作物杂志,2025, 第4期: 1–8 doi: 10.16035/j.issn.1001-7283.2025.04.001

• 专题综述 •    下一篇

LEA蛋白在逆境胁迫下的研究进展

黄若兰1,2(), 李帅2, 蔡兆琴1, 陈会鲜1, 肖冬2()   

  1. 1广西南亚热带农业科学研究所,532415,广西崇左
    2广西农业环境与农产品安全重点实验室/广西大学农学院,530004,广西南宁
  • 收稿日期:2024-03-04 修回日期:2024-05-22 出版日期:2025-08-15 发布日期:2025-08-12
  • 通讯作者: 肖冬,研究方向为花生逆境生理和甘薯块根发育生理,E-mail:xiaodong@gxu.edu.cn
  • 作者简介:黄若兰,研究方向为经济作物逆境生理,E-mail:hrlan629@163.com
  • 基金资助:
    国家自然科学基金(31701356);广西大学大学生创新创业训练项目(201910593083);广西农业科学院基本科研业务专项(桂农科2023YM25);广西青年科学基金项目(2023GXNSFBA026150)

Research Progress of LEA Proteins under Stress Conditions

Huang Ruolan1,2(), Li Shuai2, Cai Zhaoqin1, Chen Huixian1, Xiao Dong2()   

  1. 1Guangxi South Subtropical Agricultural Sciences Research Institute, Chongzuo 532415, Guangxi, China
    2Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety / College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
  • Received:2024-03-04 Revised:2024-05-22 Online:2025-08-15 Published:2025-08-12

摘要:

植物在生长发育过程中不可避免地面临逆境胁迫,在应对胁迫的过程中,进化出一类响应逆境胁迫的功能性蛋白,如胚胎晚期发育丰富蛋白(late embryogenesis abundant,LEA)。LEA蛋白是一种高度亲水的富含甘氨酸的蛋白,广泛存在于植物中,其内在的无序性和高亲水性促进了LEA蛋白保护功能机制的多样性。LEA蛋白在响应逆境胁迫、激素信号和参与免疫应答等方面发挥重要作用。本文主要综述了LEA蛋白的结构分类、功能分析及逆境胁迫下LEA蛋白的功能研究,为深入了解LEA蛋白的抗逆机制以及通过基因工程提高生物的耐逆性提供参考。

关键词: LEA蛋白, 逆境胁迫, AhLEA1

Abstract:

Plants inevitably face stress during growth and development. In response to stress, a class of functional proteins has evolved, such as late embryogenesis abundant proteins (LEA). LEA proteins are highly hydrophilic glycine-rich proteins that are widely found in plants. Their intrinsic disorder and high hydrophilicity facilitate a variety of mechanisms for the protective functions of LEA proteins. LEA proteins have been found to play important roles in stress responses, hormone signaling and participation in immune responses. This paper primarily reviews the structural classification, functional analyses, as well as the functional research of LEA proteins under stress conditions. This provides insights into the resistance mechanisms of LEA proteins and serves as a reference for enhancing organism resistance through genetic engineering.

Key words: LEA protein, Stress condition, AhLEA1

表1

LEA蛋白分类及结构特点

LEA蛋白分类
Classification of LEA proteins
结构特点
Structural feature
参考文献
Reference
LEA_1
C段序列保守性较差,N段有1个由74~78个氨基酸组成的保守序列。遭受胁迫时,保守序列由无序形成α-螺旋结构。 [11]
LEA_2 无明显保守片段,比其他LEA蛋白同源性低,含有高比例的疏水氨基酸,疏水性强。 [12]
LEA_3 含有大量的疏水氨基酸,热稳定性较差,沸水条件下不能维持水溶状态。 [13]
LEA_4

包括11个氨基酸的重复基序,其保守序列为TAQAAKEKAXE,推测含有2个亲水性α-螺旋。可以形成二聚体。其C端富含甘氨酸和组氨酸残基,能够结合金属离子,N端区域具有类似伴侣的活性。 [14]

LEA_5
保守结构域较少,缺少高特异性和显著的基团,疏水残基的含量高,被认为是一种非典型LEA蛋白。 [15]
LEA_6/PvLEA18
分子量小,只有7~14 kDa,不含半胱氨酸和色氨酸,具有较高的亲水性与热稳定性,暴露于高温时不会凝结。 [16]
Dehydrin



氨基酸组成为82~575个不等,不同成员间相对分子量在9~200 kDa,含有3个高度保守域:K、Y、S,K片段([E/K/R]KKG[I/L]MDKIKEKLPG)(位于C末端)富含赖氨酸,Y片段([V/T]D[E/Q]YGNP)(位于N末端)富含酪氨酸,S片段(SSSSSSSD)富含丝氨酸,可被蛋白激酶磷酸化。部分Dehydrin存在一段富含甘氨酸和极性氨基酸的φ片段,保守性较差。 [17]



SMP 分子量为5.3~37.4 kDa,与其他LEA亚族同源性较低,保守性强,亲水性和热稳定性高。 [7]

表2

不同胁迫下LEA蛋白的功能

胁迫
Stress
物种
Species
基因/蛋白
Gene/protein
功能
Function
参考文献
Reference
干旱
Drought

腊梅 CpLEA 抗旱性与基因CpLEAs的过表达量呈正相关。 [27]
玉米

ZmLEA34、ZmNHL1

胁迫条件下,基因ZmLEA34的表达量增加;ZmNHL1通过提高ROS清除能力和维持细胞膜通透性,促进了35S::ZmNHL1转基因植株对干旱胁迫的耐受性。 [28-29]

油菜
BnaCPK5
BnaCPK5在一定程度上通过磷酸化2个核心ABA信号元件来调节RD29B的表达,从而充当耐旱性的正向调节因子。 [30]
棉花


Gh_A08G0694


在四倍体棉花中敲除Gh_A08G0694后,棉花植株对盐碱和干旱胁迫的敏感性显著增加,该基因被发现与关键的非生物胁迫耐受基因、电压依赖性阴离子通道1(VDAC1)和甘油醛-3-磷酸脱氢酶A(gapA)有很强的相互作用。 [31]


哺乳动物/黑腹果蝇
AfrLEA
哺乳动物细胞系和昆虫细胞系在短期暴露于干燥和高渗压力后的存活率明显高于未表达AfrLEA蛋白的细胞系。 [32]
链格绿藻 LEA LEA在藻类植物陆生化过程中的干燥耐受性发挥重要作用。 [33]
低温
Low
temperature
PtrLEA1PtrLEA23 PtrLEA1PtrLEA23受低温胁迫后高表达。 [34]
大白菜 BrLEAs BrLEAs受低温胁迫后高表达。 [35]
茶树 CsLEA1 CsLEA1提高了大肠杆菌和酵母对冷胁迫的耐受性。 [36]
梨树
PcLEA14
PcLEA14低温耐受机制与脱水反应元件结合蛋白/重复结合因子1(DREB1)有关。 [37]
早花百子莲

ApY2SK2 DHN

ApY2SK2 DHN通过螯合金属离子(Fe3+、Cu2+)影响ROS代谢从而激活抗氧化系统,降低低温保存过程中的膜脂过氧化,提高细胞复苏后的存活率。 [38]

荷花 NnRab18 NnRab18可在低温保存过程中直接保护酶活性。 [39]
高温
High
temperature
绿豆

VrLEA-2VrLEA-40
VrLEA-47VrLEA-55
热胁迫下,VrLEAs表达显著上调。

[40]

大豆
GmLEA4
钙调蛋白GmCaM1和GmLEA4互作,提高了种子清除ROS的能力,改善种子在高温高湿胁迫下的活力。 [41]
豇豆
VuDREB2A
VuDREB2A与启动子中的DRE结合激活下游应激反应基因,热胁迫条件下表现出更强的渗透调节能力和光合作用活性。 [42]
盐Salt 纤枝短月藓 BeLEA5-1 BeLEA5-1蛋白的表达提高了大肠杆菌对盐胁迫的耐受力。 [43]
黄麻 LEA14 LEA14在叶片和根部的表达量均在盐处理48 h时达到高峰。 [44]
水稻
OsLEA5
OsLEA5参与了ABA介导的抗氧化防御,在水稻的干旱和盐胁迫响应中发挥作用。 [45]
大豆
GsPM30
耐盐的正向调节因子GsCBRLKGsPM30相互作用,提高了拟南芥幼苗期和成苗期的耐盐和耐旱性。 [46]
紫花苜蓿
MsDIUP1
MsDIUP1可通过调节胁迫信号传导、抗氧化防御、离子平衡、渗透调节和光合作用来提高植物的耐盐性。 [47]
重金属
Heavy metal
玉米
ZmDHN13
ZmDHN13过表达烟草通过结合金属和减少ROS的积累,赋予烟草对铜胁迫的耐受性。 [48]
耐辐射奇球菌
DrLEA3
定位于细胞膜上的DrLEA3蛋白纯化后,能够结合特定的金属离子,维持细胞内Mn2+、Fe3+等离子的动态平衡。 [49]
水稻
OsLea14-A
过表达OsLea14-A降低了转基因植株中Na、Cr和Cu的积累,但增加了Hg的积累。 [15]
花生 AhLEAs 在铝胁迫下,过表达AhLEAs增强了酿酒酵母的活力。 [50]
病虫害
Pests and
diseases

谷子 SiLEA14 过表达SiLEA14的拟南芥植株对灰霉病的抗性增强。 [51]
胡桃 JrLEAs 抗炭疽病品种中JrLEAs的表达水平相对较高。 [52]
苏云金芽孢杆菌

Bt-LEA-Ⅱ

一种基于表达载体pHT01的LEA-Ⅱ多肽共表达系统,该系统具有强sigma A依赖性启动子,在IPTG诱导多肽12 h后,Bt晶体蛋白的产量提高了3倍。 [53]

小麦
TdLEA3
过表达TdLEA3的拟南芥转基因植株对禾本科镰刀菌、灰霉病菌和黑曲霉具有耐受性。 [54]
[1] Dure L, Greenway S C, Galau G A. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry, 1981, 20(14):4162-4168.
doi: 10.1021/bi00517a033 pmid: 7284317
[2] Sasaki K, Christov N K, Tsuda S, et al. Identification of a novel LEA protein involved in freezing tolerance in wheat. Plant and Cell Physiology, 2014, 55(1):136-147.
doi: 10.1093/pcp/pct164 pmid: 24265272
[3] Rivera-Najera L Y, Saab-Rincón G, Battaglia M, et al. A group 6 late embryogenesis abundant protein from common bean is a disordered protein with extended helical structure and oligomer- forming properties. The Journal of Biological Chemistry, 2014, 289(46):31995-32009.
[4] Hincha D K, Thalhammer A. LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Biochemical Society Transactions, 2012, 40(5):1000-1003.
pmid: 22988854
[5] Hunault G, Jaspard E. LEAPdb: a database for the late embryogenesis abundant proteins. BMC Genomics, 2010, 11(1):221.
[6] 周璇. 垫状卷柏LEA1基因的结构与功能分析. 昆明: 西南林业大学, 2022.
[7] Hundertmark M, Hincha D K. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics, 2008, 9(1):118.
[8] Charfeddine S, Saïdi M N, Charfeddine M, et al. Genome-wide identification and expression profiling of the late embryogenesis abundant genes in potato with emphasis on dehydrins. Molecular Biology Reports, 2015, 42(7):1163-1174.
doi: 10.1007/s11033-015-3853-2 pmid: 25638043
[9] Chen J, Li N, Wang X Y, et al. Late embryogenesis abundant (LEA) gene family in Salvia miltiorrhiza: identification, expression analysis, and response to drought stress. Plant Signaling & Behavior, 2021, 16(5):1891769.
[10] 黄若兰. 花生AhLecRK9AhLEAs在铝胁迫下的功能研究. 南宁: 广西大学, 2023.
[11] Shih M D, Lin S C, Hsieh J S, et al. Gene cloning and characterization of a soybean (Glycine max L.) LEA protein, GmPM16. Plant Molecular Biology, 2004, 56(5):689-703.
[12] Wang M Z, Li P, Li C, et al. SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biology, 2014, 14(1):290.
[13] Lim C W, Lim S, Baek W, et al. The pepper late embryogenesis abundant protein CaLEA 1 acts in regulating abscisic acid signaling, drought and salt stress response. Physiologia Plantarum, 2015, 154(4):526-542.
[14] Cuevas-Velazquez C L, Reyes J L, Covarrubias A A. Group 4 late embryogenesis abundant proteins as a model to study intrinsically disordered proteins in plants. Plant Signaling & Behavior, 2017, 12(7):e1343777.
[15] Hu T Z, Liu Y L, Zhu S S, et al. Overexpression of OsLea14-A improves the tolerance of rice and increases Hg accumulation under diverse stresses. Environmental Science and Pollution Research, 2019, 26(11):10537-10551.
[16] Battaglia M, Covarrubias A A. Late embryogenesis abundant (LEA) proteins in legumes. Frontiers in Plant Science, 2013, 4:190.
[17] 潘潇潇, 胡慧芳, 陈楠, 等. 脱水素在植物非生物胁迫中的作用研究进展. 农业生物技术学报, 2022, 30(3):594-605.
[18] Sun X, Rikkerink E H A, Jones W T, et al. Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology. The Plant Cell, 2013, 25(1):38-55.
doi: 10.1105/tpc.112.106062 pmid: 23362206
[19] French-Pacheco L, Cuevas-Velazquez C L, Rivillas-Acevedo L, et al. Metal-binding polymorphism in late embryogenesis abundant protein AtLEA4-5, an intrinsically disordered protein. PeerJ, 2018, 6(1):e4930.
[20] 李承娜, 高阳, 刘子明, 等. 大豆PM1蛋白抗氧化作用及提高酵母对铜耐受力. 深圳大学学报(理工版), 2017, 34(5):457-463.
[21] Hara M, Fujinaga M, Kuboi T. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiology and Biochemistry, 2004, 42(7):657-662.
[22] 刘星辰, 吕爱敏, 邢强, 等. 转紫花苜蓿MsLEA2基因提高拟南芥耐铝毒性研究. 中国草地学报, 2019, 41(2):30-35.
[23] Veeranagamallaiah G, Prasanthi J, Reddy K E, et al. Group 1 and 2 LEA protein expression correlates with a decrease in water stress induced protein aggregation in horsegram during germination and seedling growth. Journal of Plant Physiology, 2011, 168(7):671-677.
doi: 10.1016/j.jplph.2010.09.007 pmid: 21035898
[24] Hara M, Endo T, Kamiya K, et al. The role of hydrophobic amino acids of K-segments in the cryoprotection of lactate dehydrogenase by dehydrins. Journal of Plant Physiology, 2017, 210:18-23.
doi: S0176-1617(16)30281-4 pmid: 28040625
[25] Vazquez-Hernandez M, Romero I, Sanchez-Ballesta M T, et al. Functional characterization of VviDHN2 and VviDHN4 dehydrin isoforms from Vitis vinifera (L.): an in silico and in vitro approach. Plant Physiology and Biochemistry, 2021, 158:146-157.
doi: 10.1016/j.plaphy.2020.12.003 pmid: 33310482
[26] Candat A, Paszkiewicz G, Neveu M, et al. The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. The Plant Cell, 2014, 26(7):3148-3166.
[27] 任菲, 卢苗苗, 刘吉祥, 等. 蜡梅胚胎晚期丰富蛋白基因CpLEA的表达及抗性分析. 园艺学报, 2023, 50(2):359-370.
doi: 10.16420/j.issn.0513-353x.2021-0987
[28] 张前进, 曹丽茹, 马晨晨, 等. 玉米ZmLEA34基因的分子特性、克隆和响应干旱胁迫的表达分析. 山东农业大学学报(自然科学版), 2022, 53(5):665-672.
[29] Wang G, Su H, Abou-Elwafa S F, et al. Functional analysis of a late embryogenesis abundant protein ZmNHL 1 in maize under drought stress. Journal of Plant Physiology, 2023, 280:153883.
[30] Cheng H K, Pan G Y, Zhou N, et al. Calcium-dependent protein kinase 5 (CPK5) positively modulates drought tolerance through phosphorylating ABA-responsive element binding factors in oilseed rape (Brassica napus L.). Plant Science, 2022, 315:111125.
[31] Shiraku M L, Magwanga R O, Zhang Y Y, et al. Late embryogenesis abundant gene LEA 3 (Gh_A08G0694) enhances drought and salt stress tolerance in cotton. International Journal of Biological Macromolecules, 2022, 207:700-714.
[32] Anderson J M, Hand S C. Transgenic expression of late embryogenesis abundant proteins improves tolerance to water stress in Drosophila melanogaster. Journal of Experimental Biology, 2021, 224(4):238204.
[33] Burkhard B, Xuehuan F, Yanbin Y, et al. Desiccation tolerance in Streptophyte algae and the algae to land plant transition: evolution of LEA and MIP protein families within the viridiplantae. Journal of Experimental Botany, 2020, 11(7):3270-3278.
[34] 陈凯, 佟晓楠, 张晓媛, 等. 枳LEA基因家族鉴定及其对非生物胁迫的响应. 西北植物学报, 2023, 43(6):918-928.
[35] 王光鹏, 刘同坤, 徐新凤, 等. 大白菜LEA家族基因的鉴定及其部分成员在低温胁迫下的表达分析. 园艺学报, 2022, 49(2):304-318.
doi: 10.16420/j.issn.0513-353x.2021-0044
[36] Gao T, Mo Y X, Huang H Y, et al. Heterologous expression of Camellia sinensis late embryogenesis abundant protein gene 1 (CsLEA1) confers cold stress tolerance in Escherichia coli and yeast. Horticultural Plant Journal, 2021, 7(1):89-96.
[37] Shibuya T, Itai R, Maeda M, et al. Characterization of PcLEA14, a group 5 late embryogenesis abundant protein gene from pear (Pyrus communis). Plants, 2020, 9(9),1138.
[38] Liu T, Zhang Y Y, Chu Y X, et al. Oxidative stress protective function of ApY2SK 2 dehydrin: a late embryogenesis abundant protein in embryogenic callus of Agapanthus praecox to promote post-cryopreservation survival. Plant Cell,Tissue and Organ Culture, 2022, 149(3):799-808.
[39] Sheng J Y, Liu T, Zhang D. Exogenous dehydrin NnRab18 improves the Arabidopsis cryopreservation by affecting ROS metabolism and protecting antioxidase activities. In Vitro Cellular & Development Biology, 2022, 58(4):530-539.
[40] Singh C M, Kumar M, Pratap A, et al. Genome-Wide analysis of late embryogenesis abundant protein gene family in vigna species and expression of VrLEA encoding genes in vigna glabrescens reveal its role in heat tolerance. Frontiers in Plant Science, 2022, 13:843107.
[41] Shen Y Z, Wei J P, Zhou Y L, et al. Soybean late embryogenesis abundant protein GmLEA4 interacts with GmCaM1, enhancing seed vigor in transgenic Arabidopsis under high temperature and humidity stress. Plant Growth Regulation, 2023, 99:583-595.
[42] Kumar S, Muthuvel J, Sadhukhan A, et al. Enhanced osmotic adjustment, antioxidant defense, and photosynthesis efficiency under drought and heat stress of transgenic cowpea overexpressing an engineered DREB transcription factor. Plant Physiology and Biochemistry, 2022, 193:1-13.
doi: 10.1016/j.plaphy.2022.09.028 pmid: 36306675
[43] 李雪宝. 纤枝短月藓LEA基因家族的结构特征与功能分析. 昆明: 西南林业大学, 2022.
[44] 陈毓娜, Manuel S F, 李静, 等. 黄麻与其他物种HD-ZIP Ⅰ和LEA14蛋白序列同源性及其盐胁迫表达分析. 福建农林大学学报(自然科学版), 2022, 51(3):298-306.
[45] Huang L P, Zhang M Y, Jia J, et al. An atypical late embryogenesis abundant protein OsLEA 5 plays a positive role in ABA-Induced antioxidant defense in Oryza sativa L. Plant & Cell Physiology, 2018, 59(5):916-929.
[46] Sun M Z, Shen Y, Yin K, et al. A late embryogenesis abundant protein GsPM30 interacts with a receptor like cytoplasmic kinase GsCBRLK and regulates environmental stress responses. Plant Science, 2019, 283:70-82.
doi: S0168-9452(18)31335-9 pmid: 31128717
[47] Luo D, Zhang X, Li Y L, et al. MsDIUP1encoding a putative novel LEA protein positively modulates salt tolerance in alfalfa (Medicago sativa L.). Plant and Soil, 2023, 487(1/2):547-566.
[48] Liu Y, Li D X, Song Q P, et al. The maize late embryogenesis abundant protein ZmDHN13 positively regulates copper tolerance in transgenic yeast and tobacco. The Crop Journal, 2019, 7(3):403-410.
[49] Dai J L, Gao K X, Yao T, et al. Late embryogenesis abundant group3 protein (DrLEA3) is involved in antioxidation in the extremophilic bacterium Deinococcus radiodurans. Microbiological Research, 2020, 240:126559.
[50] Huang R L, Xiao D, Wang X, et al. Genome-wide identification, evolutionary and expression analyses of LEA gene family in peanut (Arachis hypogaea L.). BMC Plant Biology, 2022, 22(1):1-22.
[51] 杨剑. 谷子LEA-2基因家族鉴定及SiLEA14参与谷子逆境胁迫响应的功能研究. 太原: 山西大学, 2023.
[52] Ma J Y, Zuo D J, Ye H, et al. Genome-wide identification, characterization, and expression pattern of the late embryogenesis abundant (LEA) gene family in Juglans regia and its wild relatives Jmandshurica. BMC Plant Biology, 2023, 23(1):80.
[53] Akhtar M, Mizuta K, Shimokawa T, et al. Enhanced insecticidal activity of Bacillus thuringiensis using a late embryogenesis abundant peptide co-expression system. Journal of Microbiological Methods, 2021, 188:106207.
[54] Koubaa S, Brini F. Functional analysis of a wheat group 3 late embryogenesis abundant protein (TdLEA3) in Arabidopsis thaliana under abiotic and biotic stresses. Plant Physiology and Biochemistry, 2020, 156:396-406.
doi: 10.1016/j.plaphy.2020.09.028 pmid: 33032258
[55] 王西子, 信欣, 张方亦琢, 等. 植物脱水素的生物学功能与调控机制研究进展. 植物生理学报, 2022, 58(9):1617-1628.
[56] Liang Y, Kang K, Gan L, et al. Drought-responsive genes,late embryogenesis abundant group3 (LEA3) and vicinal oxygen chelate,function in lipid accumulation in Brassica napus and arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS. Plant Biotechnology Journal, 2019, 17(11):2123-2142.
doi: 10.1111/pbi.13127 pmid: 30972883
[57] Luo D, Hou X M, Zhang Y M, et al. CaDHN5, a dehydrin gene from pepper, plays an important role in salt and osmotic stress responses. International Journal of Molecular Sciences, 2019, 20(8):1989.
[58] Popova A V, Rausch S, Hundertmark M, et al. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying. Biochimica Biophysica Acta, 2015, 1854:151715-151725.
[59] Drira M, Hanin M, Masmoudi K, et al. Comparison of full-length and conserved segments of wheat dehydrin DHN-5 overexpressed in Arabidopsis thaliana showed different responses to abiotic and biotic stress. Functional Plant Biology, 2016, 43(11):1048-1060.
[1] 杨珺凯,沈阳,才晓溪,邬升杨,李建伟,孙明哲,贾博为,孙晓丽. 大豆PHD家族蛋白的全基因组鉴定及表达特征分析[J]. 作物杂志, 2019, (3): 55–65
[2] 赵天宏, 孙加伟, 付宇. 逆境胁迫下植物活性氧代谢及外源调控机理的研究进展[J]. 作物杂志, 2008, (3): 10–13
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!