作物杂志,2017, 第3期: 69–74 doi: 10.16035/j.issn.1001-7283.2017.03.013

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

箭筈豌豆镉胁迫下的失水胁迫和渗透调节物质的积累

芮海云1,2,张兴兴2,沈振国2,张芬琴3   

  1. 1 泰州学院医药与化学化工学院,225300,江苏泰州
    3 南京农业大学生命科学学院,210095,江苏南京
    3 河西学院农业与生物技术学院,734000,甘肃张掖
  • 收稿日期:2017-04-11 修回日期:2017-04-27 出版日期:2017-06-15 发布日期:2018-08-26
  • 作者简介:芮海云,副教授,研究方向为植物环境生理
  • 基金资助:
    国家自然科学基金(31160053);泰州学院博士基金(TZXY2015JBJJ005)

Water Deficit Stress and Osmotic Substances Accumulation of Vicia sativa L. under Cadmium Stress

Rui Haiyun1,2,Zhang Xingxing2,Shen Zhenguo2,Zhang Fenqin3   

  1. 1 College of Pharmacy and Chemistry & Chemical Engineering,Taizhou University,Taizhou 225300,Jiangsu,China;
    2 College of Life Sciences,Nanjing Agricultural University,Nanjing 210095,Jiangsu,China
    3 College of Agriculture and Biotechnology,Hexi University,Zhangye 734000,Gansu,China
  • Received:2017-04-11 Revised:2017-04-27 Online:2017-06-15 Published:2018-08-26

摘要:

通过溶液培养试验,研究了2个箭筈豌豆(Vicia sativa L.)品种(镉耐性品种L3,镉敏感品种ZM)镉胁迫下含水量和渗透调节物质含量的变化,以及2个品种对失水胁迫的耐性。结果表明:25μmol/L镉处理14d,L3和ZM根中含水量分别较对照降低1.27%和4.66%,地上部含水量分别较对照降低4.06%和5.46%,ZM失水更明显;镉胁迫下,ZM和L3根中总氨基酸、脯氨酸和还原糖含量以及茎中总氨基酸含量都较对照显著升高,ZM较L3更明显;ZM叶中脯氨酸和还原糖含量也较对照显著升高,L3叶中二者较对照升高不显著;同时,ZM较L3有更强的对失水胁迫的耐性。因此,镉胁迫下箭筈豌豆渗透调节物质的积累是对镉胁迫引起的失水胁迫的积极响应;箭筈豌豆对失水胁迫的耐性不是决定其镉耐性的主要方面。

关键词: 镉, 箭筈豌豆, 失水胁迫, 渗透调节

Abstract:

We investigated the effects of cadmium stress on water content and osmotic substances accumulation in two Vicia sativa varieties (cadmium-tolerant variety L3, cadmium-sensitive variety ZM), using solution culture experiments, and studied the tolerance of two varieties to water deficit stress. The results showed that water content decreased 1.27% and 4.66% in the roots, and 4.06% and 5.46% in the overground part of L3 and ZM, respectively. Content of total amino acid, proline and reducing sugar increased in the roots by two varieties and content of total amino acid increased in the stems by two varieties under cadmium stress, and the changes were more significant in ZM than in L3; Content of proline and reducing sugar increased significantly in the leaf of ZM but not in the leaf of L3. Meanwhile, Cd-sensitive variety ZM was more tolerant to water deficit stress than Cd-tolerant variety L3. The results indicated that accumulation of osmotic substances in V. sativa was a positive response to water deficit caused by cadmium stress. The tolerance to water deficit stress was not the main factor influencing the cadmium tolerance of V. sativa.

Key words: Cadmium, Vicia sativa L., Water deficit stess, Osmotic adjustment

图1

镉胁迫下2个箭筈豌豆品种根和地上部含水量的变化"

图2

镉胁迫下2个箭筈豌豆品种根、茎、叶总氨基酸含量的变化"

图3

镉胁迫下2个箭筈豌豆品种根、茎、叶脯氨酸含量的变化"

图4

镉胁迫下2个箭筈豌豆品种根、茎、叶还原糖含量的变化"

表1

失水胁迫下2个箭筈豌豆品种生物量的变化"

品种Variety 处理
Treatment
根长(cm)
Root length
株高(cm)
Plant height
根的鲜重(mg/plant)
Root fresh weight
地上部鲜重(mg/plant)
Overground part fresh weight
根的干重(mg/plant)
Root dry weight
地上部干重(mg/plant)
Overground part dry weight
L3 对照Control 30.25±1.10a 38.91±0.74b 314.73±32.28a 463.37±18.57c 16.92±2.20a 51.81±0.45a
10%PEG-6000 22.74±0.45b 35.51±1.47c 253.16±8.86b 402.83±4.62d 17.04±0.31a 46.55±1.02b
ZM 对照Control 31.22±0.13a 44.08±2.02a 299.73±6.01a 565.33±11.85a 15.25±0.52a 54.77±1.06a
10%PEG-6000 20.55±1.74c 41.89±1.85ab 260.06±15.13b 527.03±22.02b 16.29±0.12a 54.48±1.99a
[1] Thapa G, Sadhukhan A, Panda S K , et al. Molecular mechanistic model of plant heavy metal tolerance. Biometals, 2012,25, 489-505.
doi: 10.1007/s10534-012-9541-y pmid: 22481367
[2] Mohamed A A, Castagna A, Ranieri L S , et al. Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiology and Biochemistry, 2012,57:15-22.
doi: 10.1016/j.plaphy.2012.05.002
[3] Barcelò J, Poschenrieder C . Plant-water relations as affected by heavy metal stress:a review. Journal of Plant Nutrition, 1990,13:1-37.
doi: 10.1080/01904169009364057
[4] Costa G, Morel J L . Water relations,gas exchange and amino acid content in Cd-treated lettuce. Plant Physiology and Biochemistry, 1994,32:561-570.
doi: 10.1104/pp.105.3.1027
[5] Perfus-Barbeoch L, Leonhard N, Vavasseur A , et al. Heavy metal toxicity:cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal, 2002,32(4):539-548.
doi: 10.1046/j.1365-313X.2002.01442.x
[6] 刘艳, 陈贵林, 蔡贵芳 , 等. 干旱胁迫对甘草幼苗生长和渗透调节物质含量的影响. 西北植物学报, 2011,31(11):2259-2264.
[7] Silva E N , Ferreira-Silva S L,Viégas R A,et al.The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants. Environmental and Experimental Botany, 2010,69:279-285.
doi: 10.1016/j.envexpbot.2010.05.001
[8] 张芬琴 . 镉胁迫对二种不同耐性豆科植物生长与活性氧代谢的影响及水杨酸对镉毒害的缓解效应. 南京:南京农业大学, 2009.
[9] 李合生, 孙群, 赵世杰 , 等. 植物生理生化实验原理和技术.北京: 高等教育出版社, 2000.
[10] Sanita di Toppi L, Gabbrielli R . Response to cadmium in higher plants. Environmental and Experimental Botany, 1999,41:105-130.
doi: 10.1016/S0098-8472(98)00058-6
[11] Zoghlami L B, Djebali W, Abbes Z , et al. Metabolite modifications in Solanum lycopersicum roots and leaves under cadmium stress. African Journal of Biotechnology, 2011,10(4):567-579.
[12] Hsu Y T, Kao C H . Changes in protein and amino acid contents in two cultivars of rice seedlings with different apparent tolerance to cadmium. Plant Growth Regulation, 2003,40:147-155.
doi: 10.1023/A:1024248021314
[13] Shah K, Dubey R S . Cadmium alters phosphate level and suppresses activity of phosphorolytic enzymes in germinating rice seeds. Journal of Agronomy and Crop Science, 1997,179:35-45.
doi: 10.1111/j.1439-037X.1997.tb01145.x
[14] Xu J, Yin H X, Li X . Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator Solanum nigrum L. Plant Cell Reports, 2009,28:325-333.
doi: 10.1007/s00299-008-0643-5
[15] Polge C, Jaquinod M, Holzer F , et al. Evidence for the existence in Arabidopsis thaliana of the proteasome proteolytic pathway-activation in response to cadmium. Journal of Biological Chemistry, 2009,284:35412-35424.
doi: 10.1074/jbc.M109.035394
[16] Sarry J E, Kuhn L, Ducruix C , et al. The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics, 2006,6(7):2180-2198.
doi: 10.1002/(ISSN)1615-9861
[17] 芮海云, 庄凯, 沈振国 , 等. 两个箭舌豌豆品种根响应镉胁迫的蛋白质组学分析. 植物生理学报, 2016,52(7):1089-1098.
[18] Talanova V V, Titov A F, Boeva N P . Effect of increasing concentrations of lead and cadmium on cucumber seedlings. Biologia Plantarum, 2000,43:441-444.
doi: 10.1023/A:1026735603890
[19] Zengin F K, Munzuroglu O . Effects of some heavy metals on content of chlorophyll,proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biologica Cracoviensia Series Botanica, 2005,47:157-164.
[20] Chen G X, Wang N, Shao Z G , et al. Effects of phosphorus nutrition on physiological activity of Nymphaea tetragona Georgi and Trapa bispinosa Roxb.leaves. Journal of Nanjing Normal University (Natural Science) , 2002,25(1):71-77.
[21] Schat H, Sharma S S, Vooijs R . Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiologia Plantarum, 1997,101:477-482.
doi: 10.1111/ppl.1997.101.issue-3
[22] Kastori R, Petrovic M, Petrovic N . Effect of excess lead,cadmium,copper and zinc on water relations in sunflower. Journal of Plant Nutrition, 1992,15:2427-2439.
doi: 10.1080/01904169209364485
[23] Zhang F, Li X, Wang C , et al. Effect of cadmium on autoxidation rate of tissue and inducing accumulation of free proline in seedlings of mung bean. Journal of Plant Nutrition, 2000,23:356-368.
[24] Sharma S S, Dietz K J . The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 2007,57(4):711-726.
[25] Kaur G, Asthir B . Proline:a key player in plant abiotic stress tolerance. Biologia Plantarum, 2015,59(4):609-619.
doi: 10.1007/s10535-015-0549-3
[26] Couée I, Sulmon C, Gouesbet G , et al. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. Journal of Experimental Botany, 2006,57(3):449-459.
doi: 10.1093/jxb/erj027
[27] Silva E N, Ribeiro R V , Ferreira-Silva S L,et al.Coordinate changes in photosynthesis,sugar accumulation and antioxidative enzymes improve the performance of Jatropha curcas plants under drought stress. Biomass and Bioenergy, 2012,5:270-279.
[28] Kieffer P, Dommes J, Hoffmann L , et al. Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics, 2009,8(12):2514-2530.
doi: 10.1002/pmic.200701110 pmid: 18563750
[29] McCormick A J, Watt D A, Cramer M D . Supply and demand:sink regulation of sugar accumulation in sugarcane. Journal of Experimental Botany, 2009,60(2):357-364.
doi: 10.1093/jxb/ern310 pmid: 19050062
[30] Oono Y, Yazawa T, Kawahara Y , et al. Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. Plos One, 2014,9(5):e96946.
doi: 10.1371/journal.pone.0096946
[1] 曹玉巧,聂庆凯,高云,许自成黄五星,. 植物中镉及其螯合物相关转运蛋白研究进展[J]. 作物杂志, 2018, (3): 15–24
[2] 袁珍贵,陈平平,郭莉莉,屠乃美,易镇邪. 土壤镉含量影响水稻产量与稻穗镉累积分配的品种间差异[J]. 作物杂志, 2018, (1): 107–112
[3] 芮海云,沈振国,张芬琴. 土壤镉污染对箭筈豌豆生长、镉积累和营养物质吸收的影响[J]. 作物杂志, 2017, (6): 104–108
[4] 杨文才,拉巴,魏巍. 氮磷配施对西藏河谷农区燕麦与箭筈豌豆混播产量及品质的影响[J]. 作物杂志, 2016, (5): 75–80
[5] 白丽荣,时丽冉,郭晓丽,张晓娜. 水分胁迫对不同基因型小黑麦和黑麦苗期生理特性的影响[J]. 作物杂志, 2016, (4): 118–122
[6] 郭媛, 邱财生, 龙松华, 等. 种子萌发期亚麻种质资源耐镉性的鉴定评价[J]. 作物杂志, 2015, (6): 39–43
[7] 杨德光, 刘永玺, 张倩, 等. 作物渗透调节及抗渗透胁迫基因工程研究进展[J]. 作物杂志, 2015, (1): 6–13
[8] 韩梅, 张宏亮, 郭石生, 等. 绿肥作物箭筈豌豆种质产量性状综合评价[J]. 作物杂志, 2013, (4): 67–69
[9] 郭瑞, 郝卫平, 龚道枝. PEG-6000模拟水分胁迫对不同抗旱性冬小麦生理生态指标的影响[J]. 作物杂志, 2012, (5): 43–47
[10] 杨艳艳, 王庆祥. 盐胁迫对不同玉米品种幼苗渗透调节物质的影响[J]. 作物杂志, 2012, (1): 99–102
[11] 周海林, 王庆祥. NaCl胁迫对甜、爆、糯玉米幼苗有机渗透调节物质的影响[J]. 作物杂志, 2011, (4): 43–46
[12] 梅丽娜, 袁庆华, 姚拓, 等. 不同品种苜蓿芽期对重金属镉的耐性研究[J]. 作物杂志, 2010, (2): 15–18
[13] 于军香. 镉污染对小豆种子萌发和幼苗生长的影响[J]. 作物杂志, 2009, (3): 106–107
[14] 闫华晓, 赵辉, 高登征, 等. 镉离子对玉米种子萌发和生长影响的初步研究[J]. 作物杂志, 2007, (5): 25–28
[15] 雷华, 陈国祥, 褚必海, 等. NaCl胁迫对两优培九幼苗离子含量的影响[J]. 作物杂志, 2007, (3): 63–66
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .