作物杂志,2025, 第4期: 918 doi: 10.16035/j.issn.1001-7283.2025.04.002
补清1(), 杨开强1, 王添1, 施思1, 信国琛1, 陈勇1, 董朝霞2, 安静1(
)
Bu Qing1(), Yang Kaiqiang1, Wang Tian1, Shi Si1, Xin Guochen1, Chen Yong1, Dong Zhaoxia2, An Jing1(
)
摘要:
随着全球气候及农业生产环境的变化,近年来非生物灾害频发,严重制约着作物生长发育并造成粮食生产安全问题。纳米材料由于其独特的理化特性,有助于改善受污染的生长环境,提高作物抗逆性,并促进现代农业可持续发展。本文综述了作物对纳米材料的吸收方式,分析了纳米材料在缓解温度、水分、盐分及重金属等非生物胁迫的作用机制,为纳米材料在缓解作物非生物胁迫方面的应用提供参考。
[1] | Imran Q M, Falak N, Hussain A, et al. Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy, 2021, 11(8):1579. |
[2] | 曹慧芬, 谢建义, 姚建忠, 等. 氧化石墨烯对盐胁迫下小麦种子萌发及幼苗生长的影响. 山西农业大学学报(自然科学版), 2022, 42(5):84-92. |
[3] |
Wu H H, Tito N, Giraldo J P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano, 2017, 11(11):11283-11297.
doi: 10.1021/acsnano.7b05723 pmid: 29099581 |
[4] | Arora S, Murmu G, Mukherjee K, et al. A comprehensive overview of nanotechnology in sustainable agriculture. Journal of Biotechnology, 2022, 355:21-41. |
[5] |
Auffan M, Rose J, Bottero J Y, et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 2009, 4(10):634-641.
doi: 10.1038/nnano.2009.242 pmid: 19809453 |
[6] | Ghorbanpour M, Manika K, Varma A. Nanoscience and plant-soil systems. Cham Switzerland: Springer, 2017. |
[7] | Pramanik B, Sar P, Bharti R, et al. Multifactorial role of nanoparticles in alleviating environmental stresses for sustainable crop production and protection. Plant Physiology and Biochemistry, 2023, 201:107831. |
[8] | Dam P, Paret M L, Mondal R, et al. Advancement of noble metallic nanoparticles in agriculture: a promising future. Pedosphere, 2023, 33(1):116-128. |
[9] | Shaw D S, Honeychurch K C. Nanosensor applications in plant science. Biosensors-Basel, 2022, 12(9):675. |
[10] | Khan I, Awan S A, Rizwan M, et al. Nanoparticleʼs uptake and translocation mechanisms in plants via seed priming, foliar treatment, and root exposure: a review. Environmental Science and Pollution Research, 2022, 29(60):89823-89833. |
[11] | Lee J H J, Kasote D M. Nano-priming for inducing salinity tolerance, disease resistance, yield attributes, and alleviating heavy metal toxicity in plants. Plants-Basel, 2024, 13(3):446. |
[12] | An J, Hu P G, Li F J, et al. Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science: Nano, 2020, 7(8):2214-2228. |
[13] | Mahakham W, Sarmah A K, Maensiri S, et al. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports, 2017,7:8263. |
[14] | Mazhar M W, Ishtiaq M, Maqbool M, et al. Seed priming with calcium oxide nanoparticles improves germination, biomass, antioxidant defence and yield traits of canola plants under drought stress. South African Journal of Botany, 2022, 151:889-899. |
[15] | Pirzada T, de Farias B V, Mathew R, et al. Recent advances in biodegradable matrices for active ingredient release in crop protection: towards attaining sustainability in agriculture. Current Opinion in Colloid and Interface Science, 2020, 48:121-136. |
[16] | Xu L, Zhu Z W, Sun D W. Bioinspired nanomodification strategies: moving from chemical‐based agrosystems to sustainable agriculture. ACS Nano, 2021, 15(8):12655-12686. |
[17] | Guha T, Ravikumar K V G, Mukherjee A, et al. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiology and Biochemistry, 2018, 127:403-413. |
[18] | Khan M N, Li Y H, Khan Z, et al. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and alpha-amylase activities. Journal of Nanobiotechnology, 2021, 19(1):276. |
[19] | Khan M N, Fu C C, Li J Q, et al. Seed nanopriming: How do nanomaterials improve seed tolerance to salinity and drought?. Chemosphere, 2023, 310:136911. |
[20] |
Sundaria N, Singh M, Upreti P, et al. Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains. Journal of Plant Growth Regulation, 2019, 38(1):122-131.
doi: 10.1007/s00344-018-9818-7 |
[21] | Avellan A, Schwab F, Masion A, et al. Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environmental Science & Technology, 2017, 51(15):8682-8691. |
[22] | Butova V V, Bauer T V, Polyakov V A, et al. Advances in nanoparticle and organic formulations for prolonged controlled release of auxins. Plant Physiology and Biochemistry, 2023, 201:107808. |
[23] | Kim J H, Oh Y, Yoon H, et al. Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environmental Science & Technology, 2015, 49(2):1113-1119. |
[24] |
Sabo-Attwood T, Unrine J M, Stone J W, et al. Uptake,distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology, 2012, 6(4):353-360.
doi: 10.3109/17435390.2011.579631 pmid: 21574812 |
[25] | Taylor A F, Rylott E L, Anderson C W N, et al. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE, 2014, 9(4):e93793. |
[26] | Oliveira L S B L, Ristroph K D. Critical review: uptake and translocation of organic nanodelivery vehicles in plants. Environmental Science & Technology, 2024, 58(13):5646-5669. |
[27] |
Wang Y Y, Wang L Q, Ma C X, et al. Effects of cerium oxide on rice seedlings as affected by co-exposure of cadmium and salt. Environmental Pollution, 2019, 252:1087-1096.
doi: S0269-7491(18)35750-6 pmid: 31252106 |
[28] | Guleria G, Thakur S, Shandilya M, et al. Nanotechnology for sustainable agro-food systems: the need and role of nanoparticles in protecting plants and improving crop productivity. Plant Physiology and Biochemistry, 2023, 194:533-549. |
[29] | Chavan S, Sarangdhar V, Vigneshwaran N. Nanopore-based metagenomic analysis of the impact of nanoparticles on soil microbial communities. Heliyon, 2022, 8(6):e09693. |
[30] | Macůrková A, Maryška L, Jindřichová B, et al. Effect of round-shaped silver nanoparticles on the genetic and functional diversity of soil microbial community in soil and “soil-plant” systems. Applied Soil Ecology, 2021, 168:104165. |
[31] | McGee C F, Clipson N, Doyle E. Exploring the influence of raising soil pH on the ecotoxicological effects of silver nanoparticles and micron particles on soil microbial communities. Water Air and Soil Pollution, 2020, 231(4):174. |
[32] |
Liu J, Williams P C, Goodson B M, et al. TiO2 nanoparticles in irrigation water mitigate impacts of aged Ag nanoparticles on soil microorganisms, Arabidopsis thaliana plants, and Eisenia fetida earthworms. Environmental Research, 2019, 172:202-215.
doi: 10.1016/j.envres.2019.02.010 |
[33] | Kulikova N A, Volkov D S, Volikov A B, et al. Silver nanoparticles stabilized by humic substances adversely affect wheat plants and soil. Journal of Nanoparticle Research, 2020, 22(5):100. |
[34] | Handa M, Kalia A. Exploring the dynamics of nanoparticle-plant- microbe interactions to realize the goal of improved crop productivity and food security. Rhizosphere, 2024:100884. |
[35] | Shen Y, Tang H Y, Wu W H, et al. Role of nano-biochar in attenuating the allelopathic effect from Imperata cylindrica on rice seedlings. Environmental Science: Nano, 2020, 7(1):116-126. |
[36] | Zhao L J, Ortiz C, Adeleye A S, et al. Metabolomics to detect response of lettuce (Lactuca sativa) to Cu(OH)2 nanopesticides: oxidative stress response and detoxification mechanisms. Environmental Science & Technology, 2016, 50(17):9697-9707. |
[37] | Milewska-Hendel A, Gepfert W, Zubko M, et al. Morphological, histological and ultrastructural changes in Hordeum vulgare (L.) roots that have been exposed to negatively charged gold nanoparticles. Applied Sciences-Basel, 2022, 12(7):3265. |
[38] | Rossi L, Zhang W L, Ma X M. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environmental Pollution, 2017, 229:132-138. |
[39] |
Hu P G, An J, Faulkner M M, et al. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano, 2020, 14(7):7970-7986.
doi: 10.1021/acsnano.9b09178 pmid: 32628442 |
[40] | Ali S, Mehmood A, Khan N. Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. Journal of Nanomaterials, 2021(1):6677616. |
[41] | Sembada A A, Lenggoro I W. Transport of nanoparticles into plants and their detection methods. Nanomaterials, 2024, 14(2):131. |
[42] | Miyamoto T, Numata K. Advancing biomolecule delivery in plants: harnessing synthetic nanocarriers to overcome multiscale barriers for cutting-edge plant bioengineering. Bulletin of the Chemical Society of Japan, 2023, 96(9):1026-1044. |
[43] |
Avellan A, Yun J, Zhang Y L, et al. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano, 2019, 13(5):5291-5305.
doi: 10.1021/acsnano.8b09781 pmid: 31074967 |
[44] | Raliya R, Franke C, Chavalmane S, et al. Quantitative understanding of nanoparticle uptake in watermelon plants. Frontiers in Plant Science, 2016,7:1288. |
[45] |
Lowry G V, Avellan A, Gilbertson L M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature Nanotechnology, 2019, 14(6):517-522.
doi: 10.1038/s41565-019-0461-7 pmid: 31168073 |
[46] | Francis D V, Sood N, Gokhale T. Biogenic CuO and ZnO nanoparticles as nanofertilizers for sustainable growth of Amaranthus hybridus. Plants, 2022, 11(20):2776. |
[47] | Xin X P, Nepal J, Wright A L, et al. Carbon nanoparticles improve corn (Zea mays L.) growth and soil quality: comparison of foliar spray and soil drench application. Journal of Cleaner Production, 2022, 363:132630. |
[48] | Ali S, Rizwan M, Noureen S, et al. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environmental Science and Pollution Research, 2019, 26(11):11288-11299. |
[49] | Ahmed R, Abd Samad M Y, Uddin M K, et al. Recent trends in the foliar spraying of zinc nutrient and zinc oxide nanoparticles in tomato production. Agronomy-Basel, 2021, 11(10):2074. |
[50] | Iqbal M, Raja N I, Mashwani Z, et al. Effect of silver nanoparticles on growth of wheat under heat stress. Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43:387-395. |
[51] | Mahmoud N E, Abdelhameed R M. Use of titanium dioxide doped multi-wall carbon nanotubes as promoter for the growth, biochemical indices of Sesamum indicum L. under heat stress conditions. Plant Physiology and Biochemistry, 2023, 201:107844. |
[52] | Omar A A, Heikal Y M, Zayed E M, et al. Conferring of drought and heat stress tolerance in wheat (Triticum aestivum L.) genotypes and their response to selenium nanoparticles application. Nanomaterials, 2023, 13(6):998. |
[53] | Mahmoudi R, Razavi F, Rabiei V, et al. Application of glycine betaine coated chitosan nanoparticles alleviate chilling injury and maintain quality of plum (Prunus domestica L.) fruit. International Journal of Biological Macromolecules, 2022, 207:965-977. |
[54] | Hasanpour H, Maali-Amir R, Zeinali H. Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea. Russian Journal of Plant Physiology, 2015, 62(6):779-787. |
[55] | Mogazy A M, Hanafy R S. Foliar spray of biosynthesized zinc oxide nanoparticles alleviate salinity stress effect on Vicia faba plants. Journal of Soil Science and Plant Nutrition, 2022, 22(2):2647-2662. |
[56] | Lalarukh I, Zahra N, Al Huqail A A, et al. Exogenously applied ZnO nanoparticles induced salt tolerance in potentially high yielding modern wheat (Triticum aestivum L.) cultivars. Environmental Technology & Innovation, 2022, 27:102799. |
[57] | Liu J H, Li G J, Chen L L, et al. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio. Journal of Nanobiotechnology, 2021, 19(1):153. |
[58] | Torabian S, Farhangi-Abriz S, Zahedi M. Efficacy of FeSO4 nano formulations on osmolytes and antioxidative enzymes of sunflower under salt stress. Indian Journal of Plant Physiology, 2018, 23(2):305-315. |
[59] |
Sebastian A, Nangia A, Prasad M N V. Cadmium and sodium adsorption properties of magnetite nanoparticles synthesized from Hevea brasiliensis Muell. Arg. bark: relevance in amelioration of metal stress in rice. Journal of Hazardous Materials, 2019, 371:261-272.
doi: S0304-3894(19)30276-6 pmid: 30856436 |
[60] |
Ma J, Cai H M, He C W, et al. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytologist, 2015, 206(3):1063-1074.
doi: 10.1111/nph.13276 pmid: 25645894 |
[61] | Koleva L, Umar A, Yasin N A, et al. Iron oxide and silicon nanoparticles modulate mineral nutrient homeostasis and metabolism in cadmium-stressed Phaseolus vulgaris. Frontiers in Plant Science, 2022, 13:806781. |
[62] | Sun H Y, He S J, Liu T L, et al. Alleviation of cadmium toxicity by nano-silicon dioxide in Momordica charantia L. seedlings. Journal of Soil Science and Plant Nutrition, 2023, 23(1):1060-1069. |
[63] | Wang K, Wang Y Q, Wan Y N, et al. The fate of arsenic in rice plants (Oryza sativa L.): influence of different forms of selenium. Chemosphere, 2021, 264(1):128417. |
[64] | Noman M, Shahid M, Ahmed T, et al. Green copper nanoparticles from a native Klebsiella pneumoniae strain alleviated oxidative stress impairment of wheat plants by reducing the chromium bioavailability and increasing the growth. Ecotoxicology and Environmental Safety, 2020, 192:110303. |
[65] | Zahedi S M, Hosseini M S, Meybodi N D H, et al. Mitigation of the effect of drought on growth and yield of pomegranates by foliar spraying of different sizes of selenium nanoparticles. Journal of the Science of Food and Agriculture, 2021, 101(12):5202-5213. |
[66] | Sun L Y, Song F B, Li X N, et al. Nano-ZnO alleviates drought stress via modulating plant water use and carbohydrate metabolism in maize. Archives of Agronomy and Soil Science, 2021, 67(2):245-259. |
[67] | Zhao L, Wang W, Fu X H, et al. Graphene oxide, a novel nanomaterial as soil water retention agent, dramatically enhances drought stress tolerance in soybean plants. Frontiers in Plant Science, 2022, 13:810905. |
[68] | Hashimoto T, Mustafa G, Nishiuchi T, et al. Comparative analysis of the effect of inorganic and organic chemicals with silver nanoparticles on soybean under flooding stress. International Journal of Molecular Sciences, 2020, 21(4):1300. |
[69] |
Bhattacharjya S, Adhikari T, Sahu A, et al. Ecotoxicological effect of TiO2 nano particles on different soil enzymes and microbial community. Ecotoxicology, 2021, 30(4):719-732.
doi: 10.1007/s10646-021-02398-2 pmid: 33797020 |
[70] | Ratajczak K, Sulewska H, Panasiewicz K, et al. Phytostimulator application after cold stress for better maize (Zea mays L.) plant recovery. Agriculture-Basel, 2023, 13(3):569. |
[71] | 胡炎, 杨帆, 杨宁, 等. 盐碱地资源分析及利用研究展望. 土壤通报, 2023, 54(2):489-494. |
[72] | Zia-ur-Rehman M, Anayatullah S, Irfan E, et al. Nanoparticles assisted regulation of oxidative stress and antioxidant enzyme system in plants under salt stress: a review. Chemosphere, 2023, 314:137649. |
[73] | Zhou P F, Adeel M, Shakoor N, et al. Application of nanoparticles alleviates heavy metals stress and promotes plant growth: an overview. Nanomaterials, 2021, 11(1):26. |
[74] |
Cui J H, Liu T X, Li F B, et al. Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects. Environmental Pollution, 2017, 228:363-369.
doi: S0269-7491(16)31848-6 pmid: 28551566 |
[75] |
Wang J, Wu H H, Wang Y C, et al. Small particles, big effects: how nanoparticles can enhance plant growth in favorable and harsh conditions. Journal of Integrative Plant Biology, 2024, 66(7):1274-1294.
doi: 10.1111/jipb.13652 |
[76] | Iqbal S, Hussain M, Sadiq S, et al. Silicon nanoparticles confer hypoxia tolerance in citrus rootstocks by modulating antioxidant activities and carbohydrate metabolism. Heliyon, 2024, 10(1):e22960. |
[77] |
Mustafa G, Komatsu S. Insights into the response of soybean mitochondrial proteins to various sizes of aluminum oxide nanoparticles under flooding stress. Journal of Proteome Research, 2016, 15(12):4464-4475.
pmid: 27780359 |
[1] | 贺新春, 杜何为, 黄敏. 玉米ZmCaM1基因的克隆和表达分析[J]. 作物杂志, 2025, (4): 1928 |
[2] | 黄承建, 李祥, 刘小康, 潘庭杰, 雷宁, 罗芳, 赵思毅. 不同农作物种植对土壤和作物重金属的影响[J]. 作物杂志, 2025, (2): 180188 |
[3] | 卢玉, 张妍妍, 陈海涛, 李满鑫, 白润娥, 雷彩燕. 外源亚精胺对烟粉虱―黄瓜互作的影响[J]. 作物杂志, 2025, (2): 256264 |
[4] | 李新如, 谢晏芬, 朱宣全, 王戈, 白羽祥, 杜宇, 周鹏, 赵宇婷, 朱红琼, 杨帆, 肖志文, 王文波, 方志鹏, 韩家宝, 王娜. 不同前作植烟土壤质量评价及其与烟叶质量的相关性研究[J]. 作物杂志, 2024, (5): 167174 |
[5] | 顾怀应, 胡诗钦, 赵晴, 刘长华, 孟丽君. 根际微生物增强水稻耐盐性研究进展[J]. 作物杂志, 2024, (4): 813 |
[6] | 李红艳, 姚晓华, 姚有华, 李新, 吴昆仑. 麦类作物蓝粒性状遗传与调控机制研究进展[J]. 作物杂志, 2024, (2): 914 |
[7] | 杜明, 王阿红, 冯旗, 方玉. 我国作物设计育种体系发展及挑战[J]. 作物杂志, 2024, (1): 17 |
[8] | 白菁华, 贾晓梅, 吴艳清, 王悦坤, 宋伟扬, 刘伊诺. DSE抵抗非生物胁迫及增强马铃薯抗旱效应[J]. 作物杂志, 2023, (6): 150159 |
[9] | 边晓萌, 李华锋, 陈彦宾. “十三五”国家重点研发计划“经作”专项杂粮领域资助情况及实施进展概述[J]. 作物杂志, 2023, (4): 16 |
[10] | 翟鑫娜, 杨佳伟, 许春江, 祁利潘, 田再民, 冯琰, 尹江, 龚学臣. 嫁接对马铃薯种间杂交亲和性的影响及生理调控机制[J]. 作物杂志, 2023, (4): 182187 |
[11] | 孟亚轩, 姚旭航, 孙颖琦, 赵心月, 王凤霞, 瓮巧云, 刘颖慧. 主要禾谷类作物DGAT基因家族比较分析[J]. 作物杂志, 2023, (1): 2029 |
[12] | 王雪茹, 陈海飞, 张振华. 硝酸盐缓解油菜铵毒害的生理机制[J]. 作物杂志, 2022, (6): 124131 |
[13] | 张东霞, 秦安振. 冬小麦-夏玉米作物蒸散量及其水热关系研究[J]. 作物杂志, 2022, (6): 145151 |
[14] | 庞星月, 万林, 李素, 王宇航, 刘晨, 肖晓璐, 李心昊, 马霓. 外源SLs和纳米K2MoO4对干旱胁迫下油菜种子萌发的影响[J]. 作物杂志, 2022, (4): 214220 |
[15] | 严圣吉, 尚子吟, 邓艾兴, 张卫建. 我国农田氧化亚氮排放的时空特征及减排途径[J]. 作物杂志, 2022, (3): 18 |
|