期:2023-12-15 发布日期:2023-12-15
  • 通讯作者: 车江旅,主要从事蔬菜栽培与育种研究,E-mail:jlvche@163.com
  • 作者简介:陈锦平,主要从事作物微量元素与植物生理响应研究,E-mail:447355175@qq.com
  • 基金资助:
    广西自然科学基金(2020GXNSFBA297014);广西自然科学基金(2020GXNSFAA297086);广西农业科学院项目(桂农科2022JM27);广西农业科学院项目(桂农科2020YT039);广西农业科学院项目(桂农科盟202014)

Study on the Effects of Exogenous Jasmonic Acid on Selenium Tolerance and Selenium Accumulation in Pak Choi (Brassica chinensis L.)

Chen Jinping(), Pan Liping, Xing Ying, Liao Qing, Liu Yongxian, Che Jianglü()   

  1. Agricultural Resources and Environment Research Institute, Guangxi Academy of Agricultural Sciences/ Guangxi Selenium-Rich Agricultural Research Center/Guangxi Selenium-Rich Agricultural Products Engineering Technology Research Center, Nanning 530007, Guangxi, China
  • Received:2022-03-18 Revised:2022-06-07 Online:2023-12-15 Published:2023-12-15

摘要:

本文研究了不同浓度外源茉莉酸(jasmonic acid,JA,浓度为50μmol/L,100μmol/L)对不同浓度硒酸钠(4mg/kg Se6+,10mg/kg Se6+)处理下小白菜(Brassica chinensis L.)耐硒性和硒积累量的影响。结果表明,土壤富硒处理显著降低小白菜PSII的光化学反应能力并引起强烈的细胞过氧化反应,显著降低地上部生物量。100μmol/L JA处理显著提高富硒处理土壤小白菜的PSⅡ有效量子产量(Fv'/Fm')、电子传递速率(ETR)、光化学猝灭系数(qP)、地上部生物量和过氧化氢酶(CAT)活性,并显著降低非光化学猝灭系数(qN)和丙二醛(MDA)含量,显著提高富硒处理土壤栽培小白菜的地上部硒含量和硒积累量。50μmol/L JA缓解细胞过氧化和光化学反应抑制效果在4mg/kg Se6+处理下不显著,在10mg/kg Se6+处理下则显著提高最大光化学效率(Fv/Fm)、Fv'/Fm'、ETR和CAT活性,但提高幅度小于100μmol/L JA处理。在富硒土壤下,喷施浓度为100μmol/L的外源茉莉酸可提高小白菜的耐硒性和硒积累能力,在促进富硒土壤中作物健康生长和提高作物硒积累能力上具有良好的应用效果。

关键词: 小白菜, 富硒土壤, 茉莉酸, 叶绿素荧光, 硒积累量

Abstract:

This study examined the effects of varying exogenous jasmonic acid (JA, 50μmol/L, 100μmol/L) concentrations on the tolerance and accumulation of selenium (Se) in pak choi cabbage (Brassica chinensis L.) treated with various selenium (Se) concentrations (4mg/kg Se6+, 10mg/kg Se6+). The results showed that, plants grown in Se-rich soil treatments exhibited Se toxicity, reduced photosynthetic capacity of photosystem (PSII), heavy peroxidization and significant inhibition of shoot biomass. Under Se-rich soil conditions, pak choi cabbage with 100μmol/L JA treatment resisted the effects of Se toxicity. There were significant increases in the effective quantum yield (Fv'/Fm'), electron transport efficiency (ETR), photochemical quenching coefficient (qP), shoot biomass and catalase (CAT) activity, as well as significant reduced non-photochemical quenching coefficient (qN) and malondialdehyde (MDA) content. Additionally, pak choi cabbage cultivated in Se-rich soil and with 100μmol/L JA treatment showed a significant increase in Se content and Se accumulation of shoots. 50μmol/L JA treatment produced varying degrees of Se tolerance dependent on the concentration of soil Se. Pak choi cabbage in 4mg/kg Se6+ treatment showed reductions in cell peroxidation and inhibition of photochemical reaction, though not significantly. While with 10mg/kg Se6+ treatment, there were significant increases in maximum photochemical efficiency (Fv/Fm), Fv'/Fm', ETR, and CAT activity, though not to the degree of the 100μmol/L JA treatment. Application of 100μmol/L exogenous JA on pak choi cabbage can increase Se tolerance and accumulation ability. It is an effective strategy to lessen Se toxicity and enhance crop health in high-Se containing soil.

Key words: Pak choi cabbage, Selenium-rich soil, Jasmonic acid, Chlorophyll fluorescence, Accumulation of selenium

表1

茉莉酸处理对富硒土壤中小白菜叶绿素荧光参数的影响

处理Treatment Fv/Fm Fv'/Fm' ETR qP qN
CK 0.821±0.003abc 0.593±0.005a 118.736±7.324b 0.476±0.032b 0.707±0.029cd
T1 0.812±0.004c 0.533±0.017c 89.960±11.282cd 0.401±0.038c 0.780±0.005a
T2 0.829±0.002a 0.542±0.006bc 86.428±7.198cd 0.379±0.030c 0.784±0.004a
T3 0.818±0.005bc 0.593±0.013a 142.935±12.803a 0.574±0.051a 0.696±0.034d
T4 0.802±0.010d 0.502±0.004d 76.123±4.770d 0.360±0.021c 0.787±0.008a
T5 0.823±0.002ab 0.541±0.008bc 98.313±1.721c 0.432±0.014bc 0.767±0.004ab
T6 0.815±0.002bc 0.561±0.025b 119.038±18.318b 0.504±0.065ab 0.737±0.016bc

图1

茉莉酸处理对富硒土壤中小白菜MDA含量和抗氧化酶活性的影响 不同小写字母表示各处理间在5%水平差异显著;MDA含量,SOD、POD和CAT活性的硒×茉莉酸交互效应的F值依次为1.560、2.904、1.780和5.539,交互效应对CAT活性影响显著(P < 0.05)

表2

茉莉酸处理对富硒土壤小白菜生物量、根冠比及硒含量和硒积累量的影响

处理
Treatment
地上部生物量
(g/盆)
Shoot biomass
(g/pot)
根生物量
(g/盆)
Root biomass
(g/pot)
地上部硒含量
Se content of
shoots (mg/kg)
根部硒含量
Se content of
roots (mg/kg)
地上部硒积累量
(μg/盆)
Se accumulation
in shoots (μg/pot)
根部硒积累量
(μg/盆)
Se accumulation
in roots (μg/pot)
根冠比
Root-
shoot
ratio
CK 7.17±0.96a 1.74±0.37ab 0.23±0.04e 0.06±0.02d 1.66±0.21d 0.09±0.02e 0.24±0.02a
T1 5.24±0.29b 1.46±0.19b 15.61±2.44d 9.27±1.26c 81.35±8.54c 13.35±0.22d 0.28±0.02a
T2 5.16±0.69b 1.62±0.31ab 17.99±0.73cd 8.56±0.95c 92.57±9.06c 14.10±4.03d 0.32±0.10a
T3 7.04±1.20a 2.01±0.35a 19.92±0.83c 9.42±2.29c 139.60±18.93b 18.48±1.68c 0.29±0.10a
T4 5.17±0.17b 1.78±0.16ab 29.69±0.73b 15.68±1.40b 153.52±2.23b 27.78±1.30b 0.31±0.03a
T5 6.25±0.66ab 1.35±0.05b 37.60±1.76a 20.55±1.45a 234.54±17.88a 27.76±1.08b 0.22±0.03a
T6 7.14±0.06a 1.75±0.27ab 34.98±2.07a 20.87±1.69a 249.93±16.65a 36.15±2.76a 0.24±0.04a
[1] Sharma S, Bansal A, Dhillon S K, et al. Comparative effects of selenate and selenite on growth and biochemical composition of rapeseed (Brassica napus L.). Plant and Soil, 2010, 329:339-348.
doi: 10.1007/s11104-009-0162-3
[2] 王立平, 唐德剑, 沈亚美, 等. 硒的营养缺乏现状及补充方式. 食品工业, 2020, 41(1):339-343.
[3] Winkel L H, Johnson C A, Lenz M, et al. Environmental selenium research: from microscopic processes to global understanding. Environmental Science & Technology, 2012, 46(2):571-579.
doi: 10.1021/es203434d
[4] 李亚妮, 马丽艳, 黄昆仑, 等. 膳食来源中硒的生物利用率的研究进展. 中国食物与营养, 2019, 25(9):5-9.
[5] 钟铭, 吴德, 方正锋, 等. 硒对公猪精液品质的影响及其机理. 动物营养学报, 2010, 22(6):1488-1494.
[6] 袁缨, 郝智慧, 郭东新. 两种来源硒对肉仔鸡体内硒沉积和谷胱甘肽过氧化物酶活性的影响. 中国畜牧杂志, 2002(4):21-22.
[7] 赵萍, 刘笑笑, 王雅, 等. 富硒小麦提取物中硒含量及其抗氧化特性. 食品科学, 2014, 35(15):94-98.
doi: 10.7506/spkx1002-6630-201415019
[8] 李登超, 朱祝军, 徐志豪, 等. 硒对小白菜生长和养分吸收的影响. 植物营养与肥料学报, 2003, 9(3):353-358.
[9] 高柱, 蔡荟梅, 彭传燚, 等. 富硒茶叶中硒的赋存形态研究. 中国食物与营养, 2014, 20(1):31-33.
[10] Broadley M R, White P J, Bryson R J, et al. Biofortification of UK food crops with selenium. The Proceedings of the Nutrition Society, 2006, 65(2):169-181.
[11] Zhu J M, Wang N, Li S, et al. Distribution and transport of selenium in Yutangba, China: impact of human activities. The Science of the Total Environment, 2008, 392(2/3):252-261.
doi: 10.1016/j.scitotenv.2007.12.019
[12] Cui Z W, Huang J, Peng Q, et al. Risk assessment for human health in a seleniferous area, Shuang'an, China. Environmental Science and Pollution Research, 2017, 24(3):17701-17710.
doi: 10.1007/s11356-017-9368-8
[13] Sors T G, Ellis D R, Na G N, et al. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. The Plant Journal, 2005, 42(6):785-797.
doi: 10.1111/tpj.2005.42.issue-6
[14] Hawrylak-Nowak B, Matraszek R, Pogorzelec M. The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiologiae Plantarum, 2015, 37(2):41.
doi: 10.1007/s11738-015-1788-9
[15] Li J, Liang D L, Qin S Y, et al. Effects of selenite and selenate application on growth and shoot selenium accumulation of pak choi (Brassica chinensis L.) during successive planting conditions. Environmental Science and Pollution Research, 2015, 22(14):11076-11086.
doi: 10.1007/s11356-015-4344-7
[16] Takeuchi K, Gyohda A, Tominaga M, et al. RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. Plant and Cell Physiology, 2011, 52(9):1686-1696.
doi: 10.1093/pcp/pcr105 pmid: 21828106
[17] 张盛楠, 黄亦玟, 陈世宝, 等. 不同外源物质对镉砷复合污染胁迫下油菜生理指标和镉砷积累的影响. 生态学杂志, 2020, 39(7):2214-2222.
[18] Polon-Smits E A H. Selenium in plants. Cham, Switzerland: Springer International Publishing, 2017.
[19] Wang D, Zhou F, Yang W X, et al. Selenate redistribution during aging in different Chinese soils and the dominant influential factors. Chemosphere, 2017, 182:284-292.
doi: S0045-6535(17)30709-9 pmid: 28500973
[20] Zhang M, Tang S H, Huang X, et al. Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Environmental and Experimental Botany, 2014, 107:39-45.
doi: 10.1016/j.envexpbot.2014.05.005
[21] Dai Z H, Rizwan M, Gao F, et al. Nitric oxide alleviates selenium toxicity in rice by regulating antioxidation, selenium uptake, speciation and gene expression. Environmental Pollution, 2020, 257:113540.
doi: 10.1016/j.envpol.2019.113540
[22] Mostofa M G, Rahman M M, Siddiqui M N, et al. Salicylic acid antagonizes selenium phytotoxicity in rice: selenium homeostasis, oxidative stress metabolism and methylglyoxal detoxification. Journal of Hazardous Materials, 2020, 394:122572.
doi: 10.1016/j.jhazmat.2020.122572
[23] Hayat S, Ahmad A, Alyemeni M N, et al. Salicylic Acid. Cham, Switzerland: Springer International Publishing, 2013.
[24] 金微微, 王炎, 张会慧, 等. 茉莉酸甲酯对干旱及复水条件下烤烟幼苗叶绿素荧光特性的影响. 应用生态学报, 2011, 22(12):3157-3162.
[25] Sirhindi G, Mushtaq R, Gill S S, et al. Jasmonic acid and methyl jasmonate modulate growth, photosynthetic activity and expression of photosystem II subunit genes in Brassica oleracea L.. Scientific Reports, 2020, 10(1):9322.
doi: 10.1038/s41598-020-65309-1 pmid: 32518304
[26] Qiu Z B, Guo J L, Zhu A, et al. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicology and Environmental Safety, 2014, 104:202-208.
doi: 10.1016/j.ecoenv.2014.03.014 pmid: 24726929
[27] Kang D J, Seo Y J, Lee J D, et al. Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt- tolerant and salt-sensitive rice cultivars. Journal of Agronomy and Crop Science, 2005, 191:273-282.
doi: 10.1111/jac.2005.191.issue-4
[28] Jung C, Lyou S H, Yeu S, et al. Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Reports, 2007, 26(7):1053-1063.
doi: 10.1007/s00299-007-0311-1
[29] Kamran M, Wang D, Alhaithloul H, et al. Jasmonic acid- mediated enhanced regulation of oxidative, glyoxalase defense system and reduced chromium uptake contributes to alleviation of chromium (VI) toxicity in choysum (Brassica parachinensis L.). Ecotoxicology and Environmental Safety, 2021, 208:111758.
doi: 10.1016/j.ecoenv.2020.111758
[30] 戴志华. 水稻对硒的吸收转化及调控机理研究. 武汉:华中农业大学, 2020.
[31] 周维, 魏成熙, 韦伟. 茉莉酸甲酯对富硒春茶硒含量及品质的影响. 山地农业生物学报, 2012, 31(6):514-518.
[32] White P J, Broadley M R. Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. The New Phytologist, 2009, 182(1):49-84.
doi: 10.1111/nph.2009.182.issue-1
[33] Kim H S, Juvik J A. Effect of selenium fertilization and methyl jasmonate treatment on glucosinolate accumulation in broccoli florets. Journal of the American Society for Horticultural Science, 2011, 136(4):239-246.
doi: 10.21273/JASHS.136.4.239
[34] Guo J, Chen Y Z, Li M S, et al. Does myc2 really play a negative role in jasmonic acid-induced indolic glucosinolate biosynthesis in arabidopsis thaliana?. Russian Journal of Plant Physiology, 2013, 60(1):100-107.
doi: 10.1134/S1021443713010020
[1] 马珂, 冯雷, 赵夏童, 张丽光, 原向阳, 董淑琦, 郭平毅, 宋喜娥. 播距和播量对张杂谷10号生长特性及产量的影响[J]. 作物杂志, 2022, (4): 172–178
[2] 杨程, 杜思梦, 张德奇, 时艳华, 李向东, 邵运辉, 方保停, 王汉芳. 基于叶绿素荧光的小麦越冬期冻害评价[J]. 作物杂志, 2022, (1): 154–160
[3] 王庆彬, 卢洁春, 彭春娥, 孟慧, 刘治国, 王洪凤, 张民. 不同氮量处理配施宛氏拟青霉提取物对小白菜生长和氮素吸收的影响[J]. 作物杂志, 2022, (1): 190–195
[4] 王奇, 李妹娟, 章家恩, 汤嘉欣, 曾文静, 周磊, 杨清心, 江明敏, 伍嘉源, 罗明珠. 稻鱼共作对水稻叶绿素荧光特征及产量的影响[J]. 作物杂志, 2021, (6): 145–151
[5] 杨磊, 金延迪, 刘侯俊. 铁、镉及其互作对水稻光合原初反应的影响[J]. 作物杂志, 2021, (4): 144–151
[6] 高鹏, 郭美俊, 杨雪芳, 董淑琦, 温银元, 郭平毅, 原向阳. 谷子和玉米叶片光合荧光参数对烟嘧磺隆胁迫的响应差异[J]. 作物杂志, 2021, (3): 70–77
[7] 杨宇尘, 杜志敏, 张小鹏, 李坤译, 沈家琪, 徐海. 抽穗开花期喷施MeJA对粳稻产量和品质的影响[J]. 作物杂志, 2021, (2): 71–76
[8] 吴琼, 丁凯鑫, 余明龙, 黄文婷, 左官强, 冯乃杰, 郑殿峰. 新型植物生长调节剂B2对玉米光合荧光特性及产量的影响[J]. 作物杂志, 2020, (5): 174–181
[9] 荆培培,任红茹,杨洪建,戴其根. 盐胁迫对2个不同盐敏感性水稻品种(系)叶片光合特性与产量的影响[J]. 作物杂志, 2020, (1): 67–75
[10] 时丽冉,郝洪波,崔海英,李明哲. 遮光对谷子光合性能及快速叶绿素荧光动力学特征的影响[J]. 作物杂志, 2019, (5): 125–128
[11] 王嘉楠,李小艳,魏石美,赵会杰,赵明奇,汪月霞. 5-ALA对干旱胁迫下小麦幼苗光合作用及D1蛋白的调节作用[J]. 作物杂志, 2018, (5): 121–126
[12] 张晓勇,杨友联,李树江,熊荣川,向红. 外源激素对低温胁迫下脱毒马铃薯扦插苗早衰的影响[J]. 作物杂志, 2018, (4): 95–101
[13] 陈盈,张满利,刘宪平,代贵金,侯守贵. 生物炭对水稻齐穗期叶绿素荧光参数及产量构成的影响[J]. 作物杂志, 2016, (3): 94–98
[14] 刘义明,凌钊,韩玉芬,杨桂梅,温静涛. 施用硒微肥对红衣花生硒含量的影响[J]. 作物杂志, 2016, (2): 105–106
[15] 杨艳君, 赵红梅, 邵青玲, 等. 谷子杂交种与常规种光合和叶绿素荧光特性的比较[J]. 作物杂志, 2015, (3): 146–149
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!