作物杂志,2025, 第4期: 18 doi: 10.16035/j.issn.1001-7283.2025.04.001
• 专题综述 • 下一篇
黄若兰1,2(), 李帅2, 蔡兆琴1, 陈会鲜1, 肖冬2(
)
Huang Ruolan1,2(), Li Shuai2, Cai Zhaoqin1, Chen Huixian1, Xiao Dong2(
)
摘要:
植物在生长发育过程中不可避免地面临逆境胁迫,在应对胁迫的过程中,进化出一类响应逆境胁迫的功能性蛋白,如胚胎晚期发育丰富蛋白(late embryogenesis abundant,LEA)。LEA蛋白是一种高度亲水的富含甘氨酸的蛋白,广泛存在于植物中,其内在的无序性和高亲水性促进了LEA蛋白保护功能机制的多样性。LEA蛋白在响应逆境胁迫、激素信号和参与免疫应答等方面发挥重要作用。本文主要综述了LEA蛋白的结构分类、功能分析及逆境胁迫下LEA蛋白的功能研究,为深入了解LEA蛋白的抗逆机制以及通过基因工程提高生物的耐逆性提供参考。
[1] |
Dure L, Greenway S C, Galau G A. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry, 1981, 20(14):4162-4168.
doi: 10.1021/bi00517a033 pmid: 7284317 |
[2] |
Sasaki K, Christov N K, Tsuda S, et al. Identification of a novel LEA protein involved in freezing tolerance in wheat. Plant and Cell Physiology, 2014, 55(1):136-147.
doi: 10.1093/pcp/pct164 pmid: 24265272 |
[3] | Rivera-Najera L Y, Saab-Rincón G, Battaglia M, et al. A group 6 late embryogenesis abundant protein from common bean is a disordered protein with extended helical structure and oligomer- forming properties. The Journal of Biological Chemistry, 2014, 289(46):31995-32009. |
[4] |
Hincha D K, Thalhammer A. LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Biochemical Society Transactions, 2012, 40(5):1000-1003.
pmid: 22988854 |
[5] | Hunault G, Jaspard E. LEAPdb: a database for the late embryogenesis abundant proteins. BMC Genomics, 2010, 11(1):221. |
[6] | 周璇. 垫状卷柏LEA1基因的结构与功能分析. 昆明: 西南林业大学, 2022. |
[7] | Hundertmark M, Hincha D K. LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics, 2008, 9(1):118. |
[8] |
Charfeddine S, Saïdi M N, Charfeddine M, et al. Genome-wide identification and expression profiling of the late embryogenesis abundant genes in potato with emphasis on dehydrins. Molecular Biology Reports, 2015, 42(7):1163-1174.
doi: 10.1007/s11033-015-3853-2 pmid: 25638043 |
[9] | Chen J, Li N, Wang X Y, et al. Late embryogenesis abundant (LEA) gene family in Salvia miltiorrhiza: identification, expression analysis, and response to drought stress. Plant Signaling & Behavior, 2021, 16(5):1891769. |
[10] | 黄若兰. 花生AhLecRK9和AhLEAs在铝胁迫下的功能研究. 南宁: 广西大学, 2023. |
[11] | Shih M D, Lin S C, Hsieh J S, et al. Gene cloning and characterization of a soybean (Glycine max L.) LEA protein, GmPM16. Plant Molecular Biology, 2004, 56(5):689-703. |
[12] | Wang M Z, Li P, Li C, et al. SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biology, 2014, 14(1):290. |
[13] | Lim C W, Lim S, Baek W, et al. The pepper late embryogenesis abundant protein CaLEA 1 acts in regulating abscisic acid signaling, drought and salt stress response. Physiologia Plantarum, 2015, 154(4):526-542. |
[14] | Cuevas-Velazquez C L, Reyes J L, Covarrubias A A. Group 4 late embryogenesis abundant proteins as a model to study intrinsically disordered proteins in plants. Plant Signaling & Behavior, 2017, 12(7):e1343777. |
[15] | Hu T Z, Liu Y L, Zhu S S, et al. Overexpression of OsLea14-A improves the tolerance of rice and increases Hg accumulation under diverse stresses. Environmental Science and Pollution Research, 2019, 26(11):10537-10551. |
[16] | Battaglia M, Covarrubias A A. Late embryogenesis abundant (LEA) proteins in legumes. Frontiers in Plant Science, 2013, 4:190. |
[17] | 潘潇潇, 胡慧芳, 陈楠, 等. 脱水素在植物非生物胁迫中的作用研究进展. 农业生物技术学报, 2022, 30(3):594-605. |
[18] |
Sun X, Rikkerink E H A, Jones W T, et al. Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology. The Plant Cell, 2013, 25(1):38-55.
doi: 10.1105/tpc.112.106062 pmid: 23362206 |
[19] | French-Pacheco L, Cuevas-Velazquez C L, Rivillas-Acevedo L, et al. Metal-binding polymorphism in late embryogenesis abundant protein AtLEA4-5, an intrinsically disordered protein. PeerJ, 2018, 6(1):e4930. |
[20] | 李承娜, 高阳, 刘子明, 等. 大豆PM1蛋白抗氧化作用及提高酵母对铜耐受力. 深圳大学学报(理工版), 2017, 34(5):457-463. |
[21] | Hara M, Fujinaga M, Kuboi T. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiology and Biochemistry, 2004, 42(7):657-662. |
[22] | 刘星辰, 吕爱敏, 邢强, 等. 转紫花苜蓿MsLEA2基因提高拟南芥耐铝毒性研究. 中国草地学报, 2019, 41(2):30-35. |
[23] |
Veeranagamallaiah G, Prasanthi J, Reddy K E, et al. Group 1 and 2 LEA protein expression correlates with a decrease in water stress induced protein aggregation in horsegram during germination and seedling growth. Journal of Plant Physiology, 2011, 168(7):671-677.
doi: 10.1016/j.jplph.2010.09.007 pmid: 21035898 |
[24] |
Hara M, Endo T, Kamiya K, et al. The role of hydrophobic amino acids of K-segments in the cryoprotection of lactate dehydrogenase by dehydrins. Journal of Plant Physiology, 2017, 210:18-23.
doi: S0176-1617(16)30281-4 pmid: 28040625 |
[25] |
Vazquez-Hernandez M, Romero I, Sanchez-Ballesta M T, et al. Functional characterization of VviDHN2 and VviDHN4 dehydrin isoforms from Vitis vinifera (L.): an in silico and in vitro approach. Plant Physiology and Biochemistry, 2021, 158:146-157.
doi: 10.1016/j.plaphy.2020.12.003 pmid: 33310482 |
[26] | Candat A, Paszkiewicz G, Neveu M, et al. The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. The Plant Cell, 2014, 26(7):3148-3166. |
[27] |
任菲, 卢苗苗, 刘吉祥, 等. 蜡梅胚胎晚期丰富蛋白基因CpLEA的表达及抗性分析. 园艺学报, 2023, 50(2):359-370.
doi: 10.16420/j.issn.0513-353x.2021-0987 |
[28] | 张前进, 曹丽茹, 马晨晨, 等. 玉米ZmLEA34基因的分子特性、克隆和响应干旱胁迫的表达分析. 山东农业大学学报(自然科学版), 2022, 53(5):665-672. |
[29] | Wang G, Su H, Abou-Elwafa S F, et al. Functional analysis of a late embryogenesis abundant protein ZmNHL 1 in maize under drought stress. Journal of Plant Physiology, 2023, 280:153883. |
[30] | Cheng H K, Pan G Y, Zhou N, et al. Calcium-dependent protein kinase 5 (CPK5) positively modulates drought tolerance through phosphorylating ABA-responsive element binding factors in oilseed rape (Brassica napus L.). Plant Science, 2022, 315:111125. |
[31] | Shiraku M L, Magwanga R O, Zhang Y Y, et al. Late embryogenesis abundant gene LEA 3 (Gh_A08G0694) enhances drought and salt stress tolerance in cotton. International Journal of Biological Macromolecules, 2022, 207:700-714. |
[32] | Anderson J M, Hand S C. Transgenic expression of late embryogenesis abundant proteins improves tolerance to water stress in Drosophila melanogaster. Journal of Experimental Biology, 2021, 224(4):238204. |
[33] | Burkhard B, Xuehuan F, Yanbin Y, et al. Desiccation tolerance in Streptophyte algae and the algae to land plant transition: evolution of LEA and MIP protein families within the viridiplantae. Journal of Experimental Botany, 2020, 11(7):3270-3278. |
[34] | 陈凯, 佟晓楠, 张晓媛, 等. 枳LEA基因家族鉴定及其对非生物胁迫的响应. 西北植物学报, 2023, 43(6):918-928. |
[35] |
王光鹏, 刘同坤, 徐新凤, 等. 大白菜LEA家族基因的鉴定及其部分成员在低温胁迫下的表达分析. 园艺学报, 2022, 49(2):304-318.
doi: 10.16420/j.issn.0513-353x.2021-0044 |
[36] | Gao T, Mo Y X, Huang H Y, et al. Heterologous expression of Camellia sinensis late embryogenesis abundant protein gene 1 (CsLEA1) confers cold stress tolerance in Escherichia coli and yeast. Horticultural Plant Journal, 2021, 7(1):89-96. |
[37] | Shibuya T, Itai R, Maeda M, et al. Characterization of PcLEA14, a group 5 late embryogenesis abundant protein gene from pear (Pyrus communis). Plants, 2020, 9(9),1138. |
[38] | Liu T, Zhang Y Y, Chu Y X, et al. Oxidative stress protective function of ApY2SK 2 dehydrin: a late embryogenesis abundant protein in embryogenic callus of Agapanthus praecox to promote post-cryopreservation survival. Plant Cell,Tissue and Organ Culture, 2022, 149(3):799-808. |
[39] | Sheng J Y, Liu T, Zhang D. Exogenous dehydrin NnRab18 improves the Arabidopsis cryopreservation by affecting ROS metabolism and protecting antioxidase activities. In Vitro Cellular & Development Biology, 2022, 58(4):530-539. |
[40] | Singh C M, Kumar M, Pratap A, et al. Genome-Wide analysis of late embryogenesis abundant protein gene family in vigna species and expression of VrLEA encoding genes in vigna glabrescens reveal its role in heat tolerance. Frontiers in Plant Science, 2022, 13:843107. |
[41] | Shen Y Z, Wei J P, Zhou Y L, et al. Soybean late embryogenesis abundant protein GmLEA4 interacts with GmCaM1, enhancing seed vigor in transgenic Arabidopsis under high temperature and humidity stress. Plant Growth Regulation, 2023, 99:583-595. |
[42] |
Kumar S, Muthuvel J, Sadhukhan A, et al. Enhanced osmotic adjustment, antioxidant defense, and photosynthesis efficiency under drought and heat stress of transgenic cowpea overexpressing an engineered DREB transcription factor. Plant Physiology and Biochemistry, 2022, 193:1-13.
doi: 10.1016/j.plaphy.2022.09.028 pmid: 36306675 |
[43] | 李雪宝. 纤枝短月藓LEA基因家族的结构特征与功能分析. 昆明: 西南林业大学, 2022. |
[44] | 陈毓娜, Manuel S F, 李静, 等. 黄麻与其他物种HD-ZIP Ⅰ和LEA14蛋白序列同源性及其盐胁迫表达分析. 福建农林大学学报(自然科学版), 2022, 51(3):298-306. |
[45] | Huang L P, Zhang M Y, Jia J, et al. An atypical late embryogenesis abundant protein OsLEA 5 plays a positive role in ABA-Induced antioxidant defense in Oryza sativa L. Plant & Cell Physiology, 2018, 59(5):916-929. |
[46] |
Sun M Z, Shen Y, Yin K, et al. A late embryogenesis abundant protein GsPM30 interacts with a receptor like cytoplasmic kinase GsCBRLK and regulates environmental stress responses. Plant Science, 2019, 283:70-82.
doi: S0168-9452(18)31335-9 pmid: 31128717 |
[47] | Luo D, Zhang X, Li Y L, et al. MsDIUP1encoding a putative novel LEA protein positively modulates salt tolerance in alfalfa (Medicago sativa L.). Plant and Soil, 2023, 487(1/2):547-566. |
[48] | Liu Y, Li D X, Song Q P, et al. The maize late embryogenesis abundant protein ZmDHN13 positively regulates copper tolerance in transgenic yeast and tobacco. The Crop Journal, 2019, 7(3):403-410. |
[49] | Dai J L, Gao K X, Yao T, et al. Late embryogenesis abundant group3 protein (DrLEA3) is involved in antioxidation in the extremophilic bacterium Deinococcus radiodurans. Microbiological Research, 2020, 240:126559. |
[50] | Huang R L, Xiao D, Wang X, et al. Genome-wide identification, evolutionary and expression analyses of LEA gene family in peanut (Arachis hypogaea L.). BMC Plant Biology, 2022, 22(1):1-22. |
[51] | 杨剑. 谷子LEA-2基因家族鉴定及SiLEA14参与谷子逆境胁迫响应的功能研究. 太原: 山西大学, 2023. |
[52] | Ma J Y, Zuo D J, Ye H, et al. Genome-wide identification, characterization, and expression pattern of the late embryogenesis abundant (LEA) gene family in Juglans regia and its wild relatives Jmandshurica. BMC Plant Biology, 2023, 23(1):80. |
[53] | Akhtar M, Mizuta K, Shimokawa T, et al. Enhanced insecticidal activity of Bacillus thuringiensis using a late embryogenesis abundant peptide co-expression system. Journal of Microbiological Methods, 2021, 188:106207. |
[54] |
Koubaa S, Brini F. Functional analysis of a wheat group 3 late embryogenesis abundant protein (TdLEA3) in Arabidopsis thaliana under abiotic and biotic stresses. Plant Physiology and Biochemistry, 2020, 156:396-406.
doi: 10.1016/j.plaphy.2020.09.028 pmid: 33032258 |
[55] | 王西子, 信欣, 张方亦琢, 等. 植物脱水素的生物学功能与调控机制研究进展. 植物生理学报, 2022, 58(9):1617-1628. |
[56] |
Liang Y, Kang K, Gan L, et al. Drought-responsive genes,late embryogenesis abundant group3 (LEA3) and vicinal oxygen chelate,function in lipid accumulation in Brassica napus and arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS. Plant Biotechnology Journal, 2019, 17(11):2123-2142.
doi: 10.1111/pbi.13127 pmid: 30972883 |
[57] | Luo D, Hou X M, Zhang Y M, et al. CaDHN5, a dehydrin gene from pepper, plays an important role in salt and osmotic stress responses. International Journal of Molecular Sciences, 2019, 20(8):1989. |
[58] | Popova A V, Rausch S, Hundertmark M, et al. The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying. Biochimica Biophysica Acta, 2015, 1854:151715-151725. |
[59] | Drira M, Hanin M, Masmoudi K, et al. Comparison of full-length and conserved segments of wheat dehydrin DHN-5 overexpressed in Arabidopsis thaliana showed different responses to abiotic and biotic stress. Functional Plant Biology, 2016, 43(11):1048-1060. |
[1] | 杨珺凯,沈阳,才晓溪,邬升杨,李建伟,孙明哲,贾博为,孙晓丽. 大豆PHD家族蛋白的全基因组鉴定及表达特征分析[J]. 作物杂志, 2019, (3): 5565 |
[2] | 赵天宏, 孙加伟, 付宇. 逆境胁迫下植物活性氧代谢及外源调控机理的研究进展[J]. 作物杂志, 2008, (3): 1013 |
|