作物杂志,2021, 第4期: 144–151 doi: 10.16035/j.issn.1001-7283.2021.04.022

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

铁、镉及其互作对水稻光合原初反应的影响

杨磊(), 金延迪, 刘侯俊()   

  1. 沈阳农业大学土地与环境学院,110866,辽宁沈阳
  • 收稿日期:2020-08-14 修回日期:2020-11-13 出版日期:2021-08-15 发布日期:2021-08-13
  • 通讯作者: 刘侯俊
  • 作者简介:杨磊,从事植物营养生理研究,E-mail:1026542765@qq.com
  • 基金资助:
    国家重点研发计划(2018YFD0200200);辽宁省自然科学基金(2020-MS-200)

Effects of Iron, Cadmium and Their Interaction on the Primary Reaction of Photosynthesis in Rice

Yang Lei(), Jin Yandi, Liu Houjun()   

  1. College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
  • Received:2020-08-14 Revised:2020-11-13 Online:2021-08-15 Published:2021-08-13
  • Contact: Liu Houjun

摘要:

铁(Fe)在植物光合作用中发挥着重要作用,而镉(Cd)则对光合作用产生多方面的干扰。叶绿素荧光能够反映光合系统活性及电子传递效率。研究Fe、Cd及其交互作用对光合速率及叶绿素荧光参数的影响,揭示水稻光合原初反应对Fe、Cd处理的响应及其机制。采用土培盆栽方式,研究0(Fe0)、1.0(Fe1)和2.0g/kg(Fe2)3个Fe浓度以及0(Cd0)和2.0mg/kg(Cd2)2个Cd浓度处理下水稻光合作用参数、叶绿素荧光参数和即时荧光动力学曲线(OJIP)的变化规律。结果表明,水稻生长前期Fe1处理光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)及叶绿素荧光强度提高,而Fe2和Cd2处理均降低。水稻生长后期Fe1和Fe2处理均有利于维持较高的PnCiGs及叶绿素荧光强度,但Cd对这些指标表现为抑制作用。水稻生长前期,Fe、Cd均提高最大光化学效率(Fv/Fm),生长后期Fe0Cd2或Fe2Cd2处理Fv/Fm却显著降低。Fe1处理不仅对水稻光合作用具有明显促进作用,还能缓解Cd对光合作用的干扰,而Fe2处理显著抑制光合作用,降低水稻干物质累积。Cd2处理导致光合作用下降,同时扰乱Fe在光合作用中的生理功能。因此,稻田土壤中施用适量的铁肥有利于促进水稻光合作用,降低Cd毒害。

关键词: 铁, 镉, 水稻, 光合原初反应, 叶绿素荧光

Abstract:

Iron (Fe) plays an important role in plant photosynthesis, while cadmium (Cd) causes various interferes in photosynthesis. Chlorophyll fluorescence reflects photosynthetic efficiency and electron transfer characteristics. This experiment aimed to investigate the effects of Fe, Cd and their interactions on photosynthetic efficiency and chlorophyll fluorescence in rice. The pot experiment was designed to investigate photosynthetic indexes, chlorophyll fluorescence indexes, and OJIP curve under different Fe and Cd supplements in soil. The rate of Fe addition was 0 (Fe0), 1.0 (Fe1) and 2.0g/kg (Fe2), while Cd was 0 (Cd0) and 2.0mg/kg (Cd2). The results showed that Fe1 treatment increased photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), and fluorescence intensity at the early stage, while Fe2 and Cd2 decreased these indexes. At the late stages (after the booting stage), Fe1 and Fe2 were beneficial for rice to keep high Pn, Gs, Ci and chlorophyll fluorescence intensity but Cd2 still decreased these indexes. Fe or Cd increased the maximum photochemical efficiency (Fv/Fm) at the early stages, while at the late stages, Cd alone or Cd and high Fe together significantly decreased Fv/Fm. Fe1 significantly promoted the photosynthesis of rice and alleviated the interference of Cd on photosynthesis, while Fe2 significantly inhibited photosynthesis and reduced dry matter accumulation in rice. Cd2 decreased photosynthesis and disturbed the physiological function of Fe during photosynthesis. Therefore, proper application of Fe fertilizer can promote the photosynthesis of rice and reduce Cd toxicity.

Key words: Iron, Cadmium, Rice, Primary reaction of photosynthesis, Chlorophyll fluorescence

图1

收获期不同Fe、Cd处理水稻籽粒和茎叶干重 不同小写字母表示同一Cd水平下,不同Fe处理之间具有显著性差异(P<0.05)

图2

水稻不同生育期叶片Pn,Ci,SPAD值和Gs

表1

水稻不同生育期叶片Pn、Ci、SPAD值和Gs方差分析

指标
Index
处理
Treatment
分蘖期
Tillering stage
拔节期
Jointing stage
孕穗期
Booting stage
扬花期
Flowering stage
蜡熟期
Ripening stage
Pn Cd * ** ns * **
Fe ** ** ns * **
Cd×Fe ns ns * ns *
Ci Cd ns ** ns ns ns
Fe ** ** * ** **
Cd×Fe ns ** ns ** **
SPAD值SPAD value Cd ns ** ns ns ns
Fe ** ** ** ** **
Cd×Fe ns ns ns ns ns
Gs Cd ** ** ns ns **
Fe ** ** ns ** **
Cd×Fe ns ** ns ns ns

图3

不同生育期水稻叶片Fv/Fm、PI、Fo和Fm

表2

水稻不同生育期叶片Fv/Fm、PI、Fo和Fm方差分析

指标
Index
处理
Treatment
分蘖期
Tillering
拔节期
Jointing
孕穗期
Booting
扬花期
Flowering
蜡熟期
Ripening
Cd ns ns * ns ns
Fv/Fm Fe * ns ns ns ns
Cd×Fe ** ns ns ns ns
PI Cd ns ns ns ns ns
Fe ** ** ns ** **
Cd×Fe ** ns ns ns ns
Fo Cd ns ns ns ns ns
Fe ** ** ns ns **
Cd×Fe ns ns ns ** ns
Fm Cd ns ns ** ns ns
Fe * * * ** **
Cd×Fe * ns ns ns *

图4

不同生育期水稻叶片叶绿素即时荧光动力学曲线 O、J、I、P分别表示光照后10~15μs、2ms、30ms和0.3~2000ms时的荧光信号,下同

图5

不同生育期水稻叶片叶绿素相对荧光差值曲线

[1] Yadavalli V, Neelam S, Rao A, et al. Differential degradation of photosystem I subunits under iron deficiency in rice. Journal of Plant Physiology, 2012,169(8):753-759.
[2] Adamski J M, Peters J A, Danieloski R, et al. Excess iron-induced changes in the photosynthetic characteristic of sweet potato. Journal of Plant Physiology, 2011,168(17):2056-2062.
[3] Hänsch R, Mendel R R. Physiological functions of mineral micronutrients (Cu,Zn,Mn,Fe,Ni,Mo,B,Cl). Current Opinion in Plant Biology, 2009,12(3):259-266.
[4] Vigani G, Zocchi G, Bashir K, et al. Signals from chloroplasts and mitochondria for iron homeostasis regulation. Trends in Plant Science, 2013,18(6):305-311.
[5] Daud M K, He Q L, Lei M, et al. Ultrastructural,metabolic and proteomic changes in leaves of upland cotton in response to cadmium stress. Chemosphere, 2015,120:309-320.
[6] Zhou Y, Diao M, Cui J X, et al. Exogenous GSH protects tomatoes against salt stress by modulating photosystem II efficiency,absorbed light allocation and H2O2-scavenging system in chloroplasts. Journal of Integrative Agriculture, 2018,17(10):2257-2272.
[7] Liu H J, Yang L, Li N, et al. Cadmium toxicity reduction in rice (Oryza sativa L.) through iron addition during primary reaction of photosynthesis. Ecotoxicology and Environmental Safety, 2020,200:1-9.
[8] Srivastava R K, Pandey P, Rajpoot R, et al. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma, 2014,251:1047-1065.
[9] 聂艳秋, 李玉秀, 刘安辉, 等. 铁肥形态及施用方式对印度芥菜镉积累的影响. 环境科学与技术, 2012,35(12):51-55.
[10] 邵国胜, 陈铭学, 王丹英, 等. 稻米镉积累的铁肥调控. 中国科学, 2008,38(2):180-187.
[11] Liu H J, Zhang C X, Wang J M, et al. Influence and interaction of iron and cadmium on photosynthesis and antioxidative enzymes in two rice cultivars. Chemosphere, 2017,171:240-247.
[12] Siedlecka A, Krupa Z. Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris. Plant Physiology and Biochemistry, 1996,34(6):833-841.
[13] Qureshi M I, Amici D’ G M, Fagioni M, et al. Iron stabilizes thylakoid protein-pigment complexes in Indian mustard during Cd-phytoremediation as revealed by BN-SDS-PAGE and ESI-MS/MS. Journal of Plant Physiology, 2010,167(10):761-770.
[14] Sárvári É, Solti Á, Basa B, et al. Impact of moderate Fe excess under Cd stress on the photosynthetic performance of poplar (Populus jacquemontiana var. glauca cv. Kopeczkii). Plant Physiology and Biochemistry, 2011,49(5):499-505.
[15] Strasser R J, Srivastava A, Govindjee. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochemistry and Photobiology, 1995,61(1):32-42.
[16] 黄光福, 唐巧玲, 唐云鹏, 等. 叶绿素荧光分析技术在水稻研究中的应用. 作物研究, 2013,27(2):174-179.
[17] 李鹏民, 高辉远, Strasser R J. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005,31(6):559-566.
[18] Pereira E G, Oliva M A, Rosado-Souza L, et al. Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations. Plant Science, 2013,201-202:81-92.
[19] Monteiro M S, Santos C, Soares A, et al. Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicology and Environmental Safety, 2009,72(3):811-818.
[20] 周坤, 刘俊徐, 卫红, 等. 铁对番茄镉积累及其化学形态的影响. 园艺学报, 2013,40(11):2269-2279.
[21] 贺国强, 刘茜, 郭振楠, 等. 镉胁迫对烤烟叶片光合和叶绿素荧光特性的影响. 华北农学报, 2016,31(S1):388-393.
[22] 赵婧, 邱强, 张鸣浩, 等. 大豆在不同水铁平下生理特性与品种耐性的关系. 核农学报, 2016,30(11):2239-2247.
[23] Briat J F, Curie C, Gaymard F. Iron utilization and metabolism in plants. Current Opinion in Plant Biology, 2007,10(3):276-282.
[24] Nenova V R. Growth and photosynthesis of pea plants under different iron supply. Acta Physiologiae Plantarum, 2009,31(2):385-91.
[25] Strasser R J. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynthesis Research, 1997,52(2):147-155.
[26] Siedlecka A, Baszyń Aski T. Inhibition of electron flow around photosystem I in chloroplasts of Cd‐treated maize plants is due to Cd‐induced iron deficiency. Physiologia Plantarum, 2010,87(2):199-202.
[27] Sebastian A, Prasad M N V. Iron- and manganese-assisted cadmium tolerance in Oryza sativa L.:lowering of rhizotoxicity next to functional photosynthesis. Planta, 2015,241(6):1519-1528.
[28] Sebastian A, Prasad M N V. Operative photo assimilation associated proteome modulations are critical for iron-dependent cadmium tolerance in Oryza sativa L. Protoplasma, 2015,252(5):1375-1386.
[29] Chen Z, Tang Y T, Zhou C, et al. Mechanisms of Fe biofortification and mitigation of Cd accumulation in rice (Oryza sativa L.) grown hydroponically with Fe chelate fertilization. Chemosphere, 2017,175:275-285.
[30] Solti Á, Gáspár L, Mészáros I, et al. Impact of iron supply on the kinetics of recovery of photosynthesis in Cd-stressed poplar (Populus glauca). Annals of Botany, 2008,102(5):771-782.
[31] Solti Á, Sárvári É, Tóth B, et al. Incorporation of iron into chloroplast triggers the restoration of cadmium induced inhibition of photosynthesis. Journal of Plant Physiology, 2016,202:97-106.
[32] Sharma S S, Kaul S, Metwally A, et al. Cadmium toxicity to barley (Hordeum vulgare) as affected by varying Fe nutritional status. Plant Science, 2004,166(5):1287-1295.
[33] Xu S S, Lin S Z, Lai Z X. Cadmium impairs iron homeostasis in Arabidopsis thaliana by increasing the polysaccharide contents and the iron-binding capacity of root cell walls. Plant and Soil, 2015,392(1/2):71-85.
[34] 戴前莉, 李金花, 胡建军, 等. 增施铁对镉胁迫下柳树生长及光合生理性能的改善. 南京林业大学学报(自然科学版), 2017,41(2):63-72.
[1] 吴可, 谢慧敏, 刘文奇, 莫并茂, 韦国良, 陆献, 李壮林, 邓森霞, 韦善清, 梁和, 江立庚. 氮、磷、钾肥对南方双季稻区水稻产量及产量构成因子的影响[J]. 作物杂志, 2021, (4): 178–183
[2] 凌晨, 刘洪, 杨哲, 黄展权, 陈孟强, 饶得花, 徐振江. 双季稻栽培对水稻DUS测试标准品种数量性状表达的影响[J]. 作物杂志, 2021, (4): 18–25
[3] 张全芳, 姜明松, 陈峰, 朱文银, 周学标, 杨连群, 徐建第. 山东省水稻品种(系)的遗传多样性分析[J]. 作物杂志, 2021, (4): 26–31
[4] 王国骄, 宋鹏, 杨振中, 张文忠. 秸秆还田对水稻光合物质生产特征、稻米品质和土壤养分的影响[J]. 作物杂志, 2021, (4): 67–72
[5] 薛菁芳, 蔡永盛, 陈书强. 节水灌溉栽培模式对稻米品质和淀粉RVA谱的影响[J]. 作物杂志, 2021, (4): 86–92
[6] 孙燕鑫, 李子玮, 张豪洋, 郭笑恒, 许自成. 马龙和沾益烟区土壤与烟叶铁元素分布特征及其对烟叶感官质量的影响[J]. 作物杂志, 2021, (3): 140–148
[7] 孟祥宇, 冉成, 刘宝龙, 赵哲萱, 白晶晶, 耿艳秋. 秸秆还田配施氮肥对东北黑土稻区土壤养分及水稻产量的影响[J]. 作物杂志, 2021, (3): 167–172
[8] 易镇邪, 王元元, 谷子寒, 帅泽宇, 屠乃美, 陈平平. 镉污染稻区油菜–中稻替代双季稻种植的可行性研究[J]. 作物杂志, 2021, (3): 65–69
[9] 高鹏, 郭美俊, 杨雪芳, 董淑琦, 温银元, 郭平毅, 原向阳. 谷子和玉米叶片光合荧光参数对烟嘧磺隆胁迫的响应差异[J]. 作物杂志, 2021, (3): 70–77
[10] 邢愿, 贺中华. 基于水分亏缺指数的贵州省水稻干旱特征分析[J]. 作物杂志, 2021, (2): 191–199
[11] 付景, 尹海庆, 王亚, 杨文博, 张珍, 白涛, 王越涛, 王付华, 王生轩. 不同追氮模式对河南沿黄稻区粳稻根系生长和产量的影响[J]. 作物杂志, 2021, (2): 77–86
[12] 周江, 谢宜章, 向平安. 湖南主要大田作物系统投入产出的能值分析[J]. 作物杂志, 2021, (1): 175–181
[13] 李迪秦, 王青, 胡亚杰, 王艳, 王妍妮, 钟仪, 刘铭晖, 丁春霞. 湘烟5号对植烟土壤镉耐受力响应研究[J]. 作物杂志, 2021, (1): 182–186
[14] 潘晓雪, 胡明瑜, 王忠伟, 吴红, 雷开荣. 不同水稻种质资源重要农艺性状与发芽期耐寒性鉴定研究[J]. 作物杂志, 2021, (1): 47–53
[15] 吕伟生, 肖小军, 黄天宝, 肖国滨, 李亚贞, 肖富良, 韩德鹏, 郑伟. 缓释型配方肥在晚稻套播油菜上的施用效果研究[J]. 作物杂志, 2020, (6): 143–150
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!