作物杂志,2016, 第4期: 80–85 doi: 10.16035/j.issn.1001-7283.2016.04.013

• 遗传育种·种质资源·生物科技 • 上一篇    下一篇

不同基因型亚麻钾利用效率差异分析

姚玉波,吴广文,黄文功,康庆华,姜卫东,路颖,张树权   

  1. 黑龙江省农业科学院经济作物研究所,150086,黑龙江哈尔滨
  • 收稿日期:2016-04-05 修回日期:2016-06-13 出版日期:2016-08-15 发布日期:2018-08-26
  • 通讯作者: 康庆华
  • 作者简介:作者简介:姚玉波,助理研究员,从事作物栽培、育种和养分高效利用研究
  • 基金资助:
    哈尔滨市科学技术局科技创新人才项目(2014RFQYJ008);国家麻类产业技术体系资助项目(CARS-19-S03)

Potassium Use Efficiency of Different Flax Genotypes

Yao Yubo,Wu Guangwen,Huang Wengong,Kang Qinghua,Jiang Weidong,Lu Ying,Zhang Shuquan   

  1. Institute of Industrial Crops,Heilongjiang Academy of Agricultural Sciences,Harbin 150086,Heilongjiang,China
  • Received:2016-04-05 Revised:2016-06-13 Online:2016-08-15 Published:2018-08-26
  • Contact: Qinghua Kang

摘要:

为了评价不同亚麻品种(系)的钾利用效率差异,筛选出钾高效利用种质资源,在大田条件下,以22份亚麻品种(系)为试验材料,设置不施钾肥(K0)和施钾肥(K25)2个处理,分析亚麻株高、工艺长度、原茎产量、纤维产量、全麻率及其与钾利用效率的相关性。结果表明,施用钾肥有利于提高亚麻工艺长度、全麻率和纤维产量;经聚类分析,K0条件下,筛选出钾高效利用种质资源4份:双亚10、原2012-306、原2012-295和sxy130;K25条件下,筛选出钾高效利用种质资源2份:sxy130和原2012-306;K0条件下,钾利用效率与株高和全麻率极显著正相关,与工艺长度显著正相关,K25条件下,钾利用效率与株高、工艺长度和全麻率显著正相关。该研究可为亚麻钾高效利用机理研究及钾高效利用品种选育提供理论基础和试验材料。

关键词: 亚麻, 钾利用效率, 差异

Abstract:

In order to evaluate the potassium use efficiency of different flax varieties (lines) and to screen the variety with the highest efficiency among germplasm resources, two potassium levels (K0 and K25), 22 flax varieties (lines) were experimentally designed to investigate height, technical length, straw yield, fiber yield, fiber content and to study the correlation with potassium use efficiency under field condition. The results showed that potassium had a significant improvement on technical length, fiber content and fiber yield of flax. Four germplasm resources with high potassium use efficiency were screened out (shuangya10, yuan 2012-306, yuan 2012-295 and sxy130) under K0 condition, two germplasm resources with high potassium use efficiency were screened out (sxy130 and yuan 2012-306) under K25 condition by cluster analysis. Under K0 condition, potassium use efficiency had a significant positive correlation with height (P﹤0.01), technical length (P﹤0.05) and fiber content (P﹤0.01), under K25 condition,potassium use efficiency had a significant positive correlation with height, technical length and fiber content (P﹤0.05). The results will provide theoretical basis for investigation and breeding of high potassium use efficiency.

Key words: Flax, Potassium use efficiency, Variation

表1

钾肥对亚麻品种(系)农艺性状和产量性状的影响"

品种(系)
Varieties(Lines)
处理
Treatments
株高(cm)
Height
工艺长度(cm)
Technical length
原茎产量(kg/hm2)
Straw yield
纤维产量(kg/hm2)
Fiber yield
全麻率(%)
Fiber content
9801-1-1-7 K0 84.97Aa 75.40Aa 8 712.70Bb 1 577.89Bb 23.79Bb
K25 82.10Bb 75.07Aa 9 826.24Aa 2 078.09Aa 28.11Aa
白花 K0 65.30Aa 56.73Aa 6 681.90Aa 1 086.77Bb 21.68Bb
K25 64.30Bb 55.40Bb 6 598.87Aa 1 353.36Aa 27.17Aa
r0423-2-2 K0 76.03Bb 68.07Bb 6 973.34Aa 1 244.39Aa 22.74Bb
K25 77.93Aa 72.37Aa 6 776.04Bb 1 327.80Aa 26.53Aa
原2012-305 K0 74.40Aa 65.80Aa 7 456.10Bb 1 380.50Bb 23.07Bb
K25 68.00Bb 60.87Bb 7 650.41Aa 1 491.62Aa 26.09Aa
原2012-302 K0 75.60Aa 65.03Bb 5 018.03Bb 893.61Bb 24.01Bb
K25 72.87Bb 66.87Aa 5 264.75Aa 1 018.94Aa 27.55Aa
原2012-300 K0 66.57Aa 58.43Aa 7 104.17Bb 1 445.30Bb 27.67Bb
K25 65.60Bb 56.63Bb 9 264.57Aa 1 852.34Aa 29.29Aa
m03057-26 K0 82.90Aa 73.90Bb 7 641.40Bb 1 273.39Bb 21.40Bb
K25 82.90Aa 77.57Aa 8 365.36Aa 1 497.72Aa 24.27Aa
r0340-2-2 K0 70.63Bb 63.53Bb 7 493.41Aa 1 437.25Bb 24.89Bb
K25 73.80Aa 65.73Aa 7 528.57Aa 1 602.37Aa 28.37Aa
sxy330 K0 72.93Bb 64.63Aa 7 174.28Bb 1 486.06Bb 26.94Bb
K25 74.97Aa 64.97Aa 7 528.49Aa 1 659.06Aa 28.27Aa
02147-2-6 K0 80.23Bb 72.17Bb 6 976.68Bb 1 488.70Bb 27.65Bb
K25 82.83Aa 73.87Aa 7 282.85Aa 1 711.37Aa 30.06Aa
原2012-281 K0 72.30Bb 67.30Aa 5 821.51Bb 1 227.29Bb 26.48Bb
K25 74.13Aa 67.13Aa 7 444.42Aa 1 597.61Aa 28.32Aa
原2012-306 K0 77.03Bb 67.07Bb 5 102.91Bb 1 151.64Bb 28.57Bb
品种(系)
Varieties(Lines)
处理
Treatments
株高(cm)
Height
工艺长度(cm)
Technical length
原茎产量(kg/hm2)
Straw yield
纤维产量(kg/hm2)
Fiber yield
全麻率(%)
Fiber content
K25 80.20Aa 73.17Aa 5 798.53Aa 1 363.32Aa 30.20Aa
原2012-303 K0 82.53Bb 74.53Bb 6 222.88Bb 1 142.47Aa 23.42Bb
K25 85.97Aa 78.90Aa 6 447.93Aa 1 221.36Aa 25.17Aa
原2012-289 K0 72.93Bb 66.50Aa 7 984.54Aa 1 890.56Aa 30.22Bb
K25 74.07Aa 67.07Aa 7 771.97Bb 1 972.85Aa 33.20Aa
sxy130 K0 79.97Bb 70.03Bb 6 706.88Aa 1 459.86Bb 27.69Bb
K25 81.07Aa 75.17Aa 6 742.07Aa 1 583.29Aa 30.38Aa
sxy303 K0 70.83Aa 63.36Aa 6 109.35Aa 1 410.25Aa 29.47Aa
K25 70.40Aa 60.37Bb 6 017.41Aa 1 426.71Aa 29.98Aa
原2012-283 K0 76.67Aa 68.77Aa 8 082.60Aa 1 620.07Bb 25.60Bb
K25 76.47Aa 69.47Aa 7 632.65Bb 1 785.76Aa 29.68Aa
原2012-295 K0 80.60Bb 72.07Bb 6 516.23Aa 1 318.84Aa 26.05Bb
K25 86.33Aa 79.37Aa 6 252.22Bb 1 336.32Aa 27.82Aa
黑亚20 K0 63.67Aa 50.77Bb 7 180.73Aa 1 273.02Bb 23.49Bb
K25 63.10Aa 55.17Aa 7 356.81Aa 1 552.44Aa 27.25Aa
New K0 66.87Bb 55.07Bb 7 791.40Aa 1 984.41Aa 32.54Bb
K25 67.83Aa 57.83Aa 7 704.33Aa 2 071.75Aa 33.79Aa
双亚10 K0 81.40Aa 72.47Aa 6 564.25Bb 1 685.30Bb 30.84Bb
K25 74.27Bb 68.83Bb 8 805.55Aa 2 429.36Aa 35.54Aa
双亚12 K0 79.17Aa 70.73Bb 7 239.17Bb 1 586.62Bb 27.48Bb
K25 77.67Bb 71.70Aa 7 571.23Aa 1 868.19Aa 31.79Aa

表2

不同亚麻品种(系)钾利用效率差异"

K0 K25
品种(系)
Varieties(lines)
K利用效率
K use efficience
品种(系)
Varieties(lines)
K利用效率
K use efficience
双亚10 87.23Aa 原2012-306 62.30Aa
原2012-306 75.73Bb sxy130 59.67Bb
原2012-295 73.05Cc 02147-2-6 42.45Cc
sxy130 71.88Cc 原2012-281 40.86CDd
原2012-289 60.89Dd 双亚10 39.35DEe
02147-2-6 56.98Ee 原2012-295 38.28Ee
sxy303 56.27Ee sxy303 36.33Ff
原2012-281 50.47Ff 原2012-303 31.92Gg
原2012-283 50.15Ff 原2012-300 29.98Hh
双亚12 40.77Gg 原2012-289 29.65Hh
原2012-303 37.40Hh 9801-1-1-7 26.85Ji
New 34.76Ii 原2012-283 26.79Ii
原2012-300 34.37Ii m03057-26 26.67IJi
m03057-26 23.93Jj 原2012-302 25.54IJKij
9801-1-1-7 23.06JKgk 白花 24.82JKLjk
原2012-305 22.78JKgkl 双亚12 23.90KLMkl
sxy330 22.02KLkl 原2012-305 23.37LMNlm
原2012-302 21.63KLMlm sxy330 23.17LMNlm
r0423-2-2 20.54LMNmn r0340-2-2 22.84MNlmn
黑亚20 20.04MNOno New 22.20MNmn
白花 19.02NOop r0423-2-2 21.46Nn
r0340-2-2 18.62Op 黑亚20 17.72Oo

图1

K0条件下不同亚麻品种(系) 钾利用效率差异聚类分析K25条件下,对22个亚麻品种(系)钾利用效率进行聚类分析,可分为3类。9801-1-1-7、原2012-283、m03057-26、白花、原2012-302等15个品种(系)是第1类,为K低效利用品种(系);02147-2-6、原2012-281、原2012-295、双亚10、sxy303是第2类,K利用效率居中;原2012-306、sxy130是第3类,为K高效利用品种(系)(图2)。"

图2

K25条件下不同亚麻品种(系)钾利用效率差异聚类分析"

表3

钾利用效率与农艺性状和产量性状的相关性"

处理
Treatments
株高(cm)
Height
工艺长度(cm)
Technical length
原茎产量(kg/hm2)
Straw yield
纤维产量(kg/hm2)
Fiber yield
全麻率(%)
Fiber content
K0 0.836** 0.741* -0.634 0.473 0.909**
K25 0.720* 0.718* -0.695 -0.267 0.901*
[1] FAO Databank. [2008-12-01].
[2] 姚玉波 . 不同品种亚麻种子萌发期抗旱性鉴定. 核农学报, 2015,29(10):2033-2039.
doi: 10.11869/j.issn.100-8551.2015.10.2033
[3] Clarkson D T, Hanson J B . The mineral nutrition of higher plants. Annual Review of Plant Physiology, 1980,31:239-298.
doi: 10.1146/annurev.pp.31.060180.001323
[4] Rǒmheld V, Kirkby E A . Research on potassium in agriculture:needs and prospects. Plant and Soil, 2010,335(1):155-180.
doi: 10.1007/s11104-010-0520-1
[5] Pettigrew W T . Potassium influences on yield and quality production for maize,wheat,soybean and cotton. Physiologia Plantarum, 2008,133(4):670-681.
doi: 10.1111/ppl.2008.133.issue-4
[6] Zǒrb C, Senbayram M, Peiter E . Potassium in agriculture status and perspectives. Journal of Plant Physiology, 2014,171(9):656-669.
doi: 10.1016/j.jplph.2013.08.008
[7] Wang Y, Wu W H . Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency. Current Opinion in Plant Biology, 2015,25:46-52.
doi: 10.1016/j.pbi.2015.04.007
[8] 王毅, 武维华 . 植物钾高效的分子遗传机制. 植物学通报, 2009,44(1):27-36.
[9] Pettersson S, Jensén P . Variation among species and varieties in uptake and utilization of potassium. Plant and Soil, 1983,72(2):231-237.
doi: 10.1007/BF02181962
[10] 彭克勤, 胡笃敬 .空心莲子草K+吸收的动力学研究.植物生理与分子生物学学报 ,1986(2):81-87.
[11] Dunlop J, Tomkins B. Genotypic differences in potassium translocation in rye-grass.In:Wardlaw I F,Passioura J B.Transport and Transfer Processes in Plants.New York:Academic Press. 1976: 145-156.
[12] Glass A D M, Perley J E . Varietal difference in potassium uptake by barley. Plant Physiology, 1980,65(1):160-164.
doi: 10.1104/pp.65.1.160
[13] Woodend J J, Glass A D M, Person C O . Genetic variation in the uptake and utilization of potassium in wheat (Triticum aestivum L.) varieties grown under potassium stress.In:Gabelman W H,Loughman B C.Genetic Aspects of Plant Mineral Nutrition.Leiden:Martinus Nijhoff Publisher. 1987: 323-330.
[14] Siddiqi M Y, Glass A D M, Hsiao A I, et al. Genotypic differences among wild oat lines in potassium uptake and growth in relation to potassium supply. Plant and Soil, 1987,99(1):93-105.
doi: 10.1007/BF02370157
[15] 刘亨官, 刘振兴, 刘放新 .水稻耐低钾品种(系)鉴定筛选及其吸钾特性的研究.福建农业学报,1987(2):10-17.
[16] 刘国栋, 刘更另 .水稻基因型与钾素营养关系的研究.//中国土壤学会第五届青年土壤科学工作者学术讨论会论文编委会.现代土壤科学研究.北京: 中国农业科技出版社, 1994: 535-538.
[17] 鲍士旦 . 土壤农化分析(3版).北京: 中国农业出版社, 2000: 270-271.
[18] 宋秋来, 郭昕, 龚振平 , 等.土壤速效钾水平对大豆钾素积累及产量影响的研究.作物杂志,2014(2):106-109.
[19] 鲁如坤 . 我国土壤氮磷钾的基本状况. 土壤学报, 1989,26(3):280-286.
[20] 严小龙, 张福锁 .植物营养遗传学.北京: 中国农业出版社, 1997: 1-17.
[21] 唐中凡 . 中国钾肥行业现状及发展趋势.新疆化工,2007(1):23-33.
[22] FAO( Ed) :Current World Fertilizer Trends and Outlook to 2016. to 2016. Food and Agriculture Organization of the Unitied Nations, 2012.
[23] 侯新村, 范希峰, 武菊英 .氮磷钾肥对能源草柳枝稷苗期生长的影响.作物杂志,2012(3):114-118.
[24] Xie J C, Zhou J M . Advance in soil K research and K fertilizer application in China. Soils, 1999,31:244-254.
[25] Lew R R . Electrogenic transport properties of growing arabidopsis root hairs:the plasma membrane proton pump and potassium channels. Plant Physiology, 1991,97:1527-1534.
doi: 10.1104/pp.97.4.1527
[26] 刘大永, 别之龙, 万兆良 , 等. 钾在云南三种类土壤中的渗透流失. 核农学报, 1997,11(1):49-53.
[27] Helmut B, Hans E, Meinolf L . Water relationships and incorporation of 14C assimilates in tubers of potato plants differing in potassium nutrition . Plant Physiology, 1984,73(4):956-960.
[28] 王月福, 康玉洁, 王铭伦 , 等. 施钾对花生积累氮素来源和产量的影响. 核农学报, 2013,27(1):126-131.
[29] 黄雪丽, 胡应锋, 邹雪 , 等. 钾高效基因型马铃薯钾素利用效率机制研究. 西南农业学报, 2013,26(3):1094-1099.
[30] 王伟妮, 鲁剑巍, 何予卿 , 等. 氮、磷、钾肥对水稻产量、品质及养分吸收利用的影响. 中国水稻科学, 2011,25(6):645-653.
doi: 10.3969/j.issn.10017216.2011.06.012
[31] 刘国栋, 刘更另 . 籼稻耐低钾基因型的筛选. 作物学报, 2002,28(2):161-166.
[32] Zhang G P, Chen J X, Eshetu A T . Genotypic variation for potassium uptake and utilization efficiency in wheat. Nutrient Cycling in Agroecosystems, 1999,54(1):41-48.
doi: 10.1023/A:1009708012381
[33] Ali L , Rahmatullah,Ranjha A M,et al.Differential potassium requirement and its substitution by sodiumin cotton genotypes. Pakistan Journal of Biological Sciences, 2006,43(3-4):108-113.
[34] 张国新, 王省芬, 马峙英 , 等. 棉花抗枯、黄萎病品种苗期耐低钾种质筛选研究. 植物遗传资源学报, 2009,10(4):583-588.
[35] Damon P M, Rengel Z . Wheat genotypes differ in potassium efficiency under glasshouse and field conditions. Australian Journal of Agricultural Research, 2007,58(8):816-825.
doi: 10.1071/AR06402
[36] Chachar K M, Chachar Q I, Chachar N A , et al. Genotypic variation for potassium uptake and utilization efficiency in wheat (Triticum aestivum L.). International Journal of Agricultural Technology, 2015,11(4):839-853.
[37] George M S, Lu G, Zhou W . Genotypic variation of K uptake and utilization efficiency in sweet potato. Field Crops Research, 2002,77(1):7-15.
doi: 10.1016/S0378-4290(02)00043-6
[38] 台德卫, 张效忠, 苏泽胜 , 等. 全球水稻分子育种核心种质资源耐低钾品种的苗期筛选. 植物遗传资源学报, 2004,5(4):356-359.
[39] Wild A, Skarlou V, Clement C R , et al. Comparison of potassium uptake by four plant species grown in sand and in flowing solution culture. Journal of Applied Ecology, 1974,11(2):801-812.
doi: 10.2307/2402229
[40] 唐忠厚, 张允刚, 魏猛 , 等. 耐低钾和钾高效型甘薯品种(系)的筛选及评价指标. 作物学报, 2014,40(3):542-549.
doi: 10.3724/SP.J.1006.2014.00542
[1] 袁珍贵,陈平平,郭莉莉,屠乃美,易镇邪. 土壤镉含量影响水稻产量与稻穗镉累积分配的品种间差异[J]. 作物杂志, 2018, (1): 107–112
[2] 刘丽华,苑少华,冯树英,庞斌双,李宏博,刘阳娜,张立平,赵昌平. 小麦F型雄性不育系和恢复系SSR指纹图谱构建及遗传差异分析[J]. 作物杂志, 2017, (6): 30–36
[3] 岳德成,史广亮,韩菊红,姜延军,柳建伟,李青梅. 全膜双垄沟播玉米田覆盖化学除草地膜对后茬亚麻生长发育的影响[J]. 作物杂志, 2016, (6): 148–153
[4] 王树彦,韩冰,周四敏,徐军. 油用亚麻可溶性糖、脂肪含量与硬脂酰-酰基载体蛋白脱氢酶基因表达相关性分析[J]. 作物杂志, 2016, (4): 56–61
[5] 袁红梅,郭文栋,赵丽娟,于莹,吴建忠,程莉莉,赵东升,康庆华,黄文功,姚玉波,宋喜霞,姜卫东,刘岩,马廷芬,吴广文,关凤芝. 亚麻糖基转移酶基因LuUGT72E1的克隆与表达分析[J]. 作物杂志, 2016, (4): 62–67
[6] 曹秀霞,钱爱萍,张炜,杨崇庆. 锌肥不同用量对旱地油用亚麻生长及种子产量的影响[J]. 作物杂志, 2016, (3): 167–170
[7] 谢阳姣,何志鹏,李耀燕,闫国跃,符标芳. 苦玄参药材中苦玄参苷IA和IB差异积累的影响因素分析[J]. 作物杂志, 2016, (3): 89–93
[8] 郭媛, 邱财生, 龙松华, 等. 种子萌发期亚麻种质资源耐镉性的鉴定评价[J]. 作物杂志, 2015, (6): 39–43
[9] 郭媛, 邱财生, 龙松华, 等. 福胁迫对不同地区亚麻主栽品种种子萌发的影响[J]. 作物杂志, 2015, (4): 146–151
[10] 李丹丹, 韩冰, 王树彦, 等. 亚麻子中α-亚麻酸及参与其形成的不饱和脂肪酸的研究进展[J]. 作物杂志, 2015, (2): 18–22
[11] 吴文荣, 牛瑞明, 苑莹, 等. 外源NO对模拟干旱胁迫下亚麻种子发芽及幼苗生长的影响[J]. 作物杂志, 2015, (1): 143–147
[12] 吴建忠. 亚麻纤维素合酶关键基因(LusiCesAl)的克隆[J]. 作物杂志, 2014, (6): 36–39
[13] 章爱群, 斯琴朝克图, 刘牛, 等. 低铁胁迫对不同耐低磷玉米生长及磷、铁养分吸收的影响[J]. 作物杂志, 2014, (6): 111–115
[14] 陈芳, 党占海, 张建平, 等. 不同基因型亚麻下胚轴不定芽诱导的研究[J]. 作物杂志, 2014, (3): 39–43
[15] 韩涛, 程大志, 皮立, 等. 微孔草新品种-青微2号[J]. 作物杂志, 2013, (4): 152–152
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .